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Abstract: This paper is concerned with the state interval estimation for discrete-time linear
switched systems affected by unknown but bounded disturbances and measurement noises.
A novel interval estimation method is proposed by integrating robust observer design with
zonotopic techniques. By introducing L∞ technique into observer design, the proposed method
is effective in attenuating the influence of unknown disturbances and noises, and improving the
accuracy of interval estimation. Based on the designed observer, the state interval estimation
can be obtained by using zonotopic analysis. Finally, the feasibility and effectiveness of the
proposed method are illustrated by numerical simulations.
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1. INTRODUCTION

Switched system, which is an important class of hybrid
dynamical system, consists of continuous or discrete-time
subsystems and a switching signal which determines the
switching from one mode to another at every switching
point. Switched system is an effective tool to describe a
wide range of practical systems, including flight control
systems (Vu and Morgansen, 2010) and network control
systems (Donkers et al., 2011). Due to their powerful
modelling capability, the stability analysis and control syn-
thesis for switched systems have been extensively studied
in the literature, see, e.g. Liberzon (2003); Zhao et al.
(2012); Niu and Zhao (2013) and the references therein.

Apart from the stability analysis and controller design
problems, state estimation is also very important for
switched systems. In fact, state estimation has widely in-
vestigated in the control community such as fault diagnosis
techniques (Wu et al., 2019), unknown input observer
design (Guo et al., 2018) and robust controller design
(Aslam et al., 2019). Therefore, many efforts have been
devoted to state estimation for switched systems in the
past decades. Specifically, Bejarano and Fridman (2011)
designed an observer to ensure the reconstruction of the
entire state in finite time for linear switched systems. For
switched systems with Lipschitz nonlinear subsystems, a
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Foundation of China (61773145, 61973098, 61703296) and the Fund
from the National Defense Key Discipline of Space Exploration,
Landing and Reentry in Harbin Institute of Technology under Grant
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robust observer design method was proposed in Hernandez
and Garćıa (2014) to realise state estimation. However,
the existing results in Bejarano and Fridman (2011) and
Hernandez and Garćıa (2014) are all state estimation
for switched systems without uncertainties. In fact, the
uncertainties such as process disturbances and measure-
ment noises always exist in practical systems. To handle
this problem, Bejarano and Pisano (2011) proposed the
reduced-order unknown input switched observer to esti-
mate the state of switched systems subjected to unknown
inputs. For switched systems with both unknown distur-
bances and noises, Yang et al. (2017) designed a robust
sliding-mode switched observer to estimate state with the
aid of augmented system approach. However, these above-
mentioned methods all use the H∞ technique to reduce
the influence of unknown uncertainties and improve the
estimation accuracy. Note thatH∞ norm is a measurement
of energy-to-energy gain. As pointed out in Wang et al.
(2017), the practical signals are not necessarily energy-
bounded but have bounded peak values. Consequently,
L∞ norm, which aims to minimize the peak-to-peak gain,
can be considered as an alternative solution to analyse the
robustness performance of state estimation.

On the other hand, the results in Bejarano and Pisano
(2011) and Yang et al. (2017) are all point-estimation of
state and may not converge to the real state due to the
existence of model and/or signals uncertainties. Therefore,
state interval estimation approaches based on interval ob-
server and zonotopic techniques get more attention for
uncertain control systems in recent years. The basic idea

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1087 submitted to 21st IFAC World Congress, 2020.
Received November 7, 2019.



of interval observer is to design two sub-observers such
that their estimation error dynamics are both cooperative
and stable. The two sub-observers can provide the upper
and lower bounds of the real system states. During the
past decade, some interval observer design works have been
devoted to various classes of linear or nonlinear regular sys-
tems (Räıssi et al., 2012; Efimov and Räıssi, 2016; Meslem
et al., 2018). Specially, Ethabet et al. (2017) addressed the
interval observer design issue for continuous-time linear
switched systems. The interval observer design methods
for discrete-time linear switched systems have been pro-
posed in Dinh et al. (2019). However, it is not a trivial work
to construct a cooperative and stable error system, and
even impossible for some dynamical systems. Although
the cooperative constraint can be relaxed by coordinate
transformations, it may cause additional conservatism and
limit the estimation accuracy. Meanwhile, the zonotope-
based interval estimation methods can achieve a good
trade-off between estimation accuracy and computation
complexity, and have gained much attention by many
researchers (Tang et al., 2019). Especially, Alamo et al.
(2005) proposed a guaranteed state estimation method
for nonlinear systems based on zonotopic techniques. Le
et al. (2013) presented a new approach for guaranteed
state estimation via zonotopes for uncertain multivari-
able systems. For time-varying dynamics systems with
measurement uncertainties, Combastel (2015) designed a
zonotopic Kalman observer to achieve the state interval
estimation. In addition, some criteria such as P -radius (Le
et al., 2013) and F -radius (Combastel, 2015) to decrease
the size of zonotopes have been used to improve the ac-
curacy of interval estimation. However, these methods by
using zonotopic technique are all the state estimation for
state-space systems. The case of zonotope-based interval
estimation for switched systems has not been fully consid-
ered in the literature.

Motivated by the above-mentioned discussion, this paper
proposes a novel state interval estimation method for
discrete-time linear switched systems with unknown but
bounded disturbances and noises. The main contributions
of this paper are summarized as follows:

1) A novel interval estimation method that combines the
observer design with zonotopic technique is proposed
for discrete-time linear switched systems. The ob-
server design conditions can be converted into linear
matrix inequalities (LMIs).

2) By using zonotope approach, the proposed method
can overcome the cooperative constraints used in the
design of interval observer.

3) With the L∞ technique used to reduce the influence
of unknown disturbances and noises, the proposed
method provides a systematic way to improve the
accuracy of interval estimation.

2. PRELIMINARIES

Notation: Rn and R
m×n are the n and m× n dimensional

Euclidean space, respectively. R+ = {τ ∈ R : τ ≥ 0},
In denotes identity matrix with dimensions of n and 0
represents zero number, vector or matrix of appropriate
dimensions. For a matrix M ∈ R

m×n, MT denotes its
transpose and M(i, j) represents the element of M in the

i-th row and the j-th column. For a vector x ∈ R
n, ‖x‖

denotes its Euclidean norm and x(i) is the i-th component
of x. The comparison operators ≥ and ≤ on vectors
and matrices should be understood elementwise and P ≻
0 (P ≺ 0) indicates that P is a positive (negative) definite
matrix. The operators ⊕ and ⊙ denote the Minkowski
sum and the linear image operators, respectively. The
asterisk ⋆ represents the symmetric term in a symmetric
matrix. For a signal xk ∈ R

n, its L∞ norm is defined as:
‖x‖∞ = sup

k≥0
‖xk‖, where ‖xk‖

2 = xT
k xk.

The following definitions and properties are essential in
this paper.

Definition 1. (Zhang et al., 2019) For a set X ⊂ R
n,

its interval hull Box(X) is defined as the smallest interval
vector containing it, which is denoted as follows:

X ⊆ Box(X) = [x, x], (1)

where [x, x] = {x : x ∈ X, x ≤ x ≤ x} is an interval
vector, x and x denote the maximum lower and minimum
upper bounds of x.

Definition 2. (Combastel, 2005) An s-order zonotope
Z ⊂ R

n (n ≤ s) is a linear image of a hypercube Bs =
[−1, +1]s as follows:

Z = p⊕HBs = {z = p+Hb, b ∈ Bs} (2)

where s and n are the order and dimension number of
Z, p ∈ R

n is the center of Z and H ∈ R
n×s is called

the generation matrix of Z, which defines the shape and
volume of Z. For simplicity, we also use Z = 〈p,H〉 to
denote a zonotope.

Property 1. (Scott et al., 2014) For zonotpes, the follow-
ing properties hold:

Γ⊙ 〈p,H〉 = 〈Γp,ΓH〉 (3)

〈p1, H1〉 ⊕ 〈p2, H2〉 = 〈p1 + p2, [H1 H2]〉 (4)

where p, p1, p2 ∈ R
n are known vectors,H ,H1,H2 ∈ R

n×s

and Γ ∈ R
l×n are determined matrices.

Property 2. (Combastel, 2005) For an s-order zonotope
Z = 〈p,H〉 ⊂ R

n, its interval hull Box(Z) = [z, z] can be
obtained by















z(i) = p(i) +
s
∑

j=1

|H(i, j)|, i = 1, · · · , n,

z(i) = p(i)−
s
∑

j=1

|H(i, j)|, i = 1, · · · , n.
(5)

According to the Definitions 1 and 2, the interval hull of
zonotope Z = 〈p,H〉 can also be computed by

Z = p⊕HBs ⊆ Box(Z) = p⊕Rs(H)Bn, (6)

where Rs(H) ∈ R
n×n is a diagonal matrix as follows:

Rs(H) = diag

([

s
∑

j=1

|H(1, j)| · · ·
s
∑

j=1

|H(n, j)|

])

.

Remark 1. In the application of zonotopic techniques,
the column number of the generator matrix will increase
linearly without the reduction operator. However, the re-
duction operator proposed in Combastel (2005) can be used
to bound a zonotope by a lower-dimensional one, which can
be described by the following equation

Z = 〈p,H〉 ⊆ 〈p,Ω(H)〉

where p ∈ R
n and H ∈ R

n×s are the center and gener-
ator matrix of Z. Ω(H) ∈ R

n×m denotes the complexity
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reduction operator with m (n ≤ m ≤ s) is the maximum
number of columns of the generated matrix. The Ω(H) can
be computed as follows:

• Reordering the columns of matrix H in decreasing Eu-
clidean norm and denote the obtained matrix as Ĥ.

Ĥ = [h1 · · · hs], ‖ hj ‖≥‖ hj+1 ‖, j = 1, · · · s− 1.

• Replacing the last s − m + n smallest column of Ĥ by
a diagonal matrix Rs(H<) ∈ R

n×n since the zonotope
generated by these columns can be enclosed in a box.

If s ≤ m, then Ω(H) = H,

Else Ω(H) = [H> Rs(H<)] ∈ R
n×m,

where H> = [h1 · · ·hm−n], H< = [hm−n+1 · · ·hm].

3. PROBLEM FORMULATION

Consider the following discrete-time linear switched sys-
tem subject to unknown disturbances and noises
{

xk+1 = Aσ(k)xk +Bσ(k)uk +Dσ(k)wk

yk = Cσ(k)xk + Eσ(k)vk
, k ∈ R+, (7)

where xk ∈ R
nx , uk ∈ R

nu , yk ∈ R
ny , wk ∈ R

nw

and vk ∈ R
nv are the state vector, the input vector,

the output vector, the unknown disturbances and the
measurement noises, respectively. σ(k) is a known piece-
wise constant function which denotes the switching sig-
nal.

{(

Aσ(k), Bσ(k), Cσ(k), Dσ(k), Eσ(k)

)

: σ(k) ∈ N
}

are a
family of matrices parameterized by an index set N =
{1, · · · , N} and N is the number of subsystems. Let
q = σ(k) be the index of the active subsystem, Aq, Bq,
Cq, Dq and Eq are known constant matrices with the
corresponding dimensions.

The following assumptions will be used in this paper.

Assumptions 1. The switching signal σ(k) in (7) can be
available in real-time.

Assumptions 2. The initial system state vector x0, the
disturbances wk and the noises vk in (7) are assumed to
be unknown but bounded as follows:

|x0 − p0| ≤ x̃0, |wk| ≤ w̃, |vk| ≤ ṽ, (8)

where | · | denotes the absolute value operator, p0 ∈ R
nx ,

x̃0 > 0 ∈ R
nx , w̃ > 0 ∈ R

nw and ṽ > 0 ∈ R
nv are known

vectors.

According to Definition 1, (8) can be reformulated as

x0 ∈ 〈p0, H0〉, wk ∈ 〈0,W 〉, vk ∈ 〈0, V 〉, (9)

where p0 is a known vector, H0, W and V are diagonal
matrices with their diagonal elements equal to x̃0, w̃ and ṽ,
respectively. For simplicity, we denote x0 ∈ X0 = 〈p0, H0〉,
wk ∈ W = 〈0,W 〉 and vk ∈ V = 〈0, V 〉.

The objective of the interval estimation method is to
obtain an interval vector [xk, xk], which can contain the
real state xk, i.e.

xk ≤ xk ≤ xk, k ∈ R+.

In this paper, we propose a novel interval estimation
method for discrete-time linear switched systems by inte-
grating the robust state observer design with the zonotopic
analysis. First, a class of Luenberger observers for system
(7) are designed via the L∞ technique such that their
estimation errors are robust against the unknown inputs.

Based on the designed observers, the interval estimation
will be determined with the aid of zonotopic analysis.

4. ROBUST STATE OBSERVER DESIGN

Consider the following observer for the system (7)

x̂k+1 = Aqx̂k +Bquk + Lq(yk − Cqx̂k), (10)

where x̂k is the state estimation vector and Lq ∈ R
nx×ny ,

q ∈ N is the observer gain matrix to be designed.

Define the estimation error as

ek = xk − x̂k, (11)

then following error dynamics systems can be obtained

ek+1 = (Aq − LqCq)ek +Dqwk − LqEqvk, (12)

which can be rewritten as

ek+1 = Aeqek +Dqwk + Leqvk, (13)

where Aeq = Aq − LqCq and Leq = −LqEq, q ∈ N .

In order to obtain accurate estimation, L∞ technique is
used to attenuate the effect of disturbances and noises on
the estimation error. For error dynamic systems (12), the
following theorem is proposed to design Lq for the observer
in (10) such that the estimation error is robust against the
unknown disturbances and noises.

Theorem 1. Given scalars γw > 0, γv > 0 and 0 < λ < 1,
if there exist a constant µ > 0, matrices P = PT ≻ 0 ∈
R

nx×nx and Wq ∈ R
nx×ny for ∀q ∈ N such that







(λ− 1)P ⋆ ⋆ ⋆
0 −µInw

⋆ ⋆
0 0 −µInv

⋆
PAq −WqCq PDq −WqEq −P






≺ 0, (14)







λP ⋆ ⋆ ⋆
0 (γw − µ)Inw

⋆ ⋆
0 0 (γv − µ)Inv

⋆
Inx

0 0 (γw + γv)Inx






≻ 0, (15)

then the error system in (12) is asymptotically stable and
satisfies the following L∞ performance

‖ek‖
2 ≤ (γw + γv)(λ(1−λ)kV0 + γw‖w‖

2+ γv‖v‖
2), (16)

where V0 = eT0 Pe0 and P ≻ 0 ∈ R
nx×nx being a designed

matrix. Moreover, if the LMIs in (14) and (15) are solvable,
the matrix Lq can be determined by Lq = P−1Wq, q ∈ N .

Proof : Choose the following common quadratic Lya-
punov function

Vk = eTk Pek, P = PT ≻ 0, (17)

Then, the following equation can be obtained

∆Vk = Vk+1 − Vk =

[

ek
wk

vk

]T

Φ

[

ek
wk

vk

]

, (18)

where

Φ =





AT
eqPAeq − P ⋆ ⋆

DT
q PAeq DT

q PDq ⋆

LT
eqPAeq LT

eqPDq LT
eqPLeq



 .

By setting Wq = PLq, q ∈ N then according to Aeq =
Aq − LqCq and Leq = −LqEq, the inequality in (14) is
equivalent to







(λ− 1)P ⋆ ⋆ ⋆
0 −µInw

⋆ ⋆
0 0 −µInv

⋆
PAeq PDq PLeq −P






≺ 0, (19)
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Pre- and post- multiplying (19) with




Inx
0 0 AT

eq

0 Inw
0 DT

q

0 0 Inv
LT
eq





and its transpose, respectively, we have

Φ +

[

λP ⋆ ⋆
0 −µInw

⋆
0 0 −µInv

]

≺ 0. (20)

By pre-multiplying and post-multiplying (19) with [eTk
wT

k vTk ] and its transpose, we can obtain

∆Vk < −λVk + µwT
k wk + µvTk vk. (21)

When wk = 0 and vk = 0, (21) implies that

∆Vk = Vk+1 − Vk < −λVk < 0 (22)

Thus, the error system in (12) is asymptotically stable.

Furthermore, inequality (21) is equivalent to

Vk+1 < (1− λ)Vk + µ(‖w̃‖2 + ‖ṽ‖2),

which implies that

Vk < (1− λ)kV0 + µ
k−1
∑

τ=0
(1− λ)τ (‖w̃‖2 + ‖ṽ‖2)

≤ (1− λ)kV0 + µ
1− λk

λ
(‖w̃‖2 + ‖ṽ‖2)

≤ (1− λ)kV0 +
µ‖w̃‖2

λ
+

µ‖ṽ‖2

λ
. (23)

By using the Schur complement lemma (Boyd et al., 1994),
the inequality in (15) is equivalent to

[

λP ⋆ ⋆
0 (γw − µ)Inw

⋆
0 0 (γv − µ)Inv

]

−
1

γw + γv

[

Inx

0
0

]

[Inx
0 0] ≻ 0, (24)

Pre-multiplying and post-multiplying inequality (24) with
[eTk wT

k vTk ] and its transpose, we have

eTk ek ≤ (γw+γv)(λVk+(γw−µ)‖w̃‖2+(γv−µ)‖ṽ‖2). (25)

Substituting (23) into (25) yields

eTk ek ≤ (γw + γv)(λ((1 − λ)kV0 +
µ‖w̃‖2

λ
+

µ‖ṽ‖2

λ
)

+ (γw − µ)‖w̃‖2 + (γv − µ)‖ṽ‖2)

= (γw + γv)(λ(1 − λ)kV0 + γw‖w̃‖
2 + γv‖ṽ‖

2),

it follows that the L∞ performance holds. �

Remark 2. In order to attenuate the influence of dis-
turbances and noises as much as possible, the minimal
scalars γw and γv can be obtained by solving the following
optimization problem:

min γw + γv, (26a)

s.t. (14)− (15) (26b)

and the feasible solution gives the observer gain matrix by
Lq = P−1Wq, q ∈ N .

Remark 3. For brevity, the robust observer in (10) is de-
signed by a common Lyapunov function, which may result
in some conservatism. In fact, the proposed observer can
also be determined by using multiple Lyapunov functions,
which may reduce such conservatism and further improve
the estimation accuracy (Shi et al., 2015; Fei et al., 2017).

5. INTERVAL ESTIMATION OF STATE

After getting observer gain matrices Lq, q ∈ N by solving
the optimization problem (26), the interval estimation of
xk can be obtained based on the zonotopic techniques.

From (11), we can obtain

xk = x̂k + ek. (27)

Consequently, if an interval vector [ek, ek] satisfying ek ≤
ek ≤ ek, k ∈ R+ can be obtained, from (27), the interval
estimation of xk can be calculated as follows:

{

xk = x̂k + ek,
xk = x̂k + ek.

(28)

Therefore, the interval estimation of xk can be transformed
as interval analysis of the estimation error ek. In the
following, we will first obtain the interval estimation of
ek, and then give that of xk.

Based on the zonotopic approach, the interval estimation
of xk can be realised by using the following theorem.

Theorem 2. For the observer (10) and the error dynamics
systems (12), given p0 = x̂0, then state xk is bounded
in a zonotope Xk = 〈x̂k, Hk〉 and the interval estimation
[xk, xk] of xk can be obtained as follows:















xk(i) = x̂k(i) +
m
∑

j=1

|Hk(i, j)|, i = 1, · · · , n,

xk(i) = x̂k(i)−
m
∑

j=1

|Hk(i, j)|, i = 1, · · · , n,
(29)

where m is the column number of Hk and Hk satisfies the
following iteration equation

Hk+1 = [(Aq − LqCq)Ω(Hk) DqW −LqEqV ] . (30)

Proof : We first show the interval estimation of xk can be
obtained from (29). When X0 = 〈x̂0, H0〉, then from (3)
and (11), we have

e0 ∈ E0 = 〈x̂0, H0〉 ⊕ (−x̂0) = 〈0, H0〉. (31)

Note that wk ∈ 〈0,W 〉, vk ∈ 〈0, V 〉 and e0 ∈ 〈0, H0〉, thus
we can conclude that ek ∈ Ek = 〈0, Hk〉. From (27), we
have xk ∈ Xk = x̂k ⊕ 〈0, Hk〉 = 〈x̂k, Hk〉. Using Property
2, the interval estimation of xk can be determined as















xk(i) = x̂k(i) +
m
∑

j=1

|Hk(i, j)|, i = 1, · · · , n,

xk(i) = x̂k(i)−
m
∑

j=1

|Hk(i, j)|, i = 1, · · · , n.

We now prove the iteration equation in (30). Since ek ∈

Ek = 〈0, Hk〉, then based on (9) and (12), ek+1 ∈ Êk+1 is
updated as follows:

Êk+1 =
〈

0, Ĥk+1

〉

= (Aq − LqCq)⊙ Ek ⊕Dq ⊙W ⊕ (−LqEq)⊙ V .

According to (3) and (4), Ĥk+1 can be written as

Ĥk+1 = [(Aq − LqCq)Hk DqW −LqEqV ] .

Using the reduction operator in Remark 1, we can obtain
〈0, Hk〉 ⊆ 〈0,Ω(Hk)〉, and it follows that 〈0, Ĥk+1〉 ⊆
〈0, Hk+1〉. Finally, we have ek+1 ∈ Ek+1 = 〈0, Hk+1〉. �

Remark 4. It can be seen that the proposed method does
not requires cooperative constraints and can avoid the ad-
ditional conservatism caused by coordinate transformation.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1087 submitted to 21st IFAC World Congress, 2020.
Received November 7, 2019.



Therefore, the proposed approach provides a systematic
way to improve the interval estimation accuracy by com-
bining robust observer design and zonotopic techniques.

6. SIMULATION

In this section, a numerical example adapted from Dinh
et al. (2019) is utilized to illustrate the feasibility and
effectiveness of the proposed method. Consider the follow-
ing discrete-time linear switched system with the unknown
disturbances and measurement noises described by

{

xk+1 = Aqxk +Bquk +Dqwk

yk = Cqxk + Eqvk
, q = 1, · · · , 3. (32)

where

A1 =

[

0.2 −0.5
0 0.2

]

, A2 =

[

0.3 −2
0 0.6

]

, A3 =

[

0.5 −1.1
0 0.16

]

,

B1 =

[

2
−1

]

, B2 =

[

6
1

]

, B3 =

[

−2
2

]

,

C1 = [0.2 0.8] , C2 = [1 0] , C3 = [0.1 1] ,

D1 = D2 = D3 =

[

1 0
0 1

]

, E1 = E2 = E3 = 1.

The switching signal σ(k) between the three subsystems
is plotted in Fig 1. By solving the optimization problem
(26), we can obtain λ = 0.5, µ = 5.7532, γw = 5.7548,
γv = 5.7543, and the gain matrices L1, L2 and L3 as

L1 =

[

−0.0953
0.1362

]

, L2 =

[

0.5519
−0.0792

]

, L3 =

[

−1.0969
0.1189

]

.

0 5 10 15 20 25 30 35 40 45 50
Times steps

0.5

1

1.5

2

2.5

3

3.5

Fig. 1. Switching signal σ(k)

In the simulation, we set the input uk = 0.5sin(0.1k)
and the initial state vector x0 = [1 2]T . The unknown
disturbances and measurement noises are set as wk =
0.1[sin(0.5k) cos(0.5k)]T and vk = 0.1sin(0.5k). The
initial zonotope of x0 are set as p0 = [1 1]T and H0 = I2.
The generation matrices of W and V are set as W = 0.1I2
and V = 0.1I1. Meanwhile, we set the reduction order of
the matrix Ω(Hk) as m = 20 to limit the column number
of the generator matrix.

The simulation results are shown in Fig 2. As shown in Fig
2, the proposed method is able to decrease the effect of the
unknown disturbances and measurement noises. Although
there is initial estimation error, the states estimate can
quickly track the states and give more accurate interval
estimation results. In the simulation study, the proposed
method is compared with the optimal interval observers
proposed in Dinh et al. (2019). Note that the optimal
interval observers proposed in Dinh et al. (2019) have not

5 10 15 20 25 30 35 40 45 50
Times steps
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1

1.5

2

2.5

Fig. 2. States and their interval estimations by the pro-
posed method
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Fig. 3. States and their interval estimations by the pro-
posed method and by the method in Dinh et al. (2019)

considered the influence of unknown measurement noises.
Thus, we set E1 = E2 = E3 = 0 and vk = 0 of system (32).
By solving (26), we have λ = 0.5, µ = 7.5644, γw = 7.5654,
and the observer gain matrices L1, L2 and L3 can be
determined as follows:

L1 =

[

−0.2333
0.1902

]

, L2 =

[

0.6087
−0.0929

]

, L3 =

[

−1.4913
0.1845

]

.
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The simulation results are shown in Fig 3. The results
show that the interval estimation obtained by the proposed
method is more accurate than optimal interval observers.
Therefore, the results show the feasibility and effectiveness
of our method in interval estimation of state.

7. CONCLUSIONS

This paper studies interval estimation for discrete-time
linear switched systems affected by bounded disturbances
and noises. A novel interval estimation method is proposed
via the robust observer design and zonotopic techniques.
Compared with interval observers, the proposed method
overcomes the cooperativity constraints and avoids the
additional conservatism caused by coordinate transforma-
tion. Finally, numerical simulations have demonstrated
the feasibility and effectiveness of the proposed interval
estimation approach. In the future, we will focus on using
the multiple Lyapunov functions to further improve the
estimation performance of the proposed method and this
will be our next research work.
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