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Optimal interval observer for switched
Takagi-Sugeno systems: an application to interval

fault estimation
Yosr Garbouj#, Thach N. Dinh#,?, Tarek Raı̈ssi, Talel Zouari and Moufida Ksouri

Abstract—The main goal of this paper is to design interval
observers for continuous nonlinear switched systems. The nonlin-
ear modes are described by the multimodel approach of Takagi-
Sugeno (T-S) fuzzy systems where premise variables depending on
the state vector which is unmeasurable. In this paper, we propose
T-S interval observers that consider the unmeasurable premise
variables as bounded uncertainties under common assumptions
that additive disturbances as well as measurement noises are
unknown but bounded. The stability and the nonnegativity
conditions are given in terms of Linear Matrix Inequality (LMI)
to ensure simultaneously the convergence and the nonnegativity
of error dynamics. Furthermore, in the absence of measure-
ment noises, optimal gains attenuating the effect of additive
disturbances are computed using H∞ approach to improve the
accuracy of the present interval observers. Theoretical results
are finally applied to a numerical example to highlight the
performance of the proposed method.

Index Terms—Nonlinear switched systems, T-S interval ob-
server, unmeasurable premise variable, stability, H∞ formalism.

I. INTRODUCTION

MANY engineering applications evolve through the cou-
pling between continuous and discrete dynamics where

a collection of indexed modes interacts with a switching
signal that selects the active one at each time instant. Such
systems are called hybrid systems which have attracted an
ever growing attention [1], [2]. Meanwhile, switched systems
are an important class of hybrid systems [3] and many great
efforts have been paid to the studies of this class due to its
appearance in a large number of physical applications such as
biological systems [4], robotic systems [5], embedded systems
[6], etc. Among these studies, some interesting results have
been reported to deal with the problems of robust control [7],
diagnosis [8] while others are particularly devoted to state
estimation of such systems. More concretely, the case of linear
switched systems are usually inspected [9]–[12]. However, the
case of nonlinear switched systems has not been fully studied
yet. Although in practice it is well-known that various domains
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have to be described by nonlinear switched behaviors such as
automotive [13], converters [14], network control applications
[15] and so on.

Since several decades, Takagi-Sugeno (T-S) fuzzy systems
have been considered as a powerful tool to cope with non-
linearities [16]. This approach is useful to analyze nonlinear
systems by providing an effective representation of them [17].
T-S fuzzy models are based on fuzzy sets applied to a set
of linear local models decomposing a nonlinear system into
different zones. The validity of each one is quantified by
a nonlinear weighting function depending on the so-called
premise variables (or decision variables). Two main cases can
be considered for premise variables: some works are devoted
to the premise variables which are measurable (as the input
or the output of the system) [18] while most of the literature
deals with the second case for which the premise variables are
composed of a subset of the system state x(t) [19], [20]. As
widely known the former is conservative. Unlike the former,
the latter is very challenging and appears in most of nonlinear
mechanical systems. e.g., the readers can for instance refer
to [21] for an example of a simple nonlinear mass-spring-
damper mechanical system. Since the premise variables are
endogenous and unknown, the T-S model defines a class of
nonlinear systems with unknown nonlinearities which often
hamper and sometimes prohibit construction of observers.

Following the remarkable development of fuzzy control
systems, nonlinear switched plants can be also described in
the compact form of T-S fuzzy models. In the literature, few
works are devoted to this family of systems [18], [22], [23].
However, the previously mentioned works adopt a restrictive
requirement of the premise variables: they are supposed to be
measurable.

Recently, designing observers for such switching repre-
sentations with unmeasureable premise variables becomes an
open issue to tackle. In addition, the case of systems subject
to disturbances and measurement noises is more challenging
as it is the case for most of real-life systems. However,
this case has not been fully investigated in the literature.
Conventional observer may not be an efficient method to deal
with uncertainties. Additionally, for the purpose of control
such as stabilization and tracking, precise information of the
state vector in transient periods is not necessary. However,
practically there is a great demand for estimation of the state
of a system with guarantees at all time and the notion of
interval observer has been one of useful approaches to meeting
this practical demand. That is why interval observers have
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been fertile ground for studies in the past few years. In the
literature, interval observers have been successfully applied
to many physical systems such as biotechnological processes
[24], biochemical processes [25], energy generation system
[26]. It has been shown in many contributions that interval
observers do not only give interval estimates but also can
be employed for stabilization by feedback control [27]–[29].
Although design of interval observers requires bounds of the
uncertainties/disturbances and bounds of the initial conditions
to be known a priori, this requirement is accepted in many
applications. Interval observer designs for several classes of
systems have been reviewed in both continuous and discrete
time, e.g., linear systems [30]–[33], bilinear systems [28],
nonlinear systems [34]–[36], time-delay systems [37], linear
switched systems [38]–[41].

According to the above-mentioned studies, few results of
interval observer designs are devoted to nonlinear switched
systems represented by T-S fuzzy models. It is worth noting
that most of existing works in the literature concerning interval
estimator design for fuzzy systems, even in the non-switching
case, have coped only with the measurable premise variables
[26], [42]. To the best of the authors’ knowledge, design-
ing interval observers with the constraints of unmeasurable
premise variables has not been fully considered yet. This
motivates the present work. The goal of this paper is to propose
new results of T-S interval observer designs for nonlinear
switched systems subject to measurement noises and additive
disturbances. Using the center-of-gravity method for defuzzifi-
cation, nonlinear switched systems can be represented by T-S
fuzzy models with unmeasurable premise variables. The first
contribution is to construct interval observers for this class of
fuzzy systems. The stability and the nonnegativity properties
are both given in terms of Linear Matrix Inequalities (LMIs).
The former is achieved via a common Lyapunov function
while the latter is inspired by a simple but interesting fact
introduced in [43] (see Lemma 3). The second contribution of
this paper is to deal with the problem of the interval width
optimization in the absence of measurement noises. To the
best of the authors’knowledge, this optimization issue has
not been fully treated. Only the case of discrete-time linear
systems has been considered in [44]. The idea is based on
H∞ approach to compute optimal gains which attenuate the
effect of the system’s disturbances on the estimation error.
Thus, the optimal gains ensure a tighter interval width which
improves the accuracy of the interval between the lower and
upper bounds.

Compared to previous works, the contributions of this paper
are summarized as follows:

1) The proposed scheme is applicable to T-S model with
premise variables composed of a subset of the system
state. Note that most of the designs available in the liter-
ature are carried out for cooperative systems (sometimes
after a coordinate transformation) but the key advantage
of the new construction is the simplicity of its dynamics.
Each copy of observer, or its associated error equation,
does not possess the property of being a cooperative or
a nonnegative system. It is the first time such design is
introduced.

2) For a given lower and upper bounds of disturbances
and in the absence of measurement noises, an optimal
interval estimation for the state can be obtained based
on an energy-bounded design method. To the best of
our knowledge, this is the first interval observer that
can attenuate the effect of disturbances for T-S systems
with unmeasurable premise variables.

3) An application to sensor fault detection is proposed.
Simulations are given to highlight the effectiveness of
the proposed schemes.

The paper has the following structure: preliminaries and
the system description are given in Section II. Section III
is devoted to the main results: (i) designing T-S interval
observers, (ii) based on H∞ approach, optimizing the interval
width by computing optimal gains and (iii) a fault detection
scheme is introduced as an application. Two examples are
considered in Section IV: the first one draws comparative
simulations while the second one illustrates the efficiency of
the proposed method in the sensor fault detection. Section V
concludes the paper.

II. PRELIMINARIES AND SYSTEM DESCRIPTION

A. Notions, definitions and lemmas

The set of real numbers is denoted by < and the set of
nonnegative real numbers is denoted by <≥0, i.e., <≥0 :=
[0,+∞) where <n×n≥0 is of dimension n× n. Inequalities are
understood component-wise, i.e., for xa = [xa,1, ..., xa,n]> ∈
<n and xb = [xb,1, ..., xb,n]> ∈ <n, xa ≤ xb if and only if, for
all i ∈ {1, ..., n}, xa,i ≤ xb,i. I , 0 denote respectively identity
and zero matrices with appropriate dimensions. A function
α : <≥0 → <≥0 is said to be positive definite and written as
α ∈ P if it is continuous and satisfies α(0) = 0 and α(s) > 0
for all s ∈ (0,∞). A function α ∈ P is said to be of class K if
it is strictly increasing. If in addition α is unbounded, then it is
of class K∞. The symbol P � 0 (resp. P ≺ 0) means that the
symmetric matrix P is positive (resp. negative) definite. Ep
is a (p × 1) vector whose elements are equal to 1. In is the
identity matrix with dimension n× n. For x(t) : <≥0 → <n,
the L2 norm is denoted by ‖x(t)‖2. For a measurable and
locally essentially bounded input u : <≥0 → <, the symbol
‖u‖[t0,t1] denotes its L∞ norm. If t1 = +∞, then we will
simply write ‖u‖. The L∞ is denoted as the set of all inputs
u such that ‖u‖ < ∞. The left and right endpoints of an
interval [x(t)] are denoted by x(t) and x(t) such as [x(t)] =
[x(t), x(t)]. A matrix A ∈ <n×n is called Metzler if all the
off-diagonal elements are nonnegative. A matrix A ∈ <n×n
is said to be nonnegative if each entry of A is nonnegative.
Given a matrix A ∈ <m×n, we define A+ = max {0, A},
A− = A+ − A and denote the absolute value of a matrix by
|A| = A+ + A− (similarly for vectors). For square matrices

Ti, we define diag([T1 . . . TN ]) =


T1 0 · · · 0

0 T2
...

...
. . . 0

0 · · · 0 TN

.

Lemma 1: [45] The system described by:

ẋ(t) = Ax(t) + u(t) (1)
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is said to be nonnegative if A is a Metzler matrix and u(t) ≥ 0.
For any initial condition x(0) ≥ 0, the solution of (1) satisfies
x(t) ≥ 0, ∀t ≥ 0.

Lemma 2: [46] Let x ∈ <n be a vector such that x ≤ x ≤ x.
(1) if A ∈ <m×n is a constant matrix, then

A+x−A−x ≤ Ax ≤ A+x−A−x (2)

(2) if A ∈ <m×n is a matrix satisfying A ≤ A ≤ A, for some
A,A ∈ <m×n, then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax

≤ A+
x+ −A+x− −A−x+ +A−x−

(3)

Lemma 3: [43] A matrix A ∈ <n×n is Metzler if and only
if there exists η ∈ <≥0 such that A+ ηI ∈ <n×n≥0 .

Consequently, if there exist a positive diagonal matrix P ∈
<n×n and a constant η > 0 such that

PA+ ηP ≥ 0, (4)

then, A is Metzler.
Lemma 4: [47] Consider x and y with appropriate dimen-

sions and Ω a positive definite matrix. the following property
is verified:

xT y + yTx ≤ xTΩx+ yTΩ−1y (5)

Lemma 5: [48] Let λ > 0 be a scalar and P ∈ <n×n be a
symmetric positive definite matrix, then:

2xT y ≤ 1

λ
xTPx+ λyTP−1y x, y ∈ <n (6)

Lemma 6 (Input-to-State Stability (ISS) [49]): Consider the
linear switched system with inputs

ẋ(t) = Aσx(t) + d(t), σ ∈ {1, 2, . . . , N} (7)

Suppose that there exist a continuously differentiable positive
definite, radially unbounded function V : <n → [0,∞), a class
K∞ function α, a class K function γ and a number ℘ > 0
such that

V̇ ≤ −℘α(V ) + γ(‖d‖) (8)

along all trajectories of (7). Then, the linear switched system
(7) is Input-to-State Stable (ISS). The ISS is used to study the
stability of a system with external inputs. The system is ISS if
it is globally asymptotically stable in the absence of external
inputs and if its trajectories are bounded by a function of the
size of the input for all sufficiently large times.

Definition 1 (Interval observer for switched systems [50]):
Consider a switched system:{

x(k + 1) = fq(x(k), d(k)),
y(k) = gq(x(k)),

(9)

with the state x ∈ Rn, the output y ∈ Rp, the index of the
active subsystem q ∈ 1, N , the number of subsystems is N ∈
N and fq , gq are functions. The uncertainties d(k) ∈ R` are
such that there exists a sequence d(k) ∈ R` where, for all
k ≥ 0, −d(k) ≤ d(k) ≤ d(k). The initial condition x(0), is
assumed to be bounded by two known bounds:

x(0) ≤ x(0) ≤ x(0). (10)

Then, the dynamical system

z(k + 1) = hq
(
z(k), y(k), d(k)

)
, q ∈ 1, N, N ∈ N, (11)

associated with the initial condition z(0) =
rq(x(0), x(0)) ∈ Rnz and bounds for the solution x(k):
x(k) = hq(z(k), y(k)) , x(k) = hq(z(k), y(k)), where
q ∈ 1, N, N ∈ N, hq , rq , hq and hq are functions, is called
(i) a framer for (9) if for any vectors x(0), x(0) and x(0) in
Rn satisfying (10), the solutions denoted respectively x and
z of (9)-(11) with respectively x(0), z(0) = rq(x(0), x(0)) as
initial condition at 0, satisfy for all k ≥ 0, the inequalities

x(k) = hq(z(k), y(k)) ≤ x(k) ≤ hq(z(k), y(k)) = x(k),
(12)

(ii) an interval observer for (9) if in addition |hq(z(k), y(k))−
hq(z(k), y(k))| is input-to-state stable (ISS) with respect to
d(k) ∈ <` for all q ∈ 1, N, N ∈ N.

B. Uncertain T-S model formulation for nonlinear switched
systems

Consider a continuous time nonlinear switched system de-
scribed as follows :

Σσ(t) :

{
ẋ(t) = fσ(t) (x(t), u(t), d(t))
y(t) = gσ(t) (x(t), v(t))

σ(t) : <≥0 → {1, 2, . . . , N}
(13)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the input
and y(t) ∈ <p is the output. d(t) ∈ <n and v(t) ∈ <p are re-
spectively the bounded additive disturbances and measurement
noises. σ(t) is the switching law such that σ(t) ∈ {1, ..., N}
is the index of the active mode. For example, if one has
σ(t) = i, i ∈ {1, 2, · · · , N}, the system is said to be in the
mode i at the instant t. For the sake of simplicity, σ(t) will be
simply replaced by σ. fσ and gσ are nonlinear functions. The
additive disturbances d(t) and the measurement noises v(t)
are assumed to be unknown but bounded.

The first step is to approximate each nonlinear mode σ
of the system (13) by T-S fuzzy models which consist of
a set of linear sub-models interpolated through a weighting
function µσi (ξ(t)) to contribute to the global behavior of the
nonlinear switched system. Each linear model represents a
local dynamics of the whole system. By using the center-of-
gravity method [51], for defuzzification of the possible sets,
the T-S representation is given by the following compact form:

ẋ(t) =
r∑
i=1

µσi (ξ(t))(Aσi x(t) +Bσi u(t)) + d(t)

y(t) = Cσx(t) + v(t)
∀σ ∈ {1, 2, . . . , N} ,∀i ∈ {1, . . . , r} ,

(14)

where Aσi ∈ <n×n, Bσi ∈ <n×m and Cσ ∈ <p×n are
known constant matrices. µσi (ξ(t)) are the weighting functions
depending on the so-called decision variable ξ(t) that can be
internal or external to the system. When these variables are
internal, they can be measurable such as the input or the output
of the system (i.e. {u(t), y(t)}) or unmeasurable as the state
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of the system (ie. x(t)). The weighting functions verify the
following convex sum properties: 0 ≤ µσi (ξ(t)) ≤ 1, ∀σ ∈ {1, ..., N},∀i ∈ {1, . . . r}

r∑
i=1

µσi (ξ(t)) = 1

(15)
Assumption 1:

d ≤ d(t) ≤ d, |v(t)| ≤ V Ep, ∀t ≥ 0 (16)

where d = −d ∈ <n and the scalar V are a priori known.
Assumption 1 is basic in the literature of interval observers
where the uncertainties are assumed bounded with known
bounds.

Assumption 2: The state of the system x(t) and the known
input vector u(t) are supposed to be bounded in norm.

In this work, we suppose that the weighting functions
depend on the system state which is unmeasurable (i.e. ξ(t) =
x(t)). It is worth pointing out that considering the unknown
state as a decision variable will improve the synchronization
process of control or diagnosis of the system which is an
important advantage of this system’s structure. Therefore, the
system (14) can be rewritten as:

 ẋ(t) =
r∑
i=1

µσi (x(t))(Aσi x(t) +Bσi u(t)) + d(t)

y(t) = Cσx(t) + v(t)
,

∀σ ∈ {1, 2, . . . , N} ,∀i ∈ {1, . . . , r} .
(17)

Given the lower and upper bounds x(t), x(t),∈ <n of the state
x(t). Then, inspired by the work [52], by adding and subtract-

ing at the same time, respectively, the
r∑
i=1

µσi (x(t))(Aσi x(t) +

Bσi u(t)) term or the
r∑
i=1

µσi (x(t))(Aσi x(t) + Bσi u(t)) term

and after rearranging, the second step consists in rewriting
the system (17) with unmeasurable premise variables to an
uncertain system with upper and lower estimated premise
variables. The state vector is given in two equivalent ways
as follows ∀σ ∈ {1, 2, . . . , N} and ∀i ∈ {1, . . . , r}:


or

ẋ(t) =
r∑
i=1

µσi (x(t))(Aσi x(t) +Bσi u(t))

−
r∑
i=1

δ
σ

i (t)(Aσi x(t) +Bσi u(t)) + d(t)

ẋ(t) =
r∑
i=1

µσi (x(t))(Aσi x(t) +Bσi u(t))

+
r∑
i=1

δσi (t)(Aσi x(t) +Bσi u(t)) + d(t)

y(t) = Cσx(t) + v(t)

(18)

with

δ
σ

i (t) = µσi (x(t))− µσi (x(t))
δσi (t) = µσi (x(t))− µσi (x(t))

Thus, using
r∑
i=1

µσi (x(t)) =
r∑
i=1

µσi (x(t)) = 1 for all x(t) ∈

<n and x(t) ∈ <n, we obtain:
or

ẋ(t) =
r∑
i=1

µσi (x(t))[(Aσi −∆A
σ
(t))x(t)+

(Bσi −∆B
σ
(t))u(t)] + d(t)

ẋ(t) =
r∑
i=1

µσi (x(t))[(Aσi + ∆Aσ(t)x(t)+

(Bσi + ∆Bσ(t)u(t)] + d(t)
y(t) = Cσx(t) + v(t)

(19)

where the uncertainties ∆A
σ
(t), ∆B

σ
(t) or ∆Aσ(t), ∆Bσ(t)

are given by:

∆A
σ
(t) =

r∑
i=1

δ
σ

i (t)Aσi , ∆Aσ(t) =

r∑
i=1

δσi (t)Aσi

= AσΣ
σ

A(t)EA = AσΣσA(t)EA (20)

Aσ =
[
Aσ1 · · · Aσr

]
, EA =

 In · · · In︸ ︷︷ ︸
r terms


T

(21)

Σ
σ

A(t) = diag([δ
σ

1 (t)In . . . δ
σ

r (t)In]) (22)
ΣσA(t) = diag([δσ1 (t)In . . . δ

σ
r (t)In]) (23)

∆B
σ
(t) =

r∑
i=1

δ
σ

i (t)Bσi , ∆Bσ(t) =

r∑
i=1

δσi (t)Bσi

= BσΣ
σ

B(t)EB = BσΣσB(t)EB (24)

Bσ =
[
Bσ1 · · · Bσr

]
, EB =

 Im · · · Im︸ ︷︷ ︸
r terms


T

(25)

Σ
σ

B(t) = diag([δ
σ

1 (t)Im . . . δ
σ

r (t)Im]) (26)
ΣσB(t) = diag([δσ1 (t)Im . . . δ

σ
r (t)Im]) (27)

Remark 1: Due to the convex property of the weighting
functions (15), we have −1 ≤ δ

σ

i (t) ≤ 1 and − 1 ≤
δσi (t) ≤ 1. The terms Σ

σ

A(t), ΣσA(t), Σ
σ

B(t) and ΣσB(t) satisfy
Σ
σT

A (t)Σ
σ

A(t) ≤ Inr, ΣσTA (t)ΣσA(t) ≤ Inr, Σ
σT

B (t)Σ
σ

B(t) ≤
Imr and, ΣσTB (t)ΣσB(t) ≤ Imr.

Assumption 3: There exist known constant matrices ∆A
σ

min,
∆A

σ
max, ∆Aσmin and ∆Aσmax such that, for all t ≥ 0, for all

σ ∈ {1, 2, . . . , N},
∆A

σ

min ≤ ∆A
σ
(t) ≤ ∆A

σ

max

∆Aσmin ≤ ∆Aσ(t) ≤ ∆Aσmax

Similarly, there exist known constant matrices ∆B
σ

min,
∆B

σ
max, ∆Bσmin and ∆Bσmax such that, for all t ≥ 0, for

all σ ∈ {1, 2, . . . , N},
∆B

σ

min ≤ ∆B
σ
(t) ≤ ∆B

σ

max

∆Bσmin ≤ ∆Bσ(t) ≤ ∆Bσmax

Assumption 3 means that the uncertainties ∆A
σ
(t), ∆B

σ
(t),

∆Aσ(t) and ∆Bσ(t) are unknown terms but bounded by
known constant matrices. This assumption is natural when
dealing with system parameter uncertainties.
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Fig. 1. A block diagram of the state estimation of the system (19) based on
interval observer approach.

Remark 2: According to the design of the upper (respec-
tively, lower) bound, first the (respectively, second) form
of (19) is employed. The key idea is based on replacing
unmeasurable premise variables µσi (x(t)) by their upper or
lower estimated bounds (i.e., µσi (x(t)) or µσi (x(t))) associat-
ing with respective bounded uncertainties (∆A

σ
(t), ∆B

σ
(t))

or (∆Aσ(t), ∆Bσ(t)).

III. MAIN RESULTS

In this paper, T-S interval observers are designed for a
class of nonlinear switched systems described by fuzzy model-
based approaches. The T-S fuzzy model can be represented in
the compact form (17) with unmeasurable premise variables.
Next, it is transformed into an uncertain switched T-S system
(19) with upper or lower estimated premise variables. Starting
from the initial state x(0) which verifies x(0) ≤ x(0) ≤
x(0) and taking into account the uncertainties, an interval
observer will first be designed. The purpose is to satisfy
stability and nonnegativity properties of the observation errors.
Subsequently, gains of the present interval observer will be
optimized using H∞ approach to guarantee the attenuation
of additive disturbances effect in the absence of measurement
noises. Hence, these gains improve the estimation accuracy by
tightening the error between upper and lower bounds. Thus,
the performance of the interval observer will be improved. The
main goal of this paper is illustrated in Figure 1.

A. T-S interval observer design

The third step of this paper is to design a T-S interval
observer for the switched T-S system (19). Consider the
following upper and lower dynamics with σ ∈ {1, 2, . . . , N}
and i ∈ {1, . . . , r}:

ẋ(t) =
r∑
i=1

µσi (x(t))[(Aσi − Lσi Cσ)x(t) +Bσi u(t)+

Lσi y(t) + |Lσi |V Ep] + d− ϕσA,min(t)− ϕσB,min(t)

ẋ(t) =
r∑
i=1

µσi (x(t))[(Aσi − Lσi Cσ)x(t) +Bσi u(t)+

Lσi y(t)− |Lσi |V Ep] + d+ ϕσ
A,min

(t) + ϕσ
B,min

(t)

(28)

where

ϕσA,min(t) = ∆A
σ+

minx
+(t)−∆A

σ+

maxx
−(t)−∆A

σ−
minx

+(t)

+ ∆A
σ−
maxx

−(t) (29)

ϕσB,min(t) = ∆B
σ

minu
+(t)−∆B

σ

maxu
−(t) (30)

ϕσ
A,min

(t) = ∆Aσ+minx
+(t)−∆Aσ+maxx

−(t)−∆Aσ−minx
+(t)

+ ∆Aσ−maxx
−(t) (31)

ϕσ
B,min

(t) = ∆Bσminu
+(t)−∆Bσmaxu

−(t). (32)

Let introduce the upper and lower observation errors e(t) =
x(t)−x(t) and e(t) = x(t)−x(t) and note that from (19), x(t)
can be expressed by two different ways: (i) employing upper
estimated premise variables or (ii) employing lower estimated
premise variables. To obtain e(t) in (33), we use the first
expression of x(t) given in (19) while to obtain e(t) in (34),
the second form of (19) is used. Hence,

ė(t) =

r∑
i=1

µσi (x(t))(Aσi − Lσi Cσ)e(t)− d(t)

+∆A
σ
(t)x(t) + ∆B

σ
(t)u(t) + ψ(t) (33)

ė(t) =

r∑
i=1

µσi (x(t))(Aσi − Lσi Cσ)e(t) + d(t)

+∆Aσ(t)x(t) + ∆Bσ(t)u(t) + ψ(t) (34)

where

ψ(t) =

r∑
i=1

µσi (x(t))(Lσi v(t) + |Lσi |V Ep) + d

− ϕσA,min(t)− ϕσB,min(t) (35)

ψ(t) =

r∑
i=1

µσi (x(t))(−Lσi v(t) + |Lσi |V Ep)− d

− ϕσ
A,min

(t)− ϕσ
B,min

(t), (36)

with ϕσA,min(t), ϕσB,min(t), ϕσ
A,min

(t) and ϕσ
B,min

(t) defined
in (29)-(32).

A three sub-steps T-S interval estimation method is pro-
posed as follows:

• Decouple the state x(t) from the upper and lower errors
dynamics (33)-(34).

• Compute appropriate gains Lσi ∈ <n×p for each mode
σ ∈ {1, 2, . . . , N} in order to establish the global
asymptotic stability of the origin of the considered system
(19) coupled with upper error dynamic (33) as well as
of the considered system (19) coupled with lower error
dynamic (34) through a Lyapunov approach. This sub-
step is under the heading of ”Stability property”.

• Ensure the nonnegativity property of the upper and lower
errors dynamics given in (33) and (34) (i.e. e(t) ≥ 0 and
e(t) ≥ 0 to guarantee the relation x(t) ≤ x(t) ≤ x(t)).
This sub-step is under the heading of ”Nonnegativity
property”.

We achieve the first step by defining the augmented upper
and lower vectors as ea(t) =

[
eT (t) xT (t)

]T
and ea(t) =
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[
eT (t) xT (t)

]T
from which the following dynamics are

obtained with σ ∈ {1, 2, . . . , N} and i, j ∈ {1, . . . , r}:

ėa(t) =

r∑
i=1

µσi (x(t))

r∑
j=1

µσj (x(t))(A
σ

ij(t)ea(t)+

B
σ

ij(t)u(t)) + Fd(t) +Gψ(t) (37)

ėa(t) =

r∑
i=1

µσi (x(t))

r∑
j=1

µσj (x(t))(Aσij(t)ea(t)+

Bσij(t)u(t)) + Fd(t) +Gψ(t) (38)

where



A
σ

ij(t) =

[
Aσi − Lσi Cσ ∆A

σ
(t)

0 Aσj

]
, B

σ

ij =

[
∆B

σ
(t)

Bσj

]
Aσij(t) =

[
Aσi − Lσi Cσ ∆Aσ(t)

0 Aσj

]
, Bσij =

[
∆Bσ(t)
Bσj

]
F =

[
−I
I

]
, F =

[
I
I

]
, G =

[
I
0

]
.

The second and third steps of above-mentioned three-step T-
S interval estimation method are respectively attained by the
upcoming LMIs (39) and (40) of Theorem 1.

Theorem 1: Let the system (19) satisfy Assumptions 1-3
and assume that x(0), x(0) are known and the initial state
x(0) verifies x(0) ≤ x(0) ≤ x(0). If there exist diagonal
positive matrix P1 ∈ <n×n, positive definite matrix P2 ∈
<n×n, matrices Kσ ∈ <n×p and the strictly positive scalars
ησi , ρσ1 and λσ for all σ ∈ {1, . . . , N} such that for all i, j ∈
{1, . . . , r},  φσi 0 P1Aσ

0 Υσ
j 0

AσTP1 0 − 1
ρσ1
I

 ≺ 0 (39)

P1A
σ
i −Kσ

i C
σ + ησi P1 ≥ 0 (40)

where
φσi = AσTi P1 + P1A

σ
i − CσTKσT

i −Kσ
i C

σ + 3
λσP1

Kσ
i = P1L

σ
i

Υσ
j = AσTj P2 + P2A

σ
j + 3

λσP2 + ρσ1ETAEA
with A, EA defined in (21), hold, then, (28) is an interval
observer for the system (17).

proof 1:
1) Stability property

Consider the following common Lyapunov function for the
augmented upper dynamic (37):

V (ea(t)) = ea
T (t)Pea(t), P = diag([ P1 P2 ]) � 0

(41)
Taking the derivative of the Lyapunov function (63) along
all trajectories of (37), then ∀σ ∈ {1, 2, . . . , N} and ∀i, j ∈
{1, . . . , r}:

V̇ (ea(t)) = ė
T
a (t)Pea(t) + ea

T (t)P ėa(t)

=
r∑
i=1

µσi (x(t))
r∑
j=1

µσj (x(t))(eTa (t)A
σT

ij (t)Pea(t)

+eTa (t)PA
σ

ij(t)ea(t) + 2eTa (t)PB
σ

ij(t)u(t))

+2eTa (t)PFd(t) + 2eTa (t)PGψ(t))
(42)

Based on Lemma 5, the following inequalities are deduced
where λσ > 0 for all σ ∈ {1, . . . , N} can be selected
arbitrarily

2eTa (t)PB
σ

ij(t)u(t) ≤ 1
λσ e

T
a (t)Pea(t)

+uT (t)B
σT

ij (t) [λσP ]B
σ

ij(t)u(t)

2eTa (t)PFd(t) ≤ 1
λσ e

T
a (t)Pea(t)

+dT (t)F
T

[λσP ]Fd(t)

2eTa (t)PGψ(t) ≤ 1
λσ e

T
a (t)Pea(t)

+ψ
T

(t)GT [λσP ]Gψ(t)
(43)

The combination of (42) and (43) leads to:

V̇ (ea(t)) ≤ eTa (t)

r∑
i=1

r∑
j=1

µσi (x(t))µσj (x(t))
(
A
σT

ij P + PA
σ

ij

+
3

λ

σ

P

)
ea(t) + υσ (44)

where for σ ∈ {1, . . . , N}, i, j ∈ {1, . . . , r}

υσ =
r∑
i=1

r∑
j=1

µσi (x(t))µσj (x(t))
(
uT (t)B

σT

ij (t) [λσP ]B
σ

ij(t)u(t)
)

+ dT (t)F
T

[λσP ]Fd(t) + ψ
T

(t)GT [λσP ]Gψ(t). (45)

According to the convex sum property of the weighting
functions µ in (15) and from the Lyapunov-based stability
analysis for the T-S fuzzy systems [52], to achieve the input-
to-state stability (see Lemma 6), we need to prove that

Γσ = A
σT

ij P + PA
σ

ij +
3

λσ
P ≺ 0. (46)

Recall that P = diag([ P1 P2 ]), from (46) we have

Γσ =

[
(Aσi − Lσi Cσ)

T
0

∆A
σT

(t) AσTj

] [
P1 0
0 P2

]
+

[
P1 0
0 P2

] [
Aσi − Lσi Cσ ∆A

σ
(t)

0 Aσj

]
+

[
3
λσP1 0

0 3
λσP2

]
.

(47)

Then, it follows

Γσ =

[
(Aσi − Lσi Cσ)

T
P1 + P1(Aσi − Lσi Cσ) + 3

λσP1

∆A
σT

(t)P1

P1∆A
σ
(t)

AσTj P2 + P2A
σ
j + 3

λσP2

]
.

(48)
Let rewrite (48) by separating the time-depending term
P1∆A

σ
(t), we obtain

Γσ =

[
(Aσi − Lσi Cσ)

T
P1 + P1(Aσi − Lσi Cσ) + 3

λσP1

0
0

AσTj P2 + P2A
σ
j + 3

λσP2

]

+

W︷ ︸︸ ︷[
0 P1∆A

σ
(t)

∆A
σT

(t)P1 0

]
.

(49)
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The matrix W can be decomposed such that W = Q + QT
where

Q =

[
0 P1∆A

σ
(t)

0 0

]
. (50)

Using the definition of the uncertainty ∆A
σ
(t) given in (20),

it yields the following partition of Q

Q =

X︷ ︸︸ ︷[
P1Aσ 0

0 0

] Y︷ ︸︸ ︷[
0 Σ

σ

A(t)EA
0 0

]
. (51)

Choosing Ω = diag([ρσ1 . . . ρ
σ
1︸ ︷︷ ︸

n terms

ρσ2 . . . ρ
σ
2︸ ︷︷ ︸

n terms

]) � 0 with ρσ1 , ρσ2 are

any strictly positive scalars for all σ ∈ {1, . . . , N}. Applying
Lemma 4 to (51) yields

W ≤ XΩ−1XT + Y TΩY. (52)

Bearing in mind that Σ
σT

A (t)Σ
σ

A(t) ≤ Inr (see Remark 1), the
following inequality holds

W ≤ diag([
1
ρσ1
P1AσAσTP1 ρσ1ETAEA ]) (53)

Substituting (53) in (49) leads to:

Γσ = diag([ Ξσi Υσ
j ]) (54)

where

Ξσi = (Aσi − Lσi Cσ)
T
P1 + P1(Aσi − Lσi Cσ)

+
3

λσ
P1 +

1

ρσ1
P1AσAσTP1

Υσ
j = AσTj P2 + P2A

σ
j +

3

λσ
P2 + ρσ1ETAEA

From LMI (39), based on the Schur complement [47]
with Kσ

i = P1L
σ
i we can conclude that Γσ ≺ 0 for all

σ ∈ {1, . . . , N}. On the other hand, because the state x(t)
and measurement noises v(t) are all bounded in norm (see
Assumptions 1-2 which are accepted in many applications),
ψ(t) given in (35) is bounded. Moreover the known input
u(t) and additive disturbances d(t) are also bounded in norm
as stated in Assumption 1 and 2, it follows that υσ in (44)
is bounded for all σ ∈ {1, . . . , N}. Thus, from (44) the aug-
mented upper dynamic (37) is ISS due to Lemma 6. Similarly
one can prove that the augmented lower dynamic (38) is ISS.
Hence, the stability property of the interval observer (28) can
be deduced since |x− x| ≤ |x− x︸ ︷︷ ︸

=e

|+ |x− x︸ ︷︷ ︸
=e

|.

2 Nonnegativity property
First, from (29)-(32) and Lemma 2, the following inequalities
hold

∆A
σ
(t)x(t) ≥ ϕσA,min(t), ∆Aσ(t)x(t) ≥ ϕσ

A,min
(t)

∆B
σ
(t)u(t) ≥ ϕσB,min(t), ∆Bσ(t)u(t) ≥ ϕσ

B,min
(t)

(55)
From Assumption 1, we have for all σ ∈ {1, . . . , N}, i ∈
{1, . . . , r}, d−d ≥ 0, d−d ≥ 0, Lσi v(t) + |Lσi |V Ep ≥ 0 and
−Lσi v(t) + |Lσi |V Ep ≥ 0. Thus from (35)-(36), it holds that

ψ(t)− d(t) + ∆A
σ
(t)x(t) + ∆B

σ
(t)u(t) ≥ 0

d(t) + ∆Aσ(t)x(t) + ∆Bσ(t)u(t) + ψ(t) ≥ 0
(56)

Subsequently, thanks to (40) and Lemma 3, one can ensure
that (Aσi − Lσi Cσ) is Metzler for all σ ∈ {1, . . . , N}, for all
i ∈ {1, . . . , r} since P1(Aσi − Lσi C

σ) + ησi P1 ≥ 0,∀σ ∈
{1, . . . , N},∀i ∈ {1, . . . , r} and P1 is diagonal positive
matrix.

Lastly, according to Lemma 1 and bearing in mind the
Metzler property of (Aσi − Lσi Cσ) together with (56), if x(0)
and x(0) are supposed to be known such that{

e(0) = x(0)− x(0) ≥ 0
e(0) = x(0)− x(0) ≥ 0

,

then the dynamics of the estimation errors given in (33)-(34)
stay positive and consequently, x(t) ≤ x(t) ≤ x(t) which
completes the proof.

B. Optimal T-S interval design via H∞ approach with respect
to additive disturbances

In this section, we consider that measurement noises are
not present (i.e., v(t) = 0). The main objective is to adapt the
design of the T-S interval observer (28) in order to estimate
an ultimate-bound guaranteeing a tighter interval width which
represents the fourth step of this paper. In fact, this section
is devoted to the computation of gains Lσi , σ = {1, . . . , N},
i ∈ {1, . . . , r} to ensure stability properties. Notice that these
gains decide also the tightness of the interval width. Hence,
the goal is not only to ensure the stability of the ultimate-
bound as in Section III-A but also to improve the accuracy
of the T-S interval observer (28) and the idea is based on
an H∞ approach. The effect of the known bound of the
additive disturbance d on the estimation error is reduced by
the observer gain matrices. In other words, we are interested in
computing observer gains Lσi which minimize a cost function
to be introduced later.

Given the structure of the T-S interval observer (28), by
taking account V = v(t) = 0, (33)-(34) can be rewritten as
follows

ė(t) =

r∑
i=1

µσi (x(t))((Aσi − Lσi Cσ)e(t) + d− d(t)

+∆A
σ
(t)x(t) + ∆B

σ
(t)u(t) + ψ

∗
(t) (57)

ė(t) =

r∑
i=1

µσi (x(t))((Aσi − Lσi Cσ)e(t) + d(t)− d

+∆Aσ(t)x(t) + ∆Bσ(t)u(t) + ψ∗(t) (58)

where ψ
∗
(t) = −ϕσA,min(t) − ϕσB,min(t) and

ψ∗(t) = −ϕσ
A,min

(t) − ϕσ
B,min

(t) with ϕσA,min(t), ϕσB,min(t),
ϕσ
A,min

(t) and ϕσ
B,min

(t) defined in (29)-(32).

Analogously to (37)-(38) by defining ea(t) =[
eT (t) xT (t)

]T
and ea(t) =

[
eT (t) xT (t)

]T
,

the following dynamics are obtained with σ ∈ {1, 2, . . . , N}
and i, j ∈ {1, . . . , r}:

ėa(t) =

r∑
i=1

µσi (x(t))

r∑
j=1

µσj (x(t))(A
σ

ij(t)ea(t)

+B
σ

ij(t)u(t)) + Ed+ Fd(t) +Gψ
∗
(t) (59)



8

ėa(t) =

r∑
i=1

µσi (x(t))

r∑
j=1

µσj (x(t))(Aσij(t)ea(t)

+Bσij(t)u(t)) + Fd(t) + Ed+Gψ∗(t) (60)

where E =
[
I 0

]T
, E =

[
−I 0

]T
, F =[

−I I
]T

, F =
[
I I

]T
.

Theorem 2: Let the system (19) satisfy Assumptions 1-3
and assume that x(0), x(0) are known and the initial state
x(0) verifies x(0) ≤ x(0) ≤ x(0). If there exist diagonal
positive matrix P1 ∈ <n×n, positive definite matrix P2 ∈
<n×n, matrices Kσ ∈ <n×p and the strictly positive scalars
ησi , ρσ1 , γ and λσ for all σ ∈ {1, . . . , N} such that for all i, j ∈
{1, . . . , r}, the following constrained minimization problem

minimize
P1,P2,Kσ

i ,ρ
σ
1

γ

subject to


φσi 0 P1 P1Aσ
0 Υσ

j 0 0
P1 0 −γI 0
AσT P 0 0 − 1

ρσ1
I

 ≺ 0

P1A
σ
i −Kσ

i C
σ + ησi P1 ≥ 0.

(61)
where

φσi = AσTi P1 + P1A
σ
i − CσTKσT

i −Kσ
i C

σ + 3
λσP1 + In

Kσ
i = P1L

σ
i

Υσ
j = AσTj P2 + P2A

σ
j + 3

λσP2 + ρσ1ETAEA,

with A, EA defined in (21), is solved, then when v(t) = V =
0, (28) is an optimal interval observer for the system (17) that
guarantees the attenuation of additive disturbances effect with
the cost function computed by

γ =
√
γ . (62)

Remark 3: Notice that the terms ησi are fixed before solving
the LMIs (40) and (61). Thus, those LMIs are not nonlinear
optimization problems.

proof 2:
1) Stability property

Employing the following common Lyapunov function for the
augmented upper dynamic (59):

V (ea(t)) = ea
T (t)Pea(t), P = diag([ P1 P2 ]) � 0

(63)
to prove that (59) is ISS. Indeed, in the same way of the proof
of Theorem 1 given in (42)-(44), it follows that

V̇ (ēa(t)) ≤ eTa (t)

 r∑
i=1

r∑
j=1

µσi (x(t))µσj (x(t))Γσ

 ea(t)

+ d̄T ĒTP ēa(t) + ēTa PĒd̄+ ϑσ (64)

where

ϑσ =
r∑
i=1

r∑
j=1

µσi (x(t))µσj (x(t))
(
uT (t)B

σT

ij (t) [λσP ]B
σ

ij(t)u(t)
)

+ dT (t)F
T

[λσP ]Fd(t) + ψ
∗T

(t)GT [λσP ]Gψ
∗
(t) (65)

with ψ
∗

defined in (57).
Besides, the upper estimation error given in (57) can be

seen as
e(t) = Hea(t) (66)

where H =
[
I 0

]
.

Based on H∞ approach, the optimal gains are computed
in order to minimize the following cost function ∀σ ∈
{1, 2, . . . , N} and ∀i, j ∈ {1, . . . , r}:

minimize
Lσi ∈<n×p

γ2

subject to
‖e(t)‖2∥∥d∥∥

2

≤ γ2
(67)

The effect of the known bound of the additive disturbances
d(t) on the upper observation error e is reduced by the
observer gain matrix Lσi which are computed via the mini-
mization of the positive real number γ = γ2.

The optimization problem (67) can be reformulated under an
LMI form using the bounded-real lemma [47] for (57) which
leads to:

V̇ (ea(t)) + eT (t)e(t)− γdT d ≤ 0 (68)

The same reasoning of the proof of Theorem 1 applies, we
deduce that ϑσ given in (65) is bounded. Thus, by substituting
(64) and (66) in (68), (59) is ISS if the following inequality
holds

eTa (t)Γσea(t) + d
T
E
T
Pea(t) + eTa PEd

+eTa (t)HTHea − γd
T
d ≤ 0

(69)

or equivalently[
ea
d

]T [
Γσ +HTH PE

E
T
P −γI

] [
ea
d

]
≤ 0 (70)

Replacing the term Γσ by its expression given in (54) and from

the definition of H in (66) we have HTH =

[
In 0
0 0

]
∈

<2n×2n, the inequality (70) holds if the subsequent one is
satisfied  Ξσi + In 0 PE

0 Υσ
j 0

E
T
P 0 −γI

 ≺ 0 (71)

From the LMI (61), based on the Schur complement [47]
with Kσ

i = P1L
σ
i , this allows us to conclude. Similarly one

can prove that the augmented lower dynamic (60) is ISS.
Hence, the stability property of the interval observer (28) can
be deduced since |x− x| ≤ |x− x︸ ︷︷ ︸

=e

|+ |x− x︸ ︷︷ ︸
=e

|.

2 Nonnegativity property
This proof is identical to the one given in Theorem 1.

Remark 4:
• LMIs given in Theorem 1 and Theorem 2 ensure at the

same time the ISS and nonnegativity properties of T-
S interval observer (28). In addition, minimizing cost
function in Theorem 2 yields optimal gains that improve
the accuracy of the present T-S interval observer.
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• The presence of measurement noises in (61) leads to a
nonlinear optimization problem which cannot be easily
solved. This is the design constraints of H∞-based T-
S interval observer (28) . We conjecture that one can
overcome these design constraints by proposing another
guaranteed state estimation approach, e.g., zonotopic
technique paired with H∞ design which is an interesting
perspective for the future work. Furthermore, it is worth
highlighting that in the presence of v(t), Theorem 1
works and T-S interval observer (28) can be always
designed.

C. Application to robust fault detection

In this section, the previous results are used to generate
residuals for fault detection. Under the presence of a sensor
fault and the absence of measurement noises (v(t) = 0),
system (17) can be represented by:

ẋ(t) =
r∑
i=1

µσi (x(t))(Aσi x(t) +Bσi u(t)) + d(t)

y(t) = Cσx(t) + f(t)
∀σ ∈ {1, 2, . . . , N} ,∀i ∈ {1, . . . , r} ,

(72)

where f(t) ∈ <p denotes pth sensor fault. The principle is
to compare the measurements y(t) with their estimates ŷ(t)
provided by a faultless model. The comparison leads to the
generation of a residual r(t) ∈ <p given by:

r(t) = ŷ(t)− y(t). (73)

In a fault-free operation, the residual are around zero. Never-
theless, when considering a system affected by perturbations
and uncertainties given in (19), the residuals deviate from zero
even in the fault-free scenario. To cope with this problem, a
passive approach is used based on the interval observer (28)
designed in the previous section.

Based on (2) of Lemma 2, the lower and upper outputs of
the system (17) are given by:{

y(t) = Cσ+x(t)− Cσ−x(t)
y(t) = Cσ+x(t)− Cσ−x(t)

(74)

Let
[
y(t), y(t)

]
be the domain of the output y(t), the fault

detection test can be formulated as y(t) /∈
[
y(t), y(t)

]
which

is equivalent to:
0 /∈ [r(t), r(t)] . (75)

where
r(t) = y(t)− y(t) = −Cσ+(x(t)− x(t))

−Cσ−(x(t)− x(t))
r(t) = y(t)− y(t) = Cσ+(x(t)− x(t))

−Cσ−(x(t)− x(t))
(76)

Thus, the residual is described by an adaptive threshold.
Remark 5: The considered system in this paper is affected

by unknown but bounded disturbances. If these bounds are
large, so does the width of the interval observer and it may lead
to misdetection of small faults. The proposed T-S interval ob-
server design method given in (28) allows to compute optimal
gains which attenuate the effect of the system’s disturbances

and ensure a tighter interval width which make it possible to
detect low magnitude faults.

IV. NUMERICAL SIMULATIONS

A. Example 1

In order to illustrate the effectiveness of the proposed
approaches, Theorem 1 is firstly illustrated and secondly, a
comparative study is made between the results obtained in
Theorem 1 and those optimized in Theorem 2 in the absence
of measurement noises.

Let consider a switched system characterized by two non-
linear modes (i.e. σ ∈ {1, 2}) where each mode is represented
by T-S fuzzy models with two local models (i.e. r = 2): ẋ(t) =

2∑
i=1

µσi (ξ(t))(Aσi x(t) +Bσi u(t)) + d(t)

y(t) = Cσx(t) + v(t)
(77)

where
For Mode σ = 1:

A1
1 =

[
−1.51 −0.262

0 −0.1

]
, A1

2 =

[
−0.86 1.47

0 −0.15

]
B1

1 =

[
1
1

]
, B1

2 = B1
1 , C

1 =
[

0 1.5
]

(78)
For Mode σ = 2:

A2
1 =

[
−5.55 4.1

0 −0.1

]
, A2

2 =

[
−2.65 2.34

0 −0.15

]
B2

1 =

[
1.5
1.5

]
, B2

2 = B2
1 , C

2 =
[

0 1.5
]

(79)
The weighting functions are hyperbolic tangent functions and
depend on the state of the switched system such as ξ(t) = x1(t)

µσ1 (x(t)) = 1
2 (1− tanh(x1(t)), ∀σ ∈ {1, 2}

µσ2 (x(t)) = 1− µσ1 (x1(t)), ∀σ ∈ {1, 2}
(80)

For the simulation, the disturbances and the measurement
noises are chosen such as:

d(t) = 0.1
[

sin(2.7t) cos(2.7t)
]T

d = −d =
[

0.1 0.1
]T

v(t) = 0.01 sin(2.7t), V = 0.01

(81)

Thus, Assumption 1 is satisfied. The switching signal between
the two modes of the considered system is plotted in Figure
2.

The initial conditions are x(0) =
[

0 0
]T

and x(0) =

−x(0) =
[

0.05 0.02
]T

. In the simulation, the control
input is given by u(t) = 0.1 sin(2.7t). The solutions of
Theorem 1 and 2 are obtained for λ1 = 25.96, λ2 = 85.76,
η11 = η12 = 10 and η21 = η22 = 25.
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1) Solution of Theorem 1: Using the package Yalmip
toolbox [53], the solution of LMIs (39) of Theorem 1 is given
by:

L1
1 =

[
−3.0735
2.5767

]
, L1

2 =

[
−0.8078
2.5981

]
, ρ11 = 0.2345,

L2
1 =

[
−2.4280
2.4189

]
, L2

2 =

[
−0.8353
2.5057

]
, ρ21 = 0.6645,

P1 =

[
0.0425 0.0000
0.0000 0.1878

]
, P2 =

[
0.4463 0.0000
0.0000 15.1907

]
.

We verify that the matrices Aσi − Lσi Cσ are Metzler ∀σ ∈
{1, 2}, ∀i ∈ {1, 2}. The T-S interval observer (19) is applied.
The simulation results given in Figure 3 show that the state
stays in the estimated interval all the time, even when the
measurement noises and the additive disturbances in (81) are
present. In addition, the upper and lower bounds remain stable
despite the switching instants. However here the optimization
issue of interval width between upper and lower bound is not
considered.

2) Comparisons study between Theorems 1 and 2: In
this section, we consider that the system is affected only by
additive disturbances d(t) (i.e. v(t) = 0). Using the package
CVX [54], the solution of LMIs (61) of Theorem 2 is given by

L1
1 =

[
−0.1747
10.1468

]
, L1

2 =

[
−0.9800
10.1135

]
, ρ11 = 1.3062 106

L2
1 =

[
2.7333
10.1334

]
, L2

2 =

[
1.5600
10.1000

]
, ρ21 = 3.5739 106

P1 =

[
1.2465 0.0000
0.0000 32.8409

]
,

P2 = 107
[

0.2379 0.0000
0.0000 8.3253

]
.

The resulting attenuation level is γ = 1.2465. We verify
that the matrices Aσi − Lσi Cσ are Metzler ∀σ ∈ {1, 2},
∀i ∈ {1, 2}.

For the purpose of comparison, the simulation of the T-S
interval observer (28) with non optimal and optimal gains are
depicted in Figure 4 where solid lines present the state and
dashed lines present the estimated bounds. Under the same
simulation conditions, the results show that the gains computed
by Theorem 2 give more accurate interval estimation than the
ones computed by Theorem 1 in the absence of measurement
noise. Optimal gains offer a tighter interval width. This is
explained by the reduction of the effect of the known bound of
the additive disturbances on the estimation error. The accuracy
of interval observer is then improved.

B. Example 2

To show the effectiveness of the proposed fault detection
method, a switched system described by (72) is considered as
follows

A1
1 =

 −0.9 0 −0.45
0 −2.1 0
0 0 −0.1

 ,
A1

2 =

 −3.86 0 1.22
0 −0.15 0
0 0 −0.1

 ,

A2
1 =

 −5.5 0 1.5
0 −1.1 0
0 0 −0.1

 ,
A2

2 =

 −2.6 0 0.3
0 −0.15 0
0 0 −0.1

 ,
B1

1 =

 1
0
1

 ,
B1

2 = B2
1 = B2

2 = B1
1 ,

C1 =
[

0 0 1.2
]
, C2 =

[
0 0 1.7

]
.

The weighting functions are hyperbolic tangent functions and
depend on the unmeasured state x1: ξ(t) = x1(t)

µσ1 (x(t)) = 1
2 (1− tanh(x1(t)), ∀σ ∈ {1, 2}

µσ2 (x(t)) = 1− µσ1 (x1(t)), ∀σ ∈ {1, 2}
(82)

For the simulation, the disturbances are chosen such
as: d(t) = 0.1

[
cos(3.5t) cos(3.5t) cos(3.5t)

]T
and

d = −d =
[

0.1 0.1 0.1
]T

. Thus, Assumption 1 is sat-
isfied. The switching signal between the two modes of the
considered system is plotted similarly to Example IV-A in
Figure 2. The fault signal is set up as:

f(t) =

 0.03, 2s ≤ t ≤ 4s
0.02, 8s ≤ t ≤ 9s
0 otherwise

(83)

The initial conditions are x(0) =
[

0 0 0
]T

and x(0) =

−x(0) =
[

0.1 0.1 0.1
]T

. By fixing λ1 = 85.96, λ2 =
85.76, η11 = η12 = 10 and η21 = η22 = 26, the solution of LMIs
(61) of Theorem 2 are obtained using the package CVX [54].
The values of the optimal gains are given by:

L1
1 =

 −0.3750
0.0000
16.4867

 , L1
2 =

 1.0167
0.0000
16.4867

 ,
L2
1 =

 0.0824
0.0000
11.6377

 , L2
2 =

 0.1765
0.0000
11.6377


The attenuation level is γ = 7.5443. The matrices Aσi − Lσi Cσ
are Metzler for all σ ∈ {1, 2} and for all i ∈ {1, 2}. In
Figure 5, it is clear that the relations y(t) ≤ y(t) ≤ y(t) and
0 ∈ [r(t), r(t)] hold in fault-free case while these relations are
broken when the fault occurs. It should be noted that despite
the low values of the considered fault (83), the detection is
successful. At the instant t = 4.01s, the fault is still detected,
which is explained by the fault extension since the switching
instant t = 3s happens during the faulty period 2s ≤ t ≤ 4s.

V. CONCLUSION

In this paper, a new approach is proposed to deal with the
problem of interval observer design for nonlinear switched
systems described by T-S fuzzy models. The problem is
challenging because the premise variables are unmeasurable
and the membership functions µi, i ∈ {1, . . . , r} are not
assumed to be globally Lipschitz. Thanks to the fact that the
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premise variables can be replaced by their interval estimates,
this structure allows us to see the considered system as an
uncertain system subject to unknown but bounded distur-
bances/measurement noises. The first goal of the paper is
to design T-S interval observer by solving a set of LMIs
that ensure at the same time the stability and nonnegativity
properties. In the absence of measurement noises, the second
goal of the paper is to tighten the width of the present interval
observer by pairing it with H∞ approach. A sensor fault
detection scheme based on interval observers is also given and
can be considered as an interesting application. A comparative
study between the first and second contribution as well as
fault detection issues are successfully done by simulations to
illustrate the efficiency of the proposed approaches. Future
works will be focused on improving these results when the
switching signal is unknown and has to be estimated. On the
other hand, the design of closed-loop interval observers which
not only gives interval estimates, but also helps to stabilize
possibly unstable plants by feedback and adaptive controllers
in the spirit of what is done and reviewed in [55]–[57], is also
an interesting perspective.
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