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This paper proposes a two-step interval estimation method for discrete-time switched linear systems with unknown but bounded uncertainties. Based on the ellipsoidal analysis, the proposed estimator provides upper and lower bounds of the system state with high computational analysis. The size of the obtained ellipsoids is minimized using the trace criterion. The idea of introducing an L∞ performance is also employed in order to improve the estimation accuracy. Its design conditions are given in terms of Linear Matrix Inequalities (LMIs). Finally, a numerical example emphasizes the effectiveness of the contribution.

I. INTRODUCTION

Over the past decades, state estimation has become one of the critical problems in control theory. For the targets of monitoring, identification and fault detection, the knowledge of all system state variables is a must. However in most of the cases, they may not be completely measurable and moreover, the sensors can be limited in number or provide inaccurate measurements with low reliability. In this framework, observer algorithms were proposed in order to overcome this limitation. They have acquired the growing attention due to their ability to estimate the system state from the input-output process.

Non-exhaustive literature review. As well-known in the literature, dynamical processes are typically affected by known or unknown uncertainties (e.g., noises, disturbances etc.) which are usually assumed to be either stochastic or deterministic. Since 1960s, several results are devoted to the stochastic framework [START_REF] Nguyen | Stochastic output feedback control: Convex lifting approach[END_REF], [START_REF] Sorenson | Special issue on applications of kalman filtering[END_REF]. It concerns the cases of known disturbances and measurement noises that are distinguished by an explicit distribution (generally Gaussian). Nevertheless, it is difficult to check this assumption in real applications. A general and practical assumption is that the uncertainties are unknown but bounded by known bounds [START_REF] Schweppe | Recursive state estimation: Unknown but bounded errors and system inputs[END_REF], [START_REF] Witsenhausen | Sets of possible states of linear systems given perturbed observations[END_REF]. So far, the state estimation issues under this context are fertile ground for studies. Several set-membership estimation techniques which are based for instance on zonotope [START_REF] Fogel | On the value of information in system identification-bounded noise case[END_REF]- [START_REF] Combastel | Merging kalman filtering and zonotopic state bounding for robust fault detection under noisy environment[END_REF] or ellipsoid [START_REF] Chabane | A new approach for guaranteed ellipsoidal state estimation[END_REF], [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF] are proposed in order to compute feasible sets that contain all the possible states.

Lately, interval observers have become more popular due to their computational efficiency and their simple principle [START_REF] Li | Interval observer design for continuous-time linear parameter-varying systems[END_REF]- [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF]. In the literature, it has been shown that the cooperativity assumption is the main design limitation. Therefore, a change of coordinates has been proposed to relax this restrictive requirement [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF], [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbancess[END_REF]. However, state transformation-based design may also cause conservatisms as pointed out in [START_REF] Chambon | Overview of LTI interval observer design: towards a non-smooth optimisation-based approach[END_REF]: it is impossible to synthesize simultaneously the framer gain and the coordinate transformation matrix satisfying in the same time the cooperativity constraint and the estimation accuracy. In that context, some recent studies exhibit twostep methods [START_REF] Tang | Set-membership estimation for linear time-varying descriptor systems[END_REF]- [START_REF] Alamo | Guaranteed state estimation by zonotopes[END_REF]. The idea in [START_REF] Tang | Set-membership estimation for linear time-varying descriptor systems[END_REF], [START_REF] Tang | Interval estimation methods for discrete-time linear time-invariant systems[END_REF] is to combine the observer design with zonotopic techniques, which helps to overcome the cooperative constraint frequently employed in design of interval observers and to improve the accuracy performance of interval estimation. However, the drawback of the zonotope-based estimation is the trade-off between accuracy and computation burdens. During the propagation process, the dimensions of zonotopes grow linearly which increases the computational burden. To handle this limitation, an alternative approach which also provides good performances and relaxes the computational complexity is based on the ellipsoidal representation [START_REF] Kurzhanskiy | Ellipsoidal techniques for reachability analysis of discrete-time linear systems[END_REF]- [START_REF] Asselborn | Control of uncertain nonlinear systems using ellipsoidal reachability calculus[END_REF]. On the one hand, this approach allows getting state bounds in a deterministic and guaranteed way. On the other hand, the simplicity of formulation and its geometry form can be used in order to obtain a more implementable solution. Thus, a good trade-off between computation complexity and estimation accuracy is ensured.

Additionally, switched systems have witnessed an expanding interest [START_REF] Xu | Optimal switching of switched systems with time delay in discrete time[END_REF], [START_REF] Xiao | Event-triggered control of discrete-time switched linear systems with network transmission delays[END_REF] due to their specificity to represent several real-life applications such as automatic control systems, network control processes, power electronics processes, and flight control systems [START_REF] Branicky | Multiple lyapunov functions and other analysis tools for switched and hybrid systems[END_REF], [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF]. Switched systems have emerged as a particular class of hybrid dynamical systems (HDS). They are composed of a number of continuous or discrete time subsystems called also modes and a switching rule that allows only one mode to be active at each time [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF]. Naturally, state interval estimation of such systems is important and has attracted attention [START_REF] Ethabet | Interval observers design for continuous-time linear switched systems[END_REF], [START_REF] Ethabet | Interval estimation for continuous-time switched linear systems[END_REF]. To the best of the authors knowledge, two-step interval estimation based on the ellipsoidal approximation for discrete-time switched linear systems has not been investigated. Moreover, notice that observer gains decide also the tightness of the interval width and as proved in [START_REF] Zhou | H-/L∞ fault detection observer for discrete-time Takagi-Sugeno fuzzy systems[END_REF], the practical signals are not usually energy-bounded but have peak bounds values. Therefore, as a robustness performance, we consider the L ∞ norm to compute these observer gains, which is naturally more consistent with interval analysis since it minimizes the peak-to-peak gain.

Contribution. Based on the arguments given above, this paper proposes a novel state interval estimation method for discrete-time linear switched systems with unknown but bounded uncertainties. The observer design is combined with an ellipsoidal formulation. More precisely, first an L ∞ observer is used to reduce the influence of unknown uncertainties. The observer design conditions can be converted into linear matrix inequalities (LMIs). Next, an ellipsoidal set is computed for the estimation error and generates two bounds for the state. The proposed method provides a systematic way to improve the accuracy of interval estimation. Compared to [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF], the contributions and the main difference of this paper is that the changes of coordinates required to ensure the non-negativity of the estimation errors are not needed in the proposed approach. Therefore, the estimation pessimism can be reduced.

The present paper is organized as follows. Some preliminaries are given in Section II. The problem statement is illustrated in Section III. The main results are proved and scheduled in Section IV and V. A numerical example of the proposed observer and some comparison simulations are presented in section VI. Finally, a conclusion is presented in section VII.

II. PRELIMINARIES

Notations

• R and N represent the real and natural number sets, respectively. • 1, N is the sequence of integers 1, ..., N .

• The identity matrix of any dimension n is denoted by

I n . • For x a = [x a,1 , ..., x a,n ] ∈ R n and x b = [x b,1 , ..., x b,n ] ∈ R n , x a ≤ x b if and only if, for all i ∈ {1, ..., n}, x a,i ≤ x b,i . • The relation M 0 (M ≺ 0 ) means that the matrix M ∈ R n×n is positive definite (negative definite). • For a signal s k ∈ R n , the L ∞ norm is given by s ∞ = sup k>0 s k , where s k = s k T s k . Definition 1 ( [9]). A non-degenerate ellipsoid set ξ(x c , X) ⊂ R n is defined by ξ(x c , X) ≡ x : (x -x c ) T X -1 (x -x c ) ≤ 1 , (1) 
where x c ∈ R n and X = X T 0 are its center and its shape matrix, respectively.

Definition 2 ( [3]

). Let us consider a convex set χ ⊂ R n , its support function in terms of a vector ∈ R n is given as follows

ϕ χ ( ) = max s∈χ T s. ( 2 
)
Property 1 ( [9]). The affine transformation of an ellipsoid y = Ax + a is given as

Aξ(x c , X) ⊕ a = ξ(Ax c + a, AXA T ), (3) 
where A ∈ R n×n and a ∈ R n .

Property 2 ( [9]

). The Minkowski sum of two ellipsoids ξ 1 (x c1 , X 1 ) and ξ 2 (x c2 , X 2 ) satisfies

ξ 1 (x c1 , X 1 ) ⊕ ξ 2 (x c2 , X 2 ) ⊆ ξ 3 (x c3 , X 3 ), (4) 
where

x c3 = x c1 + x c2 , X 3 = ϕ -1 1 X 1 + ϕ -1 2 X 2 , such that ϕ 1 + ϕ 2 = 1, ϕ 1 > 0 and ϕ 2 > 0. Lemma 1 ( [3]). Given a non-degenerate ellipsoid ξ(x c , X) defined as (1), its support function in terms of ∈ R n is ϕ ξ(xc,X) ( ) = T x c + √ T X . (5) 

III. PROBLEM STATEMENT

In the present paper we consider the following discrete-time switched linear system

x k+1 = A q x k + B q u k + F q w k y k = C q x k , ∀q ∈ 1, N , N ∈ N, (6) 
where x ∈ R n , u ∈ R n , y ∈ R p , and w ∈ R n are the state, the input, the output and the unknown disturbance vectors, respectively. The invariant-time matrices A q , B q , F q and C q have appropriated dimensions. N defines the number of subsystems and q is the index of the active mode at each time k. For the rest of paper, we need the following assumptions.

Assumption 1. The pair (A q , C q ) is detectable. Assumption 2. The disturbance w k is bounded and belongs into an appropriate ellipsoidal set defined as follows

ξ(0, W ) ≡ w : w T W -1 w ≤ 1 , ( 7 
)
where W is a positive definite matrix which represents the shape of this ellipsoid. Assumption 3. The initial system state is supposed to be unknown but included in the following ellipsoid set

ξ(x c0 , X 0 ) ≡ x : (x -x c0 ) T X -1 0 (x -x c0 ) ≤ 1 . (8)
Where X 0 = X T 0 0. In the sequel, the aim is to design a two-step interval estimation through the combination of an L ∞ observer performance with the ellipsoidal approach to provide two signals x k and x k such that

x k < x k < x k , ∀k > 0. (9) 
The L ∞ formalism is used to attenuate the system disturbances effects and to improve the estimation accuracy.

IV. L ∞ FORMALISM FOR SWITCHED LINEAR SYSTEMS Consider the following Luenberger observer structure for the switched system (6)

xk+1 = (A q -L q C q )x k + B q u k + L q y k . ( 10 
)
Where xk ∈ R n is the state estimation vector and L q ∈ R n×n is the observer gain matrix. At a given instant k, the estimation error is defined by

e k = x k -xk . (11) 
Thus,

e k+1 = A q e k + F q w k , (12) 
where A q = (A q -L q C q ). The aim is to design the observer (10) satisfying

• The nominal system of ( 12) is stable.

• e k should satisfy the following L ∞ performance, i.e.,

e k ≤ γ w (λ(1 -λ) k V 0 + γ w w 2 ), (13) 
where P 0 ∈ R n×n , V 0 = e T 0 P e 0 , γ w > 0, and 0 < λ < 1.

The following theorem is proposed to design the gain matrix in observer [START_REF] Li | Interval observer design for continuous-time linear parameter-varying systems[END_REF].

Theorem 1. Let Assumptions 1, 2 and 3 hold and given parameters γ w > 0, and 0 < λ < 1. If there exist positive definite matrices P ∈ R n×n , U q ∈ R n×p , and a constant σ > 0, ∀q ∈ 1, N such that   (λ -1)P 0 (P A q -W q C q ) T 0 -σI n (P F q ) T (P A q -W q C q ) (P F q ) -P

  ≺ 0, (14)  
 λP 0 I n 0 (γ w -σ)I n 0 I 0 γ w I n   0. (15) 
Then, the dynamics [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] are input-to-state stable and the observer gain is chosen as L q = P -1 W q .

Remark 1. Note that the parameter γ w can be optimized.

Proof 1. Let us consider the following Lyapunov function for [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] V k = e T k P e k , P 0, that can be shown to satisfy

V K = V k+1 -V k < 0,
when w k = 0. Indeed, from [START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF] we have e T k+1 P e k+1 -e T k P e k = (A q e k + F q w k ) T P (A q e k + F q w k ) -e T k P e k .

Thus,

V k = e k w k T A q T P A q -P A q T P F q F T q P A q F T q P F q e k w k .
Now, bearing in mind that when ( 14) is accomplished, by substituting W q = P L q and according to A q = (A q -L q C q ), the inequality ( 14) can be rewritten as follows

  (λ -1)P 0 (P A q ) T 0 -σI n (P F q ) T (P A q ) (P F q ) -P   ≺ 0. (16) 
Now, let us consider the following variable

Ψ = I n P 0 A T q 0 I n F T q . ( 17 
)
Then, by pre-and post-multiplying ( 16) with [START_REF] Tang | Interval estimation methods for discrete-time linear time-invariant systems[END_REF] and its transpose, respectively, we obtain

(λ -1)P + A T q P A q A T q P F q F T q P A q σI n + F T q P F q ≺ 0, (18) 
which is equivalent to A q T P A q -P A q T P F q F T q P A q F T q P F q

+ λP 0 0 -σI n ≺ 0. ( 19 
)
Pre-and post-multiplying ( 19) with e T k w T k and its transpose, respectively, we acquire

V k + λV k -σw T k w k ≺ 0. (20) 
When w k = 0, the inequality (20) implies that

V k = V k+1 -V k < -λV k < 0. (21) 
Thus, the error dynamic ( 12) is input-to state stable. Next, it remains only to verify that

e k ≤ γ w (λ(1 -λ) k V 0 + γ w w 2 ). ( 22 
)
From inequality (20), we have

V k+1 < (1 -λ)V k + σ w 2 , ( 23 
)
which implies

V k+1 <(1 -λ) k V 0 + σ k-1 τ =0 (1 -λ) τ w 2 ≤(1 -λ) k V 0 + σ 1 -λ k λ w 2 ≤(1 -λ) k V 0 + σ w 2 λ . ( 24 
)
Using the Schur complement, the inequality ( 15) is equivalent to

λP 0 0 (γ w -σ)I n - 1 γ w I n 0 I n 0 0. ( 25 
)
Now, by pre-and post-multiplying ( 25) with e T k w T k and its transpose, respectively, we obtain

e T k e k ≤ γ w (λV k + (γ w -σ) w 2 ). (26) 
Then by setting ( 24) into ( 27), we have

e T k e k ≤γ w (λ((1 -λ) k V 0 + σ w 2 λ + (γ w -σ) w 2 ) ≤γ w (λ(1 -λ) k V 0 + γ w w 2 ). (27) 
Then, the condition in ( 22) is satisfied.

V. ELLIPSOIDAL STATE BOUNDING PROCESS FOR DISCRETE-TIME SWITCHED LINEAR SYSTEM

In this section, the aim is to find a feasible set ξ(x ck , X k ) which contains the system state x k , in order to derive the two signals x k and x k satisfying (9). Theorems 2 and 3 are given for such purpose.

Theorem 2. Consider the observer (10) for the system (6) and assume that Assumption 3 is satisfied, with x c0 = x0 . The state x k belongs into a feasible ellipsoidal set ξ(x k , X k ), such that

X k+1 (δ) = (1 + 1 δ )A q X k A q T + (1 + δ)F q W k F q T , ( 28 
)
with δ = trace(A q X k A T q trace(F q W F T q ) . ( 29 
)
Proof. From [START_REF] Mazenc | Interval observers for discrete-time systems[END_REF] and by considering x c0 = x0 , we verify that

e 0 ∈ ξ(x c0 , X 0 ) ⊕ (-x 0 ) = ξ(0, X 0 ). ( 30 
)
Based on Assumption 2 and (30), we have e k ∈ ξ(0, X k ).

Thus the system state satisfies

x k ∈ ξ(0, X k ) ⊕ (x k ) = ξ(x k , X k ). (31) 
Now, according to the previous assumptions, the observer system (10) and using the ellipsoidal analysis procedure, we have

e k+1 ∈ A q ξ(0, X k ) ⊕ F q ξ(0, W k ) = ξ(0, X k+1 (δ)). ( 32 
)
Applying Property 1, we obtain

e k+1 ∈ ξ(0, A q X k A q T ) ⊕ ξ(0, F q W k F T q ). ( 33 
) Thus e k+1 ∈ ξ(0, X k+1 (δ)), (34) 
which yields

x k+1 = xk+1 + e k+1 ∈ ξ(x k+1 , X k+1 (δ)). (35) 
Therefore, we conclude that

x k ∈ ξ(x k , X k ), ∀k ≥ 0. ( 36 
)
Now, according to the Property 2, the shape matrix X k+1 (δ) is defined as follows

X k+1 (δ) = (1 + 1 δ )A q X k A q T + (1 + δ)F q W k F q T , ( 37 
)
where δ minimizes the size of the feasible ellipsoidal set at time k + 1 using the trace criterion. Remark 2. Note that the sum of two ellipsoids is not an ellipsoid and the outer approximation is optimized in the following by using the trace criterion.

Trace criterion Let us consider the following trace function

tr k = trace(X k+1 ) (38) = trace((1 + 1 δ )A q X k A q T + (1 + δ)F q W k F q T ).
Due to the convexity of the trace function [START_REF] Durieu | Multi-input multi-output ellipsoidal state bounding[END_REF]Lemma 3.1] with respect to δ, the minimum value of δ based on the trace criterion is given by

∂tr k ∂δ = -δ -2 trace(A q X k A q T ) + trace(F q W F T q ) (39) = 0.
Hence, an explicit solution of δ can be deduced as

δ = trace(A q X k A T q ) trace(F q W F T q ) . ( 40 
)
Now, after obtaining the feasible set ξ(x k , X k ), the signals x k and x k are computed using the following theorem.

Theorem 3. For the system (6), the two bounds x k and x k satisfying (9) can be obtained as follows

x k (i) = xc k (i) + e k (i), i = 1..n x k (i) = xc k (i) + e k (i), i = 1..n (41) 
where e k = -e k and

e k (i) = X k (i, i) (42) 
Proof. From Theorem 3, we have verified that x k ∈ ξ(x k , X k ), ∀k ≥ 0 and e k ∈ ξ(0, X k ). By defining i ∈ R n as the vector with its i-th element equal to 1 and the others to 0 and according to Lemma 1, we have

ϕ ξ(0,X) ( i ) = T i X i = T (i)X (i) (43) = X(i, i). (44) 
According to Definition 2, we have

ϕ ξ(0,X) ( i ) = max e k ∈ξ(0,X) T i e k = e k (i). (45) 
Thus, (46) and (43) imply that

ϕ ξ(0,X) ( i ) = X(i, i) = e k (i). (46) 
Then, from Definition 2, we have

e k (i) = T i e k ≤ ϕ ξ k (0,X k ) ( i ), ∀i = 1, n. Thus, e k ≤ e k , then since ξ k (0, X k ) is symmetric, involving that -e k ∈ ξ k (0, X k ).
As well, from Definition 2, we obtain -e k ≤ e k then e k ≥ -e k = e k . Therefore, we can conclude that xk + e k ≤ x k ≤ xk + e k .

VI. SIMULATION RESULTS

This section presents some simulation results of the proposed method. In order to substantiate the efficiency of the suggested approach, the results of this paper are compared with [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]. Let us consider the switched linear system (6) with three modes (N = 3), where 

B 1 =   1.5 1 1   , B 2 =   1 1 0.4   , B 3 =   0.4 1 1   , F q = I 3 , ∀q ∈ 1, 3, w k = 0.1   sin(0.5k) cos(0.5k) cos(0.5k)   is the bounded state disturbances with w =   0.1 0.1 0.1   such that w T k w k ≤ wT w.
According to the proposed optimisation algorithm, we choose λ = 0.2. It is worth noting that λ is a tuning parameter which we employ heuristics to select. The feasible solutions of the LMIs ( 14) and ( 15 The existence of such feasible solutions of ( 14) and [START_REF] Chambon | Overview of LTI interval observer design: towards a non-smooth optimisation-based approach[END_REF] implies that the error dynamic ( 12) is input-to-state stable and e k satisfies the L ∞ performance [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF]. Now, applying the method proposed in [29, Theorem 3] to the simulation system (6) yields Note that the matrices A q -L q C q are not nonnegative for all q ∈ 1, 3. Then, according to the approach in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF], changes of coordinates z = R q x are required such that R q (A q -L q C q )R -1 q are nonnegative. The matrices R q can be computed as follows In the simulation, the initial state is x 0 = 0 0 0 T , the initial observer state x0 = 0.5 0.5 0.5 T . The initial state ellipsoid set is defined by: its center c 0 = (0 0 0) T , and its shape matrix X 0 = 10I 3 . The disturbances ellipsoid set is defined by its shape matrix W =   0.23 0.022 0.022 0.022 0.23 0.022 0.022 0.022 0.23   .

The switching signal, which governs the switching between the subsystems, is plotted Figure 1. Figure 2 presents the state x, the feasible ellipsoid set ξ(x k , X k ) for k = 0, k = 50, the disturbance w k and the ellipsoid set uncertainties ξ(0, W ). It shows that the proposed approach allows getting at each instant a feasible set ξ(x k , X k ) containing the system state x k . It is also worth noting that the disturbance w k belongs into the ellipsoidal set uncertainties ξ(0, W ) so Assumption 2 is satisfied.

The simulation results of the proposed interval estimator as well as the comparison with [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] for both coordinates are illustrated in Figure 3 where solid lines refer to the system state and the method in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] while dashed lines refer to the proposed approach in this paper. The approach proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] suffers from using the change of coordinates which causes pessimism while the two-step interval estimation proposed in the present paper integrates robust observer design with reachability analysis of the error dynamics and gets rid of the cooperativity requirement. Therefore, the estimation pessimism can be reduced. This comparative analysis is illustrated by Figure 3. Figure 3 shows that despite uncertainties, for both abovementioned approaches, the system state is always framed by the upper and the lower estimates which point out that the relation x k ≤ x k ≤ x k is satisfied during the whole estimation process. Furthermore, with the same switched system, according to Figure 3, we observe that the interval width obtained by our approach is more narrow than the one proposed by [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]. The tighter the interval width is, the more the estimated bounds x k and x k approach to the real system state x k . Thus, the estimation accuracy is improved. x 1 x 1 of the proposed method x 1 of the proposed method x 1 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] x 1 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] x 2 of the proposed method x 2 of the proposed method x 2 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] x 2 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] x 3 of the proposed method x 3 of the proposed method x 3 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] x 3 of the method proposed in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF] 29.6 29.7 29.8 29.9 30 

VII. CONCLUSION

State estimation of discrete-time switched linear system subject to unknown but bounded uncertainties has been considered in this paper. A new methodology to design a twostep interval estimation based on the ellipsoidal approximation which allows one to derive two signals x k and x k such that x k < x k < x k for all k ≥ 0 has been investigated. For the reason of estimation performance, the present approach has also integrated an L ∞ formalism to improve the estimation accuracy by attenuating the system disturbances effects. A comparative simulation shows the efficiency of the proposed contribution. For a further work, this methodology will be extended to deal with switched systems with unknown switching rules.
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