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Abstract: We present a method to improve the reconstruction and generation performance of
a variational autoencoder (VAE) by injecting an adversarial learning. Instead of comparing the
reconstructed with the original data to calculate the reconstruction loss, we use a consistency principle
for deep features. The main contributions are threefold. Firstly, our approach perfectly combines the
two models, i.e., GAN and VAE, and thus improves the generation and reconstruction performance
of the VAE. Secondly, the VAE training is done in two steps, which allows to dissociate the constraints
used for the construction of the latent space on the one hand, and those used for the training of the
decoder. By using this two-step learning process, our method can be more widely used in applications
other than image processing. While training the encoder, the label information is integrated to
better structure the latent space in a supervised way. The third contribution is to use the trained
encoder for the consistency principle for deep features extracted from the hidden layers. We present
experimental results to show that our method gives better performance than the original VAE.
The results demonstrate that the adversarial constraints allow the decoder to generate images that
are more authentic and realistic than the conventional VAE.

Keywords: variational autoencoder; adversarial learning; deep feature consistent; data generation

1. Introduction

Deep generative models (DGMs) are part of the deep models family and are a powerful way to
learn any distribution of observed data through unsupervised learning. The DGMs are composed
mainly by variational autoencoders (VAEs) [1–4], and generative adversarial networks (GANs) [5].
The VAEs are mainly used to extract features from the input vector in an unsupervised way while
the GANs are used to generate synthetic samples through an adversarial learning by achieving an
equilibrium between a Generator and a Discriminator. The strength of VAE comes from an extra
layer used for sampling the latent vector z and an additional term in the loss function that makes the
generation of a more continuous latent space than standard autoencoders.

The VAEs have met with great success in recent years in several applicative areas including anomaly
detection [6–9], text classification [10], sentence generation [11], speech synthesis and recognition [12–14],
spatio-temporal solar irradiance forecasting [15] and in geoscience for data assimilation [2].
In other respects, the two major application areas of the VAEs are the biomedical and healthcare
recommendation [16–19], and industrial applications for nonlinear processes monitoring [1,3,4,20–25].

VAEs are very efficient for reconstructing input data through a continuous and an optimized
latent space. Indeed, one of the terms of the VAE loss function is the reconstruction term, which is
suitable for reconstructing the input data, but with less realism than GANs. For example, an image
reconstructed by a VAE is generally blurred and less realistic than the original one. However, the VAEs
are completely inefficient for generating new synthetic data from the latent space comparing to
the GANs. Upon an adversarial learning of the GANs, a discriminator is employed to evaluate the
probability that a sample created by the generator is real or false. Most of the applications of GANs are
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focused in the field of image processing such as biomedical images [26,27], but recently some papers
in the industrial field have been published, mainly focused on data generation to solve the problem of
the imbalanced training data [28–33]. Through continuous improvement of GAN, its performance has
been increasingly enhanced and several variants have recently been developed [34–51].

The weakness of GANs lies in their latent space, which is not structured similarly to VAEs
due to the lack of an encoder, which can further support the inverse mapping. With an additional
encoding function, GANs can explore and use a structured latent space to discover “concept vectors”
that represent high-level attributes [26]. To this purpose, some research has been recently developed,
such as [48,52–55].

In this paper, we propose a method to inject an adversarial learning into a VAE to improve its
reconstruction and generation performance. Instead of comparing the reconstructed data with the
original data to calculate the reconstruction loss, we use a consistency principle for deep features such
as style reconstruction loss (Gatys [56]). To do this, the training process of the VAE is divided into two
steps: training the encoder and then training the decoder. While training the encoder, we integrate
the label information to structure the latent space in a supervised way, in a manner similar to [53,55].
For the consistency principle for deep features, contrary to [56] and Hou [54] who used the pretrained
deep convolutional neural network VGGNet [57], we use the features extracted from the hidden
layers of the encoder. Thus, our method can be applied to areas other than image processing such
as industrial nonlinear monitoring or biomedical applications. We present experimental results to
show that our method gives better performance than the original VAE. In brief, our main contributions
are threefold.

• Our approach perfectly combines the two models, i.e., GAN and VAE, and thus improves the
generation and reconstruction performance of the VAE.

• The VAE training is done in two steps, which allows to dissociate the constraints used for the
construction of the latent space on the one hand, and those used for the training of the decoder.

• The encoder is used for the consistency principle for deep features extracted from the
hidden layers.

The rest of the paper is organized as follows. We first briefly review the generative models
in Section 2. After that, in Section 3, we describe the proposed method. Then, in Section 4, we present
experimental results, which show that the proposed method improves the performance of VAE. The last
section of the paper summarizes the conclusions.

2. Generative Networks and Adversarial Learning

2.1. Autoencoder and the Variational Form

Autoencoder (AE) represents one of the first generative models trained to recreate or reproduce the
input vector x [58–61]. The AE is composed by two main structures: an encoder and a decoder (Figure 1),
which are multilayered neural networks (NNs) parameterized by φ and θ, respectively. The first part
encodes the input data x into a latent representation z by the encoder function z = fφ(x), whereas
the second NN decodes this latent representation onto x̂ = hθ(z) which is an approximation or a
reconstruction of the original data. In an AE, an equal number of units are used in the input/output
layers while fewer units are used in the latent space (Figure 1).

The variational form of the AE (Figure 1) becomes a popular generative model by combining
the Bayesian inference and the efficiency of the NNs to obtain a nonlinear low-dimensional latent
space [1–4]. The Bayesian inference is obtained by an additional layer used for sampling the latent
vector z with a prior specified distribution p(z), usually assumed to be a standard Gaussian N (0, I),
where I is the identity matrix. Each element zi of the latent layer is obtained as follows:

zi = µi + σi.ε (1)
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where µi and σi are the ith components of the mean and standard deviation vectors, ε is a random
variable following a standard Normal distribution (ε ∼ N (0, 1)). Unlike the AE, which generates the
latent vector z, the VAE generates vector of means µi and standard deviations σi. This allows to have
more continuity in the latent space than the original AE. The VAE loss function given by Equation (2)
has two terms. The first term Lrec is the reconstruction loss function (Equation (3)), which allows to
minimize the difference between the input and output instances.

Encoder Decoder

Latent 
space

Encoder Decoder

Latent 
space

Autoencoder
Variational Autoencoder

Figure 1. Schematic architecture of a standard deep autoencoder and a variational deep autoencoder.
Both architectures have two parts: an encoder and a decoder.

Both the negative expected log-likelihood (e.g., the cross-entropy function) and the mean squared
error (MSE) can be used. When the sigmoid function is used in the output layer, the derivatives of
MSE and cross-entropy can have similar forms.

The second term Lkl (Equation (4)) corresponds to the Kullback–Liebler (Dkl) divergence loss term
that forces the generation of a latent vector with the specified Normal distribution [62,63]. The Dkl
divergence is a theoretical measure of proximity between two densities q(x) and p(x). It is asymmetric
(Dkl(q ‖ p) 6= Dkl(p ‖ q)) and nonnegative. It is minimized when q(x) = p(x) [64]. Thus, the Dkl
divergence term measures how close the conditional distribution density qφ(z | x) of the encoded latent
vectors is from the desired Normal distribution p(z). The value of Dkl is zero when two probability
distributions are the same, which forces the encoder of VAE qφ(z | x) to learn the latent variables that
follow a multivariate normal distribution over a k-dimensional latent space.

L = Lrec + Lkl (2)

Lrec = −Eqφ(z|x)[log pθ(x | z)] (3)

Lkl = Dkl(qφ(z | x) ‖ p(z)) (4)

2.2. Adversarial Learning

One of the major advantages of the Variational form compared to the classic version of the AE is
achieved using the Kullback–Liebler divergence loss term (Dkl), which ensures that the encoder will
organize the latent space with good properties for the generative process. Instead of encoding an input
as a single point, a Normal distribution is associated with encoding each input instance. This continuity
of latent space allows the decoder not only to be able to reproduce an input vector, but also to generate
new data from the latent space. However, the reconstruction loss function Lrec is not effective for data
generation compared to the adversarial learning technics [5]. The main idea of these methods is to
create an additional NN, called a discriminator Dis(x), that will learn to distinguish between the real
data and the data generated by the generator Gen(z).

The learning process then consists in successively training the generator to generate new data
and the discriminator to dissociate between real and generated data (Figure 2). The learning process
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converges when the generator reaches the point of luring the discriminator. The discriminator Dis(x)
is optimized by maximizing the probability of distinguishing between real and generated data while
the generator Gen(z) is trained simultaneously to minimize log(1− Dis(Gen(z))). Thus, the goal of
the whole adversarial training can be summarized as a two-player min-max game with the value
function V(Gen, Dis) [5]:

min
Gen

max
Dis

V(Gen, Dis) = Ex[Φx] +Ez[Ψz] (5)

where Φx = log(Dis(x)) and Ψz = log(1− Dis(Gen(z))). These techniques are much more efficient
than the reconstruction loss function Lrec for generating data from a data space, for example, the latent
space of VAE. Unlike the latent space of the VAE where the data are structured according to the
Kullback–Liebler divergence loss term that forces the generation of a latent vector with the specified
Normal distribution, the data space of the GAN is structured in a random way, making it less efficient
in managing the data to be generated.

Generator

Discriminator

noise

real 
data

Real / 
Generated 

Figure 2. Illustration of the generative adversarial network (GAN).

3. Proposed Method

3.1. Method Overview

The method proposed in this paper, which is presented in Figure 3, consists of separating the
learning of the VAE into two successive parts: the learning of the encoder Enc(x) followed by the
learning of the decoder Dec(z). This decoupling between encoder and decoder during the learning
phase allows a better structuration of the latent encoder space to focus in a second step on the
optimization of the decoder.

In order to structure the latent space taking into account the label information, a classifier Class(z)
is trained at the same time as the encoder Enc(x). Two optimization functions are then used during the
first phase: the Kullback–Liebler divergence loss function Lkl and the categorical cross-entropy Lcat.

At the convergence of the first phase, the two models thus obtained, i.e., the encoder Enc(x) and
the classifier Class(z), will be used to train the decoder Dec(z). Three optimization functions are then
used for this second step:

• A reconstruction loss function (Lrec)
• An adversarial loss function (Ladv)
• A latent space loss function (Llatent)
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As previously used by Hou [54], instead of comparing the reconstructed data X̂ with the original
one X to calculate the reconstruction loss, we compare some features extracted from the encoder as a
style reconstruction loss (Gatys [56]). A feature reconstruction loss function is then used instead of
a data reconstruction loss function. To calculate these features, we use the encoder thus obtained by
the first learning phase instead of using a pretrained deep convolutional neural network such as the
VGGNet network [57] used by Gatys [56] and Hou [54].

In order to facilitate the convergence of the decoder, two further optimization terms are
included in the whole loss function: an adversarial loss function Ladv obtained with the help
of a discriminator Dis(x), trained at the same time as the decoder Dec(z), and a latent space
loss function Llatent. This supplementary term will compare the original latent space Z with the
reconstructed one Ẑ thanks to the classifier Class(z) obtained during the first learning phase.

Encoder Decoder Encoder

Classifier

Feature reconstruction loss 

Latent 
space

labeled dataset

Encoder Classifier

SoftMax Layer

true label

p
r
e
d
i
c
t
e
d
 
l
a
b
e
l

Discriminator

A. First step: training the 
Variational Encoder Classifier

B. Second step: training the 
Decoder

Figure 3. The framework of the proposed method.
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3.2. First Step: Training the Variational Encoder Classifier

In this first step, the encoder and classifier are stacked together in order to form the Variational
Encoder Classifier (VEC). The whole structure is trained at the same time using the following loss
function LVEC:

LVEC = Lkl + Lcat (6)

where Lkl corresponds to the Kullback–Liebler (Dkl) divergence loss term given by Equation (4),
while the second termLcat represents the categorical cross-entropy obtained by the following expression:

Lcat = −Ez[y× log(Class(z))] (7)

where y is the target label and E[.] is the statistical expectation operator. Algorithm 1 presents the
complete procedural steps of this first learning phase.

Algorithm 1 Training the VEC Model
Input: Labeled dataset
Result: Trained Variational Encoder, Trained Classifier
Initialization: WVEC ← Initialize parameters
repeat

X← random mini-batch images from the dataset
Z← Enc(X)
Y← One-hot encoded true label of X
Ŷ← Class(Z)
Lkl ← Dkl(qφ(Z | X) ‖ p(Z))
Lcat ←−EZ[Y× log(Ŷ)]
//Update the Variational Encoder Classifier parameters
WVEC ←−∇WVEC (Lkl + Lcat)

until Convergence of parameters;

3.3. Second Step: Training the Decoder

The encoder as well as the classifier obtained from the previous phase will therefore be frozen
and used to train the decoder. The global optimization function is given by the following expression
where β and γ are fitting parameters:

LDec = Lrec + βLadv + γLlatent (8)

The first term Lrec allows the decoder to enhance its input reconstruction properties, while the
second term Ladv allows it to increase its ability to generate artificial data from latent space. These two
terms will be put in competition and it will be necessary to find the best compromise thanks to the
fitting parameters. A third term Llatent will ensure that the virtual data generation is done respecting
the distribution of classes in the latent space. The whole training process of the decoder is presented
by Algorithm 2.
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Algorithm 2 Training the Decoder Model
Input: Labeled dataset
Require: Pretrained Encoder, Classifier
Result: Trained Decoder
Initialization: WDec ← Initialize parameters
repeat

//1. Train the Discriminator

for i = 1 to ndis do
Xreal ← random mini-batch of real images
Greal = 1← set the label of the real images
Ĝ← Dis(Xreal)
Ldis ← E[(Greal − Ĝ)2]
//Update the parameters on real data
Wdis ←−∇Wdis(Ldis)
Xreal ← random mini-batch of real images
Z← Enc(Xreal)
Xgen ← Dec(Z) generated images
Ggen = −1← set the label of the generated images
Ĝ← Dis(Xgen)
Ldis ← E[(Ggen − Ĝ)2]
//Update the parameters on fake data
Wdis ←−∇Wdis(Ldis)

end

//2. Train the Decoder

X← random mini-batch of real images
Z← Enc(X)
X̂← Dec(Z)
Ẑ← Enc(X̂)

for i = 1 to 3 do
Fi ← ∅i(X)
F̂i ← ∅i(X̂)
Li ← E[‖ Fi − F̂i ‖2]

end
Lrec ← ∑ αi × Li

Ladv ← E[
(

Dis(X)− Dis(X̂)
)2
]

Llatent ← E[‖ Class(Z)− Class(Ẑ) ‖2]
//Update the Decoder parameters
WDec ←−∇WDec(Lrec + βLadv + γLlatent)

until Convergence of parameters;

3.3.1. Feature Reconstruction Loss

For the reconstruction optimization function, we adopt the method proposed by Gatys [56],
which consists of extracting the style of an image from the first hidden layers of a pre-trained network.
It is also the same principle used by Lin [65] as Feature Pyramid Networks for Object Detection.
Thus, instead of calculating the reconstruction error between the input X and the output X̂ of the
decoder, the reconstruction error is calculated from the features of the image. As an alternative to a
generic pre-trained network, such as the VGGNet network [57] used by [56] and Hou [54], we will
exploit the features extracted from the previously trained encoder. The advantage of our method is to
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adapt the extracted features to the type of application being studied, which may be outside the scope
of the images learned by the VGGNet network. Thus, our approach can be applied to biomedical
images such as histopathological images [27,66] or vibration signals from a mechatronic system for
industrial monitoring [20].

As shown in Figure 4, the first three layers of the encoder will be used to extract features from the
input image X. The characteristics Fi of X will then be compared to the characteristics F̂i of the output
X̂ generated by the decoder. The optimization function is then given by the following expression:

Lrec = ∑
i

αi × E[‖ Fi − F̂i ‖2] (9)

where Fi = ∅i(X) and F̂i = ∅i(X̂) are respectevely the features of X and X̂ extracted from the layer i
and αi is a fitting parameter.

1

2

3

Input image

Figure 4. Deep feature consistent.

3.3.2. Adversarial Loss

In addition to the reconstruction function, a second term Ladv allows the decoder to reconstitute
the input data more realistically. A discriminator trained with the adversarial learning techniques
presented in the previous section will feed a cost function that will penalize the decoder if the
reconstructed image is not authentic. As in the works of [47], the output of the discriminator is linear
with +1 label for real images and -1 for artificial images. However, to enhance the data generation effect,
larger output values are possible, such as the ±10 output used by [54]. For this purpose, we prefer to
adjust this generation effect with a fitting variable β (Equation (8)). The update of the discriminator
is done before each decoder training cycle. In order to increase this adversarial learning, we use
the Wasserstein GAN method [47], which consists of increasing the number of learning cycles of
the discriminator with respect to the generator. Algorithm 2 presents the detail of the discriminator
training where the variable ndis defines the number of training cycles of the discriminator.

The optimization function Ladv is then given by the following expression:

Ladv = E[
(

Dis(X)− Dis(X̂)
)2
] (10)

3.3.3. Latent Loss

A last term Llatent prevents the generation effect from being stronger than the reconstitution effect.
The classifier obtained in the previous learning phase will make sure that the latent space Ẑ obtained
by the generated data has the same distribution as the original latent space Z. The label information of
the input data is thus integrated in the reconstitution/generation process. The output of the classifier
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will penalize the decoder if the generated data does not belong to the same class as the original data.
The expression of Llatent is defined by:

Llatent = E[‖ Class(Z)− Class(Ẑ) ‖2] (11)

4. Experiments

4.1. Dataset Description

We experimented with our method on four databases: The MNIST [67], The Omniglot dataset [68],
The Caltech 101 Silhouettes dataset [69] and Fashion-MNIST [70], which are briefly described below.
Figure 5 illustrates some of the images taken randomly from the four databases.

• The MNIST [67] is a standard database that contains 28× 28 images of ten handwritten digits
(0 to 9) and is split into 60,000 samples for training and 10,000 for the test.

• The Omniglot dataset [68] contains 28× 28 images of handwritten characters from many world
alphabets representing 50 classes, which is split into 24,345 training and 8070 test images.

• The Caltech 101 Silhouettes dataset [69] is composed of 28 × 28 images representing object
silhouettes of 101 classes and is split into 6364 samples for training and 2307 for the test.

• Fashion-MNIST [70] contains 28× 28 images of fashion products from 10 categories and is split in
60,000 samples for training and 10,000 for the test.

(a) (b)

(c) (d)

Figure 5. Random example images from the dataset; (a) MNIST, (b) Omniglot, (c) Caltech 101 Silhouettes,
(d) Fashion MNIST.

4.2. Neural Network Architecture

As shown in Figure 6, both the encoder and decoder are deep residual convolutional neural
networks. The encoder is composed of 6 convolutional layers with 3× 3 kernel and 1× 1 stride.
To achieve spatial downsampling we used 2 maxpooling layers with 2× 2 kernel and 2× 2 stride.
Each convolutional layer is followed by a residual block and a LeakyReLU activation layer. We used
the same residual block as used by [54]. At the end of the encoder, three fully connected layers with
a LeakyReLU activation are followed by two linear fully connected layers for mean and variance.
The output of the encoder is given by the sampling layer.
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Encoder

Conv 64x3x3, stride 1, pading same, LeakyRelu 

Residual Block

Maxpooling (2x2), stride 2

Conv 128x3x3, stride 1, pading same, LeakyRelu 

Maxpooling (2x2), stride 2

Conv 256x3x3, stride 1, pading same, LeakyRelu 

Conv 128x3x3, stride 1, pading same, LeakyRelu 

Fully Connected (FC) Layer, 1024, LeakyRelu

FC, Kz, Linear FC, Kz, Linear

sampling layer

Layer

Residual Block

Residual Block

Residual Block

Conv 64x3x3, stride 1, pading same, LeakyRelu 

Conv 32x3x3, stride 1, pading same, LeakyRelu 

Residual Block
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Fully Connected (FC) Layer, 512, LeakyRelu

Fully Connected (FC) Layer, 256, LeakyRelu
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64 x 28 x 28

64 x 28 x 28

64 x 14 x 14

128 x 14 x 14

128 x 14 x 14

128 x 7 x 7

256 x 7 x 7

256 x 7 x 7

128 x 7 x 7

128 x 7 x 7

64 x 7 x 7

64 x 7 x 7

32 x 7 x 7

32 x 7 x 7

1024

512

256

Decoder

Output Size

64 x 28 x 28

64 x 28 x 28

256 x 14 x 14

128 x 14 x 14

128 x 14 x 14

128 x 28 x 28

32 x 7 x 7

32 x 7 x 7

64 x 7 x 7

64 x 7 x 7

128 x 7 x 7

128 x 7 x 7

256 x 7 x 7

256 x 7 x 7

32 x 7 x 7

512

256

2

1 x 28 x 28

Upsampling (2x2)

Conv 32x3x3, stride 1, BN, pading same, LeakyRelu 

FC 256, BN, LeakyRelu

sampling layer

FC 1568, BN, LeakyRelu

Conv 128x3x3, stride 1, BN, pading same, LeakyRelu 

Conv 1x3x3, stride 1, pading same, Sigmoid 

FC 512, BN, LeakyRelu

Residual Block

Conv 64x3x3, stride 1, BN, pading same, LeakyRelu 

Residual Block

Conv 128x3x3, stride 1, BN, pading same, LeakyRelu 

Residual Block

Conv 256x3x3, stride 1, BN, pading same, LeakyRelu 

Residual Block

Residual Block

Upsampling (2x2)

Conv 64x3x3, stride 1, BN, pading same, LeakyRelu 

Residual Block

Layer

Conv 64x3x3, stride 1, pading same, LeakyRelu 

input image

MaxPooling(2x2), stride 2

Conv 128x3x3, stride 1, pading same, LeakyRelu 

MaxPooling(2x2), stride 2

Conv 256x3x3, stride 1, pading same, LeakyRelu 

FC 256, LeakyRelu

FC 512, LeakyRelu

FC 1024, LeakyRelu

FC 2048, LeakyRelu

FC 1, Linear

Discriminator

FC 200, BN, LeakyRelu

sampling layer

Residual Block

FC 400, BN, LeakyRelu

FC 800, BN, LeakyRelu

Softmax

Classifier

Residual Block

Residual Block

Figure 6. The architecture of the encoder, decoder, discriminator and the classifier.

For the decoder, we almost used the inverse encoder structure. The input of the decoder
is the sampling layer followed by three fully connected layers with batch normalization and a
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LeakyReLU activation. Seven convolutional layers with 3× 3 kernel and 1× 1 stride followed by batch
normalization, a LeakyReLU activation and residual block and 2 upsampling layers.

For the discriminator, we used 3 convolutional layers with 3 × 3 kernel and 1 × 1 stride
LeakyReLU activation, 2 maxpooling layers with 2× 2 kernel and 2× 2 stride and 4 fully connected
layers with a LeakyReLU activation. Lastly, the output of the discriminator was formed by one
linear unit.

The classifier was formed by 3 fully connected layers with batch normalization and a LeakyReLU
activation. Each fully connected layer is followed by a residual block. The output of the classifier was
obtained by a softmax layer.

4.3. Experimental Focus

4.3.1. Impact of the Dimension Size of the Latent Space

It is obvious that the dimension of the latent space plays an active influence on the quality of
reconstruction and data generation. The quality of VAE decoding is highly dependent on the Kz size of
the latent space. We then compared two configurations: a two-dimensional latent space (Kz = 2) with
a (Kz = 100) dimensional space.

4.3.2. Impact of Weighting Parameters β and γ

We also investigated the impact of the β and γ weighting parameters of Equation (8). We set
the parameters αi of the feature reconstruction loss (Equation (3)) to 1, 0.1 and 0.01 for i = 1, 2 and 3,
respectively. To judge the influence of each parameter of adversarial loss β and latent loss γ, we have
varied the β parameter in an increasing way according to two configurations of γ:γ = 0 and γ = 0.1.

4.4. Results and Discussion

4.4.1. Supervised 2D-Latent Space

In order to visually analyze the latent space obtained by the encoder-classifier, we set the
dimension of this space to 2 (Kz = 2). The interest of such a space is to be able to make a projection
of the initial input data space to a space visually accessible to the human brain. We can thus visually
analyze the quality of the encoder. Figure 7 shows the 2D latent space obtained for the four databases.
We can then see the distribution of data in the latent space as well as the interaction between the
different classes. We can thus analyze the overlaps between the classes. One can then choose the area
of this latent space in order to generate artificial data. Figure 8 shows examples of images generated
from the latent space for Mnist and Fashion Mnist, respectively. It is interesting to note that even in a
space of reduced size, the data are organized according to a logic of likelihood between classes. This is
very well illustrated by the latent space of Fashion Mnist where we can see that the three classes #5, 7,
and 9, which represent the shoes, are grouped together. The handbag cluster is also isolated from the
rest of the clusters.

4.4.2. Image Reconstruction and Generation

Figure 9 gives all the results obtained for the four databases with different values of β and
γ for each of the two latent spaces (Kz = 2 and Kz = 100). For every database, we randomly
generated 40 images as inputs of the VAE. The resulting output image is given according to the
experimental parameters.

A. Impact of the latent space: The first observation that can be extracted from these tests concerns
the influence of the latent space size on the quality of the reconstructed image. We can see that for the
two databases Mnist and Fashion-MNIST, the results achieved on the two-dimensional latent space
are almost as good as for Kz = 100. Nevertheless the quality of the reconstruction alone, obtained by
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setting the adversary parameter β = 0, is better for Kz = 100: the images are less blurred and close to
the input image than on the 2D latent space.

On the other hand, the image reconstruction performance obtained on the 2D space is less
convincing for the Caltech database. Indeed, we can see that the reconstructed images are very
blurred but for the most part close to the original image. Note that the reconstruction was completely
impossible for the Omniglot database in 2D space. The only result in this space was obtained by
forcing the weight of the adversary loss β to 0.5, which allowed to generate new world alphabets.

Figure 7. The 2D latent space obtained for the four databases; (a) MNIST, (b) Omniglot, (c) Caltech
101 Silhouettes, (d) Fashion MNIST.
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Figure 8. Images generated from the latent space for the (a) Mnist and (b) the Fashion Mnist.

Figure 9. The results obtained for the four databases with different values of β and γ for each of
the two latent spaces (Kz = 2 and Kz = 100); (a) MNIST, (b) Omniglot, (c) Caltech 101 Silhouettes,
(d) Fashion MNIST.

B. Impact of the parameter β: In order to measure the effect of adversarial loss term Ladv on
the feature reconstruction loss term Lrec, we varied the adversarial β parameter during each test
sequence in a progressive way. This test allows to evaluate how the data generation effect can affect
the reconstruction effect. Generally speaking, we obtain three steps, which are described as follows:

• β < ε1 =⇒ dominant reconstruction effect with blurred images.
• ε1 ≤ β ≤ ε2 =⇒ reconstruction effect with clearer and more realistic images.
• β > ε2 =⇒ generative effect is dominant.
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with ε1 and ε2 are two thresholds to define. This is clearly illustrated by the MNIST database. Let us
take the case of Kz = 2:

• Up to β = 0.003, the reconstruction effect is dominant with blurred images.
• For 0.005 ≤ β ≤ 0.01 the images are clearer and more realistic.
• The generative effect becomes dominant for β = 0.1 where most of the resulting images do not

match the original ones. These cases are highlighted in red.

C. Impact of the parameter γ: In order to avoid the generative effect from becoming stronger
than the reconstruction one and thus to limit the dominant effect of adversarial loss term Ladv,
we have varied the β parameter in an increasing way, under two different configurations of γ (γ = 0
and γ = 0.1). This measures the effect of the latent loss term Llatent. We can see that it had the
expected effect. The red-framed images have been corrected and are now compatible with the original
images again. These corrected images are framed in green.

4.5. Test on Cifar 10

To conclude this experimental part, we did a final test on the reconstruction of images taken from
the Cifar10 database [71]. The size of the latent space is fixed at Kz = 100, with the parameters αi = 1,
β = 0.001 and γ = 0. Figure 10 shows several pairs of random images with their reconstructed output.

Figure 10. Several pairs of random images with their reconstructed output of the CIFAR10.
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5. Conclusions

In this article, we propose a new technique for the training of the varitional autoencoder by
incorporating several efficient constraints. Particularly, we use the principle of consistency of deep
characteristics to allow the output of the decoder to have a better reconstruction quality. The adversarial
constraints allow the decoder to generate data with better authenticity and more realism than the
conventional VAE. Finally, by using a two-step learning process, our method can be more widely used
in applications other than image processing.
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