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INTRODUCTION

Switched system, which is an important class of hybrid dynamical system, consists of continuous or discrete-time subsystems and a switching signal which determines the switching from one mode to another at every switching point. Switched system is an effective tool to describe a wide range of practical systems, including flight control systems [START_REF] Vu | Stability of time-delay feedback switched linear systems[END_REF] and network control systems [START_REF] Donkers | Stability analysis of networked control systems using a switched linear systems approach[END_REF]. Due to their powerful modelling capability, the stability analysis and control synthesis for switched systems have been extensively studied in the literature, see, e.g. [START_REF] Liberzon | Switching in systems and control[END_REF]; [START_REF] Zhao | Stability and stabilization of switched linear systems with modedependent average dwell time[END_REF]; [START_REF] Niu | Barrier lyapunov functions for the output tracking control of constrained nonlinear switched systems[END_REF] and the references therein.

Apart from the stability analysis and controller design problems, state estimation is also very important for switched systems. In fact, state estimation has widely investigated in the control community such as fault diagnosis techniques [START_REF] Wu | A descriptor system approach for estimation of incipient faults with application to high-speed railway traction devices[END_REF], unknown input observer design [START_REF] Guo | Reduced-order switched UIO design for switched discrete-time descriptor systems[END_REF] and robust controller design [START_REF] Aslam | Robust active noise control design by optimal weighted least squares approach[END_REF]. Therefore, many efforts have been devoted to state estimation for switched systems in the past decades. Specifically, [START_REF] Bejarano | State exact reconstruction for switched linear systems via a supertwisting algorithm[END_REF] designed an observer to ensure the reconstruction of the entire state in finite time for linear switched systems. For switched systems with Lipschitz nonlinear subsystems, a robust observer design method was proposed in [START_REF] Hernandez | An observer for switched Lipschitz continuous systems[END_REF] to realise state estimation. However, the existing results in [START_REF] Bejarano | State exact reconstruction for switched linear systems via a supertwisting algorithm[END_REF] and [START_REF] Hernandez | An observer for switched Lipschitz continuous systems[END_REF] are all state estimation for switched systems without uncertainties. In fact, the uncertainties such as process disturbances and measurement noises always exist in practical systems. To handle this problem, [START_REF] Bejarano | Switched observers for switched linear systems with unknown inputs[END_REF] proposed the reduced-order unknown input switched observer to estimate the state of switched systems subjected to unknown inputs. For switched systems with both unknown disturbances and noises, [START_REF] Yang | Simultaneous state and output disturbance estimations for a class of switched linear systems with unknown inputs[END_REF] designed a robust sliding-mode switched observer to estimate state with the aid of augmented system approach. However, these abovementioned methods all use the H ∞ technique to reduce the influence of unknown uncertainties and improve the estimation accuracy. Note that H ∞ norm is a measurement of energy-to-energy gain. As pointed out in [START_REF] Wang | H -/L ∞ fault detection observer design for linear parametervarying systems[END_REF], the practical signals are not necessarily energybounded but have bounded peak values. Consequently, L ∞ norm, which aims to minimize the peak-to-peak gain, can be considered as an alternative solution to analyse the robustness performance of state estimation.

On the other hand, the results in [START_REF] Bejarano | Switched observers for switched linear systems with unknown inputs[END_REF] and [START_REF] Yang | Simultaneous state and output disturbance estimations for a class of switched linear systems with unknown inputs[END_REF] are all point-estimation of state and may not converge to the real state due to the existence of model and/or signals uncertainties. Therefore, state interval estimation approaches based on interval observer and zonotopic techniques get more attention for uncertain control systems in recent years. The basic idea of interval observer is to design two sub-observers such that their estimation error dynamics are both cooperative and stable. The two sub-observers can provide the upper and lower bounds of the real system states. During the past decade, some interval observer design works have been devoted to various classes of linear or nonlinear regular systems [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF][START_REF] Efimov | Design of interval observers for uncertain dynamical systems[END_REF][START_REF] Meslem | Using set invariance to design robust interval observers for discrete-time linear systems[END_REF]. Specially, [START_REF] Ethabet | Interval observers design for continuous-time linear switched systems[END_REF] addressed the interval observer design issue for continuous-time linear switched systems. The interval observer design methods for discrete-time linear switched systems have been proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]. However, it is not a trivial work to construct a cooperative and stable error system, and even impossible for some dynamical systems. Although the cooperative constraint can be relaxed by coordinate transformations, it may cause additional conservatism and limit the estimation accuracy. Meanwhile, the zonotopebased interval estimation methods can achieve a good trade-off between estimation accuracy and computation complexity, and have gained much attention by many researchers [START_REF] Tang | Interval estimation methods for discrete-time linear time-invariant systems[END_REF]. Especially, [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF] proposed a guaranteed state estimation method for nonlinear systems based on zonotopic techniques. [START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF] presented a new approach for guaranteed state estimation via zonotopes for uncertain multivariable systems. For time-varying dynamics systems with measurement uncertainties, [START_REF] Combastel | Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence[END_REF] designed a zonotopic Kalman observer to achieve the state interval estimation. In addition, some criteria such as P -radius [START_REF] Le | Zonotopic guaranteed state estimation for uncertain systems[END_REF] and F -radius [START_REF] Combastel | Zonotopes and Kalman observers: gain optimality under distinct uncertainty paradigms and robust convergence[END_REF] to decrease the size of zonotopes have been used to improve the accuracy of interval estimation. However, these methods by using zonotopic technique are all the state estimation for state-space systems. The case of zonotope-based interval estimation for switched systems has not been fully considered in the literature. Motivated by the above-mentioned discussion, this paper proposes a novel state interval estimation method for discrete-time linear switched systems with unknown but bounded disturbances and noises. The main contributions of this paper are summarized as follows:

1) A novel interval estimation method that combines the observer design with zonotopic technique is proposed for discrete-time linear switched systems. The observer design conditions can be converted into linear matrix inequalities (LMIs). 2) By using zonotope approach, the proposed method can overcome the cooperative constraints used in the design of interval observer. 3) With the L ∞ technique used to reduce the influence of unknown disturbances and noises, the proposed method provides a systematic way to improve the accuracy of interval estimation.

PRELIMINARIES

Notation: R n and R m×n are the n and m × n dimensional Euclidean space, respectively. R + = {τ ∈ R : τ ≥ 0}, I n denotes identity matrix with dimensions of n and 0 represents zero number, vector or matrix of appropriate dimensions. For a matrix M ∈ R m×n , M T denotes its transpose and M (i, j) represents the element of M in the i-th row and the j-th column. For a vector x ∈ R n , x denotes its Euclidean norm and x(i) is the i-th component of x. The comparison operators ≥ and ≤ on vectors and matrices should be understood elementwise and P ≻ 0 (P ≺ 0) indicates that P is a positive (negative) definite matrix. The operators ⊕ and ⊙ denote the Minkowski sum and the linear image operators, respectively. The asterisk ⋆ represents the symmetric term in a symmetric matrix. For a signal x k ∈ R n , its L ∞ norm is defined as:

x ∞ = sup k≥0 x k , where x k 2 = x T k x k .
The following definitions and properties are essential in this paper.

Definition 1. [START_REF] Zhang | A state augmentation approach to interval fault estimation for descriptor systems[END_REF] For a set X ⊂ R n , its interval hull Box(X) is defined as the smallest interval vector containing it, which is denoted as follows:

X ⊆ Box(X) = [x, x],
(1) where [x, x] = {x : x ∈ X, x ≤ x ≤ x} is an interval vector, x and x denote the maximum lower and minimum upper bounds of x.

Definition 2. [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF] 

An s-order zonotope Z ⊂ R n (n ≤ s) is a linear image of a hypercube B s = [-1, +1] s as follows: Z = p ⊕ HB s = {z = p + Hb, b ∈ B s }
(2) where s and n are the order and dimension number of Z, p ∈ R n is the center of Z and H ∈ R n×s is called the generation matrix of Z, which defines the shape and volume of Z. For simplicity, we also use Z = p, H to denote a zonotope. Property 1. [START_REF] Scott | Input design for guaranteed fault diagnosis using zonotopes[END_REF] For zonotpes, the following properties hold:

Γ ⊙ p, H = Γp, ΓH (3) p 1 , H 1 ⊕ p 2 , H 2 = p 1 + p 2 , [H 1 H 2 ]
(4) where p, p 1 , p 2 ∈ R n are known vectors, H, H 1 , H 2 ∈ R n×s and Γ ∈ R l×n are determined matrices.

Property 2. [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF] For an s-order zonotope

Z = p, H ⊂ R n , its interval hull Box(Z) = [z, z] can be obtained by        z(i) = p(i) + s j=1 |H(i, j)|, i = 1, • • • , n, z(i) = p(i) - s j=1 |H(i, j)|, i = 1, • • • , n. (5) 
According to the Definitions 1 and 2, the interval hull of zonotope Z = p, H can also be computed by

Z = p ⊕ HB s ⊆ Box(Z) = p ⊕ Rs(H)B n , (6) 
where Rs(H) ∈ R n×n is a diagonal matrix as follows:

Rs(H) = diag s j=1 |H(1, j)| • • • s j=1 |H(n, j)| .
Remark 1. In the application of zonotopic techniques, the column number of the generator matrix will increase linearly without the reduction operator. However, the reduction operator proposed in [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF] can be used to bound a zonotope by a lower-dimensional one, which can be described by the following equation Z = p, H ⊆ p, Ω(H) where p ∈ R n and H ∈ R n×s are the center and generator matrix of Z. Ω(H) ∈ R n×m denotes the complexity reduction operator with m (n ≤ m ≤ s) is the maximum number of columns of the generated matrix. The Ω(H) can be computed as follows:

• Reordering the columns of matrix H in decreasing Euclidean norm and denote the obtained matrix as Ĥ.

Ĥ = [h 1 • • • h s ], h j ≥ h j+1 , j = 1, • • • s -1.
• Replacing the last sm + n smallest column of Ĥ by a diagonal matrix Rs(H < ) ∈ R n×n since the zonotope generated by these columns can be enclosed in a box.

If s ≤ m, then Ω(H) = H, Else Ω(H) = [H > Rs(H < )] ∈ R n×m ,
where

H > = [h 1 • • • h m-n ], H < = [h m-n+1 • • • h m ].

PROBLEM FORMULATION

Consider the following discrete-time linear switched system subject to unknown disturbances and noises

x k+1 = A σ(k) x k + B σ(k) u k + D σ(k) w k y k = C σ(k) x k + E σ(k) v k , k ∈ R + , (7) 
where

x k ∈ R nx , u k ∈ R nu , y k ∈ R ny , w k ∈ R nw
and v k ∈ R nv are the state vector, the input vector, the output vector, the unknown disturbances and the measurement noises, respectively. σ(k) is a known piecewise constant function which denotes the switching signal.

A σ(k) , B σ(k) , C σ(k) , D σ(k) , E σ(k) : σ(k) ∈ N are a family of matrices parameterized by an index set N = {1, • • • , N }
and N is the number of subsystems. Let q = σ(k) be the index of the active subsystem, A q , B q , C q , D q and E q are known constant matrices with the corresponding dimensions.

The following assumptions will be used in this paper.

Assumptions 1. The switching signal σ(k) in ( 7) can be available in real-time.

Assumptions 2. The initial system state vector x 0 , the disturbances w k and the noises v k in ( 7) are assumed to be unknown but bounded as follows:

|x 0 -p 0 | ≤ x0 , |w k | ≤ w, |v k | ≤ ṽ, (8) where | • | denotes the absolute value operator, p 0 ∈ R nx , x0 > 0 ∈ R nx , w > 0 ∈ R nw and ṽ > 0 ∈ R nv are known vectors.
According to Definition 1, (8) can be reformulated as

x 0 ∈ p 0 , H 0 , w k ∈ 0, W , v k ∈ 0, V , (9) 
where p 0 is a known vector, H 0 , W and V are diagonal matrices with their diagonal elements equal to x0 , w and ṽ, respectively. For simplicity, we denote

x 0 ∈ X 0 = p 0 , H 0 , w k ∈ W = 0, W and v k ∈ V = 0, V .
The objective of the interval estimation method is to obtain an interval vector [x k , x k ], which can contain the real state x k , i.e.

x k ≤ x k ≤ x k , k ∈ R + . In this paper, we propose a novel interval estimation method for discrete-time linear switched systems by integrating the robust state observer design with the zonotopic analysis. First, a class of Luenberger observers for system (7) are designed via the L ∞ technique such that their estimation errors are robust against the unknown inputs.

Based on the designed observers, the interval estimation will be determined with the aid of zonotopic analysis.

ROBUST STATE OBSERVER DESIGN

Consider the following observer for the system (7) xk+1 = A q xk + B q u k + L q (y k -C q xk ), (10) where xk is the state estimation vector and L q ∈ R nx×ny , q ∈ N is the observer gain matrix to be designed.

Define the estimation error as

e k = x k -xk , (11) then following error dynamics systems can be obtained e k+1 = (A q -L q C q )e k + D q w k -L q E q v k , (12) which can be rewritten as e k+1 = A eq e k + D q w k + L eq v k , (13) where A eq = A q -L q C q and L eq = -L q E q , q ∈ N .

In order to obtain accurate estimation, L ∞ technique is used to attenuate the effect of disturbances and noises on the estimation error. For error dynamic systems (12), the following theorem is proposed to design L for the observer in (10) such that the estimation error is robust against the unknown disturbances and noises.

Theorem 1. Given scalars γ w > 0, γ v > 0 and 0 < λ < 1, if there exist a constant µ > 0, matrices

P = P T ≻ 0 ∈ R nx×nx and W q ∈ R nx×ny for ∀q ∈ N such that    (λ -1)P ⋆ ⋆ ⋆ 0 -µI nw ⋆ ⋆ 0 0 -µI nv ⋆ P A q -W q C q P D q -W q E q -P    ≺ 0, (14) 
   λP ⋆ ⋆ ⋆ 0 (γ w -µ)I nw ⋆ ⋆ 0 0 (γ v -µ)I nv ⋆ I nx 0 0 (γ w + γ v )I nx    ≻ 0, ( 15 
)
then the error system in ( 12) is asymptotically stable and satisfies the following 16) where V 0 = e T 0 P e 0 and P ≻ 0 ∈ R nx×nx being a designed matrix. Moreover, if the LMIs in ( 14) and ( 15) are solvable, the matrix L q can be determined by L q = P -1 W q , q ∈ N .

L ∞ performance e k 2 ≤ (γ w + γ v )(λ(1 -λ) k V 0 + γ w w 2 + γ v v 2 ), (
Proof : Choose the following common quadratic Lyapunov function

V k = e T k P e k , P = P T ≻ 0, (17) Then, the following equation can be obtained

∆V k = V k+1 -V k = e k w k v k T Φ e k w k v k , ( 18 
)
where Φ =   A T eq P A eq -P ⋆ ⋆ D T q P A eq D T q P D q ⋆ L T eq P A eq L T eq P D q L T eq P L eq   .

By setting W q = P L q , q ∈ N then according to A eq = A q -L q C q and L eq = -L q E q , the inequality in ( 14) is equivalent to  Pre-and post-multiplying ( 19) with  

I nx 0 0 A T eq 0 I nw 0 D T q 0 0 I nv L T eq  
and its transpose, respectively, we have

Φ + λP ⋆ ⋆ 0 -µI nw ⋆ 0 0 -µI nv ≺ 0. ( 20 
)
By pre-multiplying and post-multiplying ( 19) with [e T k w T k v T k ] and its transpose, we can obtain 22) Thus, the error system in ( 12) is asymptotically stable. Furthermore, inequality ( 21) is equivalent to

∆V k < -λV k + µw T k w k + µv T k v k . (21) When w k = 0 and v k = 0, (21) implies that ∆V k = V k+1 -V k < -λV k < 0 (
V k+1 < (1 -λ)V k + µ( w 2 + ṽ 2 ), which implies that V k < (1 -λ) k V 0 + µ k-1 τ =0 (1 -λ) τ ( w 2 + ṽ 2 ) ≤ (1 -λ) k V 0 + µ 1 -λ k λ ( w 2 + ṽ 2 ) ≤ (1 -λ) k V 0 + µ w 2 λ + µ ṽ 2 λ . ( 23 
)
By using the Schur complement lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], the inequality in ( 15) is equivalent to

λP ⋆ ⋆ 0 (γ w -µ)I nw ⋆ 0 0 (γ v -µ)I nv - 1 γ w + γ v I nx 0 0 [I nx 0 0] ≻ 0, (24) 
Pre-multiplying and post-multiplying inequality ( 24) with [e T k w T k v T k ] and its transpose, we have e T k e k ≤ (γ w +γ v )(λV k +(γ w -µ) w 2 +(γ v -µ) ṽ 2 ). ( 25) Substituting ( 23) into ( 25) yields

e T k e k ≤ (γ w + γ v )(λ((1 -λ) k V 0 + µ w 2 λ + µ ṽ 2 λ ) + (γ w -µ) w 2 + (γ v -µ) ṽ 2 ) = (γ w + γ v )(λ(1 -λ) k V 0 + γ w w 2 + γ v ṽ 2 ), it follows that the L ∞ performance holds.
Remark 2. In order to attenuate the influence of disturbances and noises as much as possible, the minimal scalars γ w and γ v can be obtained by solving the following optimization problem:

min γ w + γ v , (26a) 
s.t. ( 14) -(15) (26b) and the feasible solution the observer gain matrix by L q = P -1 W q , q ∈ N .

Remark 3. For brevity, the robust observer in (10) is designed by a common Lyapunov function, which may result in some conservatism. In fact, the proposed observer can also be determined by using multiple Lyapunov functions, which may reduce such conservatism and further improve the estimation accuracy [START_REF] Shi | Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation[END_REF][START_REF] Fei | Asynchronous control for 2-d switched systems with mode-dependent average dwell time[END_REF].

INTERVAL ESTIMATION OF STATE

After getting observer gain matrices L q , q ∈ N by solving the optimization problem (26), the interval estimation of x k can be obtained based on the zonotopic techniques.

From (11), we can obtain

x k = xk + e k . (27) 
Consequently, if an interval vector [e k , e k ] satisfying e k ≤ e k ≤ e k , k ∈ R + can be obtained, from ( 27), the interval estimation of x k can be calculated as follows:

x k = xk + e k , x k = xk + e k . (28) 
Therefore, the interval estimation of x k can be transformed as interval analysis of the estimation error e k . In the following, we will first obtain the interval estimation of e k , and then give that of x k .

Based on the zonotopic approach, the interval estimation of x k can be realised by using the following theorem.

Theorem 2. For the observer (10) and the error dynamics systems (12), given p 0 = x0 , then state x k is bounded in a zonotope X k = xk , H k and the interval estimation [x k , x k ] of x k can be obtained as follows:

       x k (i) = xk (i) + m j=1 |H k (i, j)|, i = 1, • • • , n, x k (i) = xk (i) - m j=1 |H k (i, j)|, i = 1, • • • , n, (29) 
where m is the column number of H k and H k satisfies the following iteration equation

H k+1 = [(A q -L q C q )Ω(H k ) D q W -L q E q V ] . ( 30 
)
Proof : We first show the interval estimation of x k can be obtained from (29). When X 0 = x0 , H 0 , then from (3) and ( 11), we have e 0 ∈ E 0 = x0 , H 0 ⊕ (-x 0 ) = 0, H 0 .

(31) Note that w k ∈ 0, W , v k ∈ 0, V and e 0 ∈ 0, H 0 , thus we can conclude that e k ∈ E k = 0, H k . From (27), we have x k ∈ X k = xk ⊕ 0, H k = xk , H k . Using Property 2, the interval estimation of x k can be determined as

       x k (i) = xk (i) + m j=1 |H k (i, j)|, i = 1, • • • , n, x k (i) = xk (i) - m j=1 |H k (i, j)|, i = 1, • • • , n.
We now prove the iteration equation in (30). Since e k ∈ E k = 0, H k , then based on ( 9) and ( 12), e k+1 ∈ Êk+1 is updated as follows:

Êk+1 = 0, Ĥk+1 = (A q -L q C q ) ⊙ E k ⊕ D q ⊙ W ⊕ (-L q E q ) ⊙ V.
According to (3) and ( 4), Ĥk+1 can be written as Ĥk+1

= [(A q -L q C q )H k D q W -L q E q V ] .
the reduction operator in Remark 1, we can obtain 0, H k ⊆ 0, Ω(H k ) , and it follows that 0, Ĥk+1 ⊆ 0, H k+1 . Finally, we have e k+1 ∈ E k+1 = 0, H k+1 .

Remark 4. It can be seen that the proposed method does not requires cooperative constraints and can avoid the additional conservatism caused by coordinate transformation.

Therefore, the proposed approach provides a systematic way to improve the interval estimation accuracy by combining robust observer design and zonotopic techniques.

SIMULATION

In this section, a numerical example adapted from [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] is utilized to illustrate the feasibility and effectiveness of the proposed method. Consider the following discrete-time linear switched system with the unknown disturbances and measurement noises described by

x k+1 = A q x k + B q u k + D q w k y k = C q x k + E q v k , q = 1, • • • , 3. ( 32 
)
where Although there is initial estimation error, the states estimate can quickly track the states and give more accurate interval estimation results. In the simulation study, the proposed method is compared with the optimal interval observers proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]. Note that the optimal interval observers proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] have not show that the interval estimation obtained by the proposed method is more accurate than optimal interval observers. Therefore, the results show the feasibility and effectiveness of our method in interval estimation of state.

A 1 = 0.2 -0.5 0 0.2 , A 2 = 0.3 -2 0 0.6 , A 3 = 0.5 -1.1 0 0.16 , B 1 = 2 -1 , B 2 = 6 1 , B 3 = -2 2 , C 1 = [0.2 0.8] , C 2 = [1 0] , C 3 = [0.1 1] , D 1 = D 2 = D 3 = 1 0 0 1 , E 1 = E 2 = E 3 = 1.

CONCLUSIONS

This paper studies interval estimation for discrete-time linear switched systems affected by bounded disturbances and noises. A novel interval estimation method is proposed via the robust observer design and zonotopic techniques.

Compared with interval observers, the proposed method overcomes the cooperativity constraints and avoids the additional conservatism caused by coordinate transformation. Finally, numerical simulations have demonstrated the feasibility and effectiveness of the proposed interval estimation approach. In the future, we will focus on using the multiple Lyapunov functions to further improve the estimation performance of the proposed method and this will be our next research work.
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 23 Fig. 2. States and their interval estimations by the proposed method
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  (λ -1)P ⋆ ⋆ ⋆ 0 -µI nw ⋆ ⋆
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