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Abstract—Deep learning (DL) has been recently used in several
applications of machine health monitoring systems. Unfortu-
nately, most of these DL models are considered as black-boxes
with low interpretability. In this research, we propose an original
PHM framework based on visual data analysis. The most suitable
space dimension for the data visualization is the 2D-space,
which necessarily involves a significant reduction from a high-
dimensional to a low-dimensional data space. To perform the data
analysis and the diagnostic interpretation in a PHM framework,
a Variational Autoencoder (VAE) is used jointly with a classifier.
The proposed model was evaluated to automatically recognize
individual Partial Discharge (PD) sources for hydro generators
monitoring.

Index Terms—Variational Autoencoder, data visualization, sys-
tem health management, diagnosis analysis.

I. INTRODUCTION

Deep Neural Networks (DNN) and Deep learning (DL)
represent, nowadays, the most effective machine learning tech-
nology in recent applications of Machine Health Monitoring
Systems (MHMS) and fault diagnosis [1], [2], [3], [4], [5]. The
quality of the training data is an important factor that affects
the performance of these DL architectures. In spite of their
superior discrimination power in many fields, the DNN often
lacks interpretability. Usually, it is very hard to understand why
the classifier makes a given decision, and in what situations
it is reliable [6]. The interpretability of a classifier for an
efficient diagnosis is especially important in machine health
monitoring systems. Therefore, most of the DNN classification
models are considered as black-boxes. The interpretability
of their internal processing mechanism through the hidden
layers is usually challenging. Indeed, the high-dimensional
space data transformation goes beyond the capacity of human
interpretation [7].

In this paper, a new PHM framework based on visual data
analysis and interpretation is presented (Fig 3). More reliable
interpretations and analysis of classifier performance can be
made by visualizing the 2D latent space of a VAE. This
work is the progression of the results previously published [8]
where the reader can find additional explanations. The paper
is organized in three main sections. First, some theoretical
backgrounds of the VAE are given. Then, the deep learning
PHM framework is presented. Finally, some practical results
obtained on hydro generators monitoring are detailed.
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Fig. 1. Schematic architecture of a variational deep autoencoder.
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Fig. 2. Data visualization by dimension reduction.

II. DEEP VARIATIONAL AUTOENCODER FOR DATA
VISUALIZATION

For the data visualization, the most suitable space dimension
for a human brain is the 2D-space. This necessarily involves
data dimension reduction from a high-dimensional to a low-
dimensional space. Classical methods from statistics such as
principal components analysis (PCA) [9] and t-SNE [10] has
been an important topic in visual analytics. More recently, the
deep variational autoencoders (VAE) have been successfully
used for feature dimension reduction [8], [11], [5].

A VAE is a special extension of the autoencoder (AE) which
is an unsupervised Neural Network (NN) trained to reproduce
the input vector x [12], [8]. The VAE is composed by two
separate multilayered NNs: an encoder and a decoder as illus-
trated in Fig. 1, parameterized by ¢ and 6, respectively. The
first NN encodes the input data x into a latent representation
z by the encoder function z = f,(x), whereas the second one
decodes this latent representation onto X = hy(z) which is a
reconstruction of the original data. In a VAE, an equal number
of units are used in the input/output layers while less units are
used in the latent space.
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Fig. 3. The PHM framework used by Hydro-Quebec for hydro generator diagnosis and prognosis.

VAE becomes a popular generative model by combining
Bayesian inference and the efficiency of the NNs to obtain
a nonlinear low-dimensional latent space [8]. The Bayesian
inference is obtained by an additional layer used for sampling
the latent vector z with a prior specified distribution p(z),
usually assumed to be a standard Gaussian A(0,I), where
I is the identity matrix. Each element z; of the latent layer
is obtained by z; = ju; + 0.6, where y; and o; are the i*"
components of the mean and standard deviation vectors, € is
a random variable following a standard Normal distribution
(e ~ N(0,1)). Unlike the AE which generates the latent vector
z, the VAE generates vector of means y; and standard devi-
ations o;. This a major advantage that gives more continuity
in the latent space than the original AE.

When the VAE is trained, each function (i.e., the encoder
and the decoder) can be used separately, either to reduce the
space dimension by encoding the input data, or to generate
synthetic samples by decoding new variables from the latent
space as seen in the 2D Data visualization in Fig. 2.

III. DEEP LEARNING PHM FRAMEWORK

Figure 3 shows the PHM framework used by Hydro-
Quebec for hydro generator diagnosis and prognosis. This
PHM framework is based on a main central function which is
the visual data analysis and interpretation. Seven main steps
are considered: 1. Data acquisition and pre-processing, 2. Input
vector definition, 3. Labelling step, 4. Outliers identification,
5. Diagnosis model training, 6. Assessing the extent of a
degradation, 7. Maintenance decision making. Some of these
functions are detailed below.

A. Hand-designed features definition

The features definition in the machine health monitoring
systems are categorized into conventional hand-crafted feature
design against deep learning end-to-end feature design. The
deep learning end-to-end structure enables the construction of
the MHMS framework with less expert knowledge [1], but
needs to have a significant amount of labeled data. The whole
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Fig. 4. The latent space obtained by a variational autoencoder [8]: A. deep
learning end-to-end feature design without expert knowledge, B. Conventional
hand-crafted feature design with expert knowledge.

model including the feature extraction and the classification
module are usually trained jointly. Conversely, the conven-
tional hand-crafted feature design requires a significant amount
of expertise from the practitioner, especially for complex
systems, but needs less labeled data. We have seen in our
previous study [8] that the more we put knowledge in the input
vector, the more the data space becomes discriminant, thus
making the classification easier. Separation between classes
is transformed from non-linear separability with high overlap-
ping clusters, as illustrated in Fig. 4.A, into a pseudo-linear one
with less overlapping clusters as seen in Fig. 4.B. This second
representation based on the conventional hand-crafted design
with expert knowledge reduces the ambiguities and conflict
areas between classes.

B. Labeling the training dataset

One of the main problems facing all industries is the massive
high dimensionality unlabeled data. To perform an intelligent
classification of such amount of data, experts must first label
several measurement files for the model training process. To do
this, experts faced two challenging problems: how to select the
most significant data for labeling? and what is the minimum
data size required to complete the training process that would
be sufficient to define each class?



One efficient way to help the PHM expert for selecting the
most suitable instances for the labeling step is to visualize
and analyze the spatial distribution of the available dataset.
Selecting two instances with too close similarities, i.e. two
close neighbor points in the 2D-space, is not very efficient for
generalization during the model training. It is more efficient to
select the training instances with a better spatial distribution, as
we can see in the example in figure 5. In this illustration, there
is more data in the first set comparing to the second one, but
the spatial distribution of the second set is more efficient for
the training process. Indeed, the area between the classes not
covered by the training points is thinner in the second case,
which gives less conflicting decisions for the classification.
It should be noted that most of the false positive and false
negative are located nearby or within the conflict areas (i.e.
the boundaries between the classes).
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Fig. 5. Basis illustration of two training datasets with two different spatial
distribution.

C. Outliers identification

For an efficient MHMS, it is essential to analyze the quality
of the training dataset in order to identify the outliers. These
incoherencies are usually due to several problems with data
acquisition, such as missing or bad attributes, where some
of the parameters may have been incorrectly collected [13].
The second reason that can cause outliers is the human factor.
Indeed, when labeling several measurement’s files, it is not
excluded that the expert may make errors of judgment for cer-
tain complex cases. In addition, contradictions between experts
are generally encountered nearby or within the conflict zone
[8]. These unusual data points are easy to identify in a low-
dimensional space, as illustrated in figure 6. The classifier’s
predictions may be less reliable nearby these outliers. For these
reasons, the identified outliers should be rejected from the
training dataset.

D. Model training for data visualization and fault detection

Figure 7 shows the proposed architecture used for the data
visualization and fault detection. Training of the whole model
is split in two successive steps:

o (@) an unsupervised training step which consists of train-
ing the VAE, i.e the encoder and the decoder, to capture
the input data features for data visualization,

« (b) followed by a supervised training step, which consists
of training the combined architecture, i.e. the encoder and
the classifier, for fault detection.
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Fig. 6. Identification of the Outliers and the conflict zone.
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Fig. 7. Architecture of the proposed model.

As the first unsupervised training step of the VAE does
not require annotated instances, all unlabeled dataset could
be used. For a better encoding of the original feature space
into a low-dimensional latent space by the encoder, it is
essential to have a database that is as representative as possible
of the system’s operating modes. For the second supervised
training step, labeled data are required. The advantage of the
proposed architecture is to consider the label information when
training the encoder. Thus, the obtained latent space is better
segmented with less overlapping between opposite clusters.
For the first unsupervised training step, the Kullback-Liebler
VAE loss function is used [8], while the categorical cross
entropy loss function is used for the second supervised training
step.

E. Assessing the extent of a degradation

In predictive maintenance, the system is continuously mon-
itored over time ¢ with multiple sensors. Considering that x(¢)
is the input feature vector and z(¢) is its corresponding latent
vector in the low- dimensional space. Except for a sudden
breakdown, a degradation is characterized by a gradual loss of
operating performances. Starting from an initial healthy state
x(t0), respectively z(t0), the system will pass through several
successive states x(t4), respectively z(¢7), before the transition
to an unhealthy state. This degradation phenomenon can be
viewed on the latent space where the boundaries between the
normal class and other unhealthy classes can be considered
as the failure threshold. The RUL is then predicted with



the temporal analysis of the degradation. Figure 8 shows an
illustration of assessing the extent of two degradations in the
latent space. The more the system degrades and becomes close
to the failure, the more the point z(¢4) gets closer to the border
with the unhealthy state.
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Fig. 8. Assessing the extent of a degradation for RUL prediction.

IV. REAL APPLICATION CASE STUDY
A. Hydrogenerator monitoring

Hydro generators are strategic assets for power utilities.
Their reliability and availability can lead to significant benefits.
For decades, monitoring and diagnosis of hydro generators
have been at the core of maintenance strategies. A significant
part of generator diagnosis relies on Partial Discharge (PD)
measurements, because the main cause of hydro generator
breakdown comes from failure of its high voltage stator,
which is a major component of hydro generators. A study
of all stator failure mechanisms reveals that more than 85
% of them involve the presence of PD activity [14]. PD are
minute sparks that occur within voids inside the high voltage
insulation or in the air around the insulating system. Each
PD event does not cause immediate failure, but it will slowly
erode the insulation system and will lead to breakdown in
years to decades [15], [16]. The impulses can be detected on-
line from sensors connected to hydro generators, which is a
major advantage, because diagnosis of upcoming problems
is possible while the machine is running and generating
power. Over the past 30 years, Hydro-Québec has gathered
an extensive PD database using two types of commercial
measurement instruments. One of the instruments used is a
2D Partial Discharge Analyzer (PDA), which displays the rate
of discharge pulses as a function of their amplitude. Up to
now, over 33 000 measurement files have been recorded yearly
by plant personnel. Differentiation between PD sources is not
straightforward and cannot only rely on simple quantification
rules. In the present work, a methodology to automatically
recognize individual PD sources from 2D PDA files was
implemented using deep learning techniques.

B. Visual Partial Discharge analysis

In hydro generator diagnosis, it is important to determine
if PD signal is coming from internal discharges (symmetry
between positive and negative PD pulses) or from slot PD or

corona at the junction of the stress grading coating (asymmet-
ric in favor of positive PD pulses occurring during the negative
voltage half-cycle).

In addition to the symmetry factor, an additional rule is used
to determine if gap type discharges are active or not. Such
activity is known to give a cluster of PD activity at higher
amplitude thus resulting in bumps on the 2D plot. It should
be pointed out that the bumps at higher amplitude sometimes
affect both polarities, but other times can be more prevalent
in one polarity. Thus, seven classes are defined according to
the distribution of the PD pulses:

e PD source 1 (C7): Negative Asymmetry, asymmetric in

favor of negative PD pulses

e PD source 2 (C2): Positive Asymmetry, asymmetric in

favor of positive PD pulses,

o PD source 3 (C3): Symmetry between positive and neg-

ative PD pulses,

o PD source 4 (C}): Negative Asymmetry with Gap,

e PD source 5 (C5): Positive Asymmetry with Gap,

o PD source 6 (Cg): Symmetry with Gap,

o PD source 7 (C7): Gap.

A small part of PD measurements has been visually selected
from the whole unlabeled PD database [8] and annotated by
the experts of Hydro-Québec. The whole unlabeled database
combined with the selected labeled PD measurements have
been used to train the proposed architecture. The labeled PD
measurements are illustrated in figure 9 in a 2D space given
by the output of the VAE’s latent layer. For some represen-
tative’s points of the 2D-latent space, the corresponding PD
representations are shown as a histogram of the discharge rate
(PD/s) according to 16 channels of amplitudes (mV) where
the positive PDs are in red and the negative PDs in yellow.
The shape of each PD activity is given by the red and the
yellow curve for respectively positive and negative PDs.

It is interesting to note that the latent space has been
judiciously segmented by the VAE into several areas according
to the shape of PD pulses distribution. Two main clusters are
completely disjointed: a cluster of PD without the presence
of Gap (classes Cy, C, C3 which corresponds to histograms
from #1 and #8) and a second cluster of PD where the Gap
type occurs (classes Cy, C5, Cg and C7 which corresponds to
histograms from #9 and #18). Within each cluster, asymme-
tries in favor of negative PD pulses are located on the right
side of the 2D space while the asymmetries in favor of positive
PD pulses are located on the left side. Symmetries between
positive and negative PD pulses are rather located in the middle
of each cluster. By taking the example of the two extreme
cases, i.e. histograms #1 and #8, where a great asymmetry
in favor of negative PD pulses for the first case and in favor of
the positive PD pulses for the second case. The closer we get
to the center, i.e. the green points, the more this asymmetry
disappears. The same behavior is obtained for asymmetry with
Gap (see histograms from #9 and #14).

When the model training has been successfully done, the
combined structure, i.e. encoder/classifier, was tested overall
the unlabeled database. Figure 10 shows the 2D distribution
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Fig. 9. Analyzing the training dataset through the 2D latent space.

of this database obtained by the encoder. The different colors
correspond to the classes obtained by the classifier. Viewing
the classification results on a 2D space is very comfortable for
a human’s brain. Each portion of this 2D space can be analyzed
by a PHM expert in order to evaluate the performances of
the given diagnosis. We focused on certain regions of this
space by giving the histograms of the discharge rates. We
can see that, depending on the position on the 2D latent
space, the histogram has a particular signature. This signature
is characteristic of its operating state. Degradation could be
detected based on different positions at different times for a
given hydro generator. Thus, by considering the 2D position
jointly with the classifier response, this model offers to the
PHM expert an efficient and a powerful tool for diagnosis and
for maintenance decision-making.

V. CONCLUSION

In this paper, the use of a VAE used jointly with a classi-
fier has been investigated for a new PHM framework. The
proposed model has been used to classify Hydro-Quebec’s
entire PD database in seven classes. This paper presents an
innovative approach to improve the interpretability of the
diagnosis for machine health monitoring systems. This is
achieved by utilizing the low dimension reduction of the VAE
trained jointly with a classifier. The results show that the
Deep Variational Autoencoder seems to be an efficient and
a promising tool for PHM frameworks.
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