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Social networks (SN) are omnipresent in our lives today. Not all users have the same behaviour on these networks. If some have a low activity, rarely posting messages and following few users, some others at the other extreme have a signicant activity, with many followers and regularly posts. The important role of these popular SN users makes them the target of many applications for example for content monitoring or advertising. It is therefore relevant to be able to predict as soon as possible which SN users will become popular.

In this work, we propose a technique for early detection of such users based on the identication of characteristic patterns. We present an index, 2 ", which allows a scaling up of our approach to large social networks. We also describe our rst experiments that conrm the validity of our approach.

INTRODUCTION

Online social networks have become nowadays an essential means for communication, entertainment and marketing. Platforms like YouTube, Facebook, Twitter and Instagram gather hundreds of millions of users every day. While they have their own specics and propose dierent content and interactions ways, these platforms share some common characteristics: rst, their large number of users and the phenomenal amount of data (texts, pictures, videos, etc) produced daily; second, their network structure, with users connected to other users to share content; third, their high dynamicity with new users joining the platforms, others leaving, and connections between users which are continuously created or deleted.

These dierent characteristics make these platforms a tool particularly used to communicate information to a large number of people. In these networks, the most popular and inuential users have quickly been the center of attention for many applications, since they will accelerate the spread of information to the greatest number of users [START_REF] Cao | Popularity Prediction on Social Platforms with Coupled Graph Neural Networks[END_REF]. For instance, for online advertising campaigns on social networks or on the Web, advertisers seek to place their advertisements among the users who have the most visibility in order to reach a maximum of people [START_REF] Abbassi | Optimizing Display Advertising in Online Social Networks[END_REF][START_REF] Aslay | Viral Marketing Meets Social Advertising: Ad Allocation with Minimum Regret[END_REF][START_REF] Dupuis | RTIM: A Real-Time Inuence Maximization Strategy[END_REF]. Likewise, for marketing purposes, highly followed users, called inuencers, are paid to test and promote dierent products. In another area, popular users allow messages to be transmitted to a large audience for which social networks are the main media of information. These are the users who can quickly spread fake news or on the contrary bring a denial [START_REF] Buntain | Automatically Identifying Fake News in Popular Twitter Threads[END_REF][START_REF] Zhao | Fake News Propagates Dierently from Real News even at Early Stages of spreading[END_REF]. Checking the content they publish is therefore particularly important. In the area of security, monitoring the content posted by some popular users who use social media for propaganda and / or indoctrination is also essential.

The various existing works oer techniques for detecting users who are already popular or inuential in social networks. However, the various examples of applications presented above show that it is important to be able to identify the appearance of popular users on social networks as soon as possible. This article is, to our knowledge, the rst to try to identify users who are on the way to more or less near future, to become popular. By detecting recurring patterns in the evolution of the popularity of accounts becoming popular, we manage with good precision to detect users several weeks before they become really popular. In addition, the index structure that we oer makes it possible to scale up to hundreds of millions of users and therefore allow our solution to be deployed for real social media platforms. Our experiences with real Twitter datasets validate our approach.

In summary, the contributions of our article are as follows:

(1) a characterization of the evolution of popularity for dierent classes of users (popular, non-popular, becoming popular); (2) a pattern-based approach for early detection of popular users; (3) an indexing structure for an ecient pattern-matching which scales to hundreds of millions of users to an early detection of future popular users; (4) a validation on a large real Twitter dataset.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3 describes the data model for popularity evolution. An analysis of a real Twitter dataset and the patterns we extracted for dierent classes of users is presented in Section 4. We introduce our pattern-based approach along with its indexing structure for an early detection of users becoming popular in Section 5. Section 6 gathers some of the experiments we perform to validate our approach. We conclude the paper and introduce some future work in Section 7.

RELATED WORK

Most of the recent work trying to estimate the popularity of accounts in social networks have focused on inuence spreading ( [START_REF] Kempe | Maximizing the Spread of Inuence through a Social Network[END_REF], [START_REF] Li | CINEMA: conformity-aware greedy algorithm for inuence maximization in online social networks[END_REF], [START_REF] Li | CASINO: Towards Conformity-aware Social Inuence Analysis in Online Social Networks[END_REF], [START_REF] Lagree | Eective Large-Scale Online Inuence Maximization[END_REF]) as a measure for popularity. Basically these works observe how many users along with their distance (number of intermediate users between the user who produces the news and the one who receives them) will receive an item produced by a user. They rely consequently on the topology and on the eventuality (based on his homophily, his topics of interests, his activity, etc) for a user to propagate this item. Some works try not only to study the propagation but also to capture and to estimate the ability of some users to trigger actions or change an opinion in the network, generally their direct neighborhood. Dierent inuence studies propose to score users ( [START_REF]Klout score: Measuring inuence across multiple social networks[END_REF], [START_REF] Weng | TwitterRank: nding topicsensitive inuential twitterers[END_REF], [START_REF] Yamaguchi | TURank: Twitter User Ranking Based on User-Tweet Graph Analysis[END_REF]) to rank them and to highlight principal node of a social network.

Users popularity analysis in social media, especially in social networks, has taken importance in the last decade because they appear to be a rather precise way to estimate the opinion of a pool of users. For instance, during American elections, online social media have been used by politician to spread their program [START_REF] Karami | Political Popularity Analysis in Social Media[END_REF]. Dierent analyses of the social networks try to determine the most popular candidate and to predict the elections results [START_REF] Gaurav | Leveraging candidate popularity on twitter to predict election outcome[END_REF], [START_REF] Hong | Which candidates do the public discuss online in an election campaign?: The use of social media by 2012 presidential candidates and its impact on candidate salience[END_REF]. Similarly, social media analyses try to predict future popular content [START_REF] Szabo | Predicting the popularity of online content[END_REF], like hot news [START_REF] Bandari | The pulse of news in social media: Forecasting popularity[END_REF] and try to understand hidden mechanisms. Multiple studies try to nd how information are spread on Twitter, with probabilistic model [START_REF] Tauhid R Zaman | Predicting information spreading in twitter[END_REF] and others study the retweet action from Twitter [START_REF] Hong | Predicting Popular Messages in Twitter[END_REF] as an indicator of users popularity. In [START_REF] Petrovic | Rt to Win! Predicting Message Propagation in Twitter[END_REF], the authors explain that retweet is time-sensitive. The main diculty for these approaches is that they assume we have a knowledge of the content published or liked by any user, and also enough information to estimate their opinion or interests which is most of the time either very costly or impossible to get in real social network systems, except for the platform owners.

A solution for popular user detection and prediction, that we adopt in this work, is to identify features which characterize popular users, based on a large sample of users, and to perform machine learning techniques to identify other popular users on the global dataset and/or to perform predictions to early detect their apparition. We propose in this paper to extract patterns which characterize a class of popularity for users. Patterns mining is a popular method to nd frequent occurring patterns. Patterns mining is divided in two majors models: item-set mining and string-mining. Itemset mining focuses on detecting frequent item-set and is mostly used in database mining. The two most popular algorithms for item-set mining are APRIORI [START_REF] Srikant | Fast algorithms for mining association rules and sequential patterns[END_REF] and FPGrowth [START_REF] Han | Mining frequent patterns without candidate generation[END_REF]. APRIORI extracts all item-sets of a specic length respecting a minimum support, and then scans transactions at each iteration that makes this algorithm rather slow. FPGrowth is an improved APRIORI algorithm which relies on a Tree (FP Tree) to mine frequent item-set and which only needs to scan database twice. Item-set mining is also used for association rules mining [START_REF] Rakesh Agrawal | Mining association rules between sets of items in large databases[END_REF], i.e. the extraction of correlation between items. String-mining is a distinct pattern mining technique, which consists in detecting frequents patterns in alphanumerical sequence generally very long. This technique is mainly use in bioinformatics [START_REF] Abouelhoda | String mining in bioinformatics[END_REF] to analyze DNA/RNA and to detect or to extract proteins from nucleotide sequences. String mining is mostly represented by three algorithms: SPADE [START_REF] Mohammed | Spade: An ecient algorithm for mining frequent sequences[END_REF] which is a vertical sequential patterns mining, FreeSpan [START_REF] Han | Freespan: frequent pattern-projected sequential pattern mining[END_REF] which partitions the search space and projects sequences and PrexSpan [START_REF] Han | Prexspan: Mining sequential patterns eciently by prex-projected pattern growth[END_REF] that is based on FreeSpan but avoids to check every possible combination.

THE DATA MODEL

We introduce in this section our notations and our data model. We consider the Twitter platform and its underlying directed graph (U, F ) where U denotes the set of nodes, i.e. users, and F ✓ U⇥U is the set of edge, such as (D 1 , D 2 ) 2 F means user D 2 follows user D 1 .

Account popularity

Remind that our objective is to perform early detection of (future) popular users. Assuming the existence of the function >;;>F : U ⇥ [0,) ] ! N which returns the number of followers for an account D 2 U at the instant C 2 [0,) ], we adopt in this paper the following denition of popularity:

D 1.
[Popularity] The popularity of an account corresponds to its visibility, that means how many persons can read, comment, propagate a message that this account produces. It is here simply estimated by the number of followers >;;>F (D, C) an account D possesses at the instant C.

With respect to this denition we propose the following account classication:

• Non-popular accounts: this class regroups users that are never popular all along the observation period [0,) ]. So, assuming an unpopularity threshold i, these accounts verify that: 

D 2 U, 8C 2 

Popularity evolution

We assume that the platform periodically updates its statistics for each user. The period between two updates is constant and is considered in the following as our indivisible time unit. So at each time instant C 2 [0,) ], we report for each account D the number of followers. To estimate the popularity evolution, we compute the gain in number of followers between two time instants. To reduce the impact of the size of the accounts, we propose to use the log function on the gain since a gain of 10k followers should be considered as a gain of the same order as a gain of 20k followers when the user has a popular account. Due to the domain denition of the log function we use the following denition for the 608= function.

D 2. [Popularity gain] Consider an instant C 2 [0,) 1 
], the popularity gain for a user D 2 U is:

608=(D, C) = 8 > > > > > > < > > > > > > : log( >;;>F (D, C) >;;>F (D, C 1)) 8 5 >;;>F (D, C) > >;;>F (D, C 1) + 1 0 8 5 | >;;>F (D, C) >;;>F (D, C 1)|  1 log( >;;>F (D, C 1) >;;>F (D, C)) 8 5 >;;>F (D, C 1) > >;;>F (D, C) + 1
Consequently, the popularity evolution for an account over a given period [0,) ] corresponds to a time series made up of the popularity gain for each time unit. We formally adapt the following denition for the popularity evolution. We denote with ⇧ the set of the popularity evolution for all users from U.

This raw time series is interesting to extract some statistics about the given dataset but is not suitable to compare users in order to cluster them and to detect classes of users with some specic behaviors, or oppositely to identify users who have a divergent behavior. In order to achieve these goals, a traditional approach (see for instance the SAX approach [START_REF] Imran | Using SAX representation for human action recognition[END_REF][START_REF] Lin | Experiencing SAX: a novel symbolic representation of time series[END_REF]) consists in encoding the time series using a limited set of symbols.

So we assume the existence of an alphabet of symbols ⌦ for the encoding and of a mapping function <0??8=6 : R ! ⌦. Dening the size of the alphabet and the mapping function is a dicult task which must highly rely on the properties of the studied dataset. The size of the alphabet used for the encoding sets a level of renement for the encoded sequence. Indeed, a large alphabet will provide more precision about the popularity evolution, but it reduces the number of similarities between sequences detected. Oppositely, a small alphabet will lead to the extraction of numerous similar subsequences between the dierent sequences, while they correspond in reality to an evolution relatively dierent. Similarly the mapping function will highly impact the similarity detection between sequences. When too many dierent gain values are mapped to the same symbols, while other symbols correspond to very few gains, it results in an issue similar to the use of a small alphabet: similar subsequences that are detected may correspond to very dierent behaviors. So the choice of the alphabet and the mapping function has an important impact on the results. We do not investigate further this problem, but we take it into consideration when proposing our alphabet and mapping function in our analysis and experimental sections.

Based on this representation, we want to study whether some subsequences, we will call ?0CC4A=B in the following, are characteristic of a popularity class. If such subsequences exist, we expect them to allow us to perform early detection of emerging popular accounts.

Assume a 2>=C08=B function, 2>=C08=B : 2 ⌦ ⇥ S ! N , with 2 ⌦ denoting the powerset of ⌦, where 2>=C08=B (G, ~) returns 1 the sequence ~contains the word G, and 0 otherwise. Then we adopt the following denition for a popularity pattern. The relevance threshold allows to set a minimal support for a pattern. In other words, we only keep patterns which are signicant because they are enough present in several sequences.

We denote S ⇧ the set of all the popularity patterns for a popularity evolution set ⇧. The sets of exclusive popularity patterns for the restrictions to the popular, unpopular and becoming popular evolution sets are denoted S ⇧ + , S ⇧ and S ⇧ ⇤ respectively. By exclusive we mean the popularity patterns which are present only in the considered class of users.

POPULARITY ANALYSIS

This section aimed at analyzing a real Twitter dataset to check the existence of such characteristic evolution patterns in our three classes of users. We rst introduce our dataset along with its main features, then we extract the popularity patterns for each class and we analyze these dierent sets of patterns.

Presentation of our dataset

To build our dataset we use the Twitter API Stream that allows us to collect 1% of all tweets published on the platform. For our dataset, we only collect users metadata and we select users that had a sucient activity, i.e. at least 3 tweets, during our observation period of 36 weeks. We obtain a dataset consisting of around 32.9M users along with 150M tweets.

Then we set the two thresholds i and Y necessary to determine our three groups of users according to their popularity. Based on the follower distribution of our dataset depicted in Figure 1, we decide arbitrarily that an account with less than i = 400 followers is considered as unpopular, while an account with more than Y = 2, 000 is identied as a popular account. Thus, the class of becoming popular accounts corresponds to the accounts which have less than 400 followers at the beginning of our observation period and more than 2, 000 at the end. We report in Table 1 the size of each class of accounts in our dataset that we will investigate in the following. As expected, most accounts belong to the non-popular class and present a low activity with 3-4 tweets generally on the period of observation. The 2.1 million popular accounts have a more important activity, but there is an important discrepency between accounts as it is enlightened by a high standard deviation. In fact, this class is quite heterogeneous with for instance news agency or brand accounts with an important activity, and popular personalities (actors, singers, etc) with many followers but few tweets. Accounts that are not popular at the beginning of the observation period but then become popular are not as numerous, but they have a higher activity. This can somehow explain that they become popular on a specic topic because they publish more on this topic what attracts followers. Table 2 shows the number of followers for each class of users. In our dataset the average number of followers is 1,428, which is more than the last published estimation 1 due to our 3-week threshold for the user activity which discards accounts with few followers and extremely low activity (especially remember that we use the Twitter API with only 1% of the messages). We observe that non-popular accounts have a quite stable number of followers. Oppositely, we see that while becoming popular accounts and popular have generally between 2.10 3 and 3.10 4 followers, the last decile of users reaches respectively millions and dozens of millions of followers, with a more important discrepancy for popular accounts.

Pattern extraction

In order to perform our pattern extraction, we have rst to set the size of the alphabet ⌦ and to determine the mapping function used for the popularity evolution encoding. As explained above, the mapping function should, as much as possible, uniformly distribute the gain values on the dierent symbols of ⌦.

We compare dierent sizes of alphabet for ⌦ and we nally choose |⌦| = 8. Remember that a small alphabet do not allow 1 https://www.brandwatch.com/blog/twitter-stats-and-statistics/ to capture signicant patterns since they will cover very distinct behaviors, while a large alphabet provides very precise patterns but these patterns only correspond to a very small number of sequences. We report in Table 3 our implementation of the mapping function for the computed gain values according to Denition 2.

Then we compute the gain of followers for each week of the 36-week observation period and we apply the mapping function for the encoding. Due to the low capture rate of the Twitter API (only 1% of the tweets) and the non-uniform publishing behavior of the users, several values are missing in many popularity evolution sequences. Consequently, we decide to apply linear interpolation to ll small gap of maximum two missing values. Users with sequences presenting gaps of more than 2 symbols are discarded from our dataset. Table 4 presents the symbol distributions for the dierent datasets. We observe that non-popular accounts have as expected a zero or very moderate growth with 86.7% of C-symbol, i.e., a gain or loss of maximum 5 followers. We note that they also have very few follower losses (0.6% of B-symbol which represents a loss of 5 to 100 followers), and are therefore very stable. For the popular accounts, the evolution is more varied: they can show signicant growth, stagnate or have a signicant decrease. Signicant decreases can have several reasons: a sudden unpopularity due, for example, to a questionable decision-making, or else identication as a false account or an account having bought followers. Finally, accounts that become popular generally have rather long periods of signicant growth, which explains our observation of around 49% of F, G and H symbols, so a gain of more than 100 followers. Traditional pattern extraction algorithms return item-set of symbols that are not necessarily closed. For our matching model, we need to extract only patterns that contains symbols which follow each others without gap. To execute a pattern extraction algorithm which take only frequents item-sets of consecutive symbols, we perform a pattern extraction on our 3 datasets using a sliding windows approach and reporting all sequences of k-symbols encountered. We decide to only keep patterns with a support greater than 1%. We report in Table 5 the number of patterns we found. We observe that the non-popular class is characterized by a low number of patterns. There are two reasons for this result: rst, non-popular users exhibit a number of followers which does not vary in an important way, so most of the symbols for their popularity evolution are C or D symbols. Moreover, the class of non-popular users is very large, so a minimum support of 1% implies that this pattern is present in a very large number of popularity evolution sequences. With a support of 0.5%, the number of patterns is 286, 1051 and 2782 for respectively length 3, 4 and 5. The classes of popular and becoming popular users have approximately the same number of patterns, between 100 and 200. Observe that the size of the extracted patterns have a double impact on the number of patterns. Indeed, a pattern of : symbols with a support greater than 1% can provide potentially 2 or more patterns with : + 1 symbols with a support greater than 1%. But oppositely, it can provide patterns with a support lower than 1%. This explains for instance why the number of patterns increases from 182 for size 3 to 194 for size 4 for the becoming popular dataset, and then decreases to 165 for size 5. When comparing the patterns found in the becoming-popular class to patterns from other classes, we see that several patterns are present in several classes. Nonetheless, we exhibit around 70 exclusive patterns that we will use for our detection.

We report in Figure 2 the support for the top-100 most frequent patterns that we extracted for each dataset. We rst observe that regardless of the data set or the size of the extracted patterns, the frequency distribution of the patterns follows a power law. Patterns for the becoming-popular class have a more important support that those of other classes. For a size 3, the most frequent pattern is present among 55% of the sequences, the tenth most frequent among 15% and the ftieth is still present in around 5% of the sequences. It results that the popularity evolution of becoming popular users is characterized by several dozens of patterns which can be used consequently to identify users from this class. The support for popular patterns is less important but remains signicant: the most frequent pattern is present among 30% of the sequences, the tenth most frequent among 8% and the ftieth is still present in around 3% of the sequences. For this class, we consequently observe the existence of a large number of characteristic patterns. However, as noticed in Table 4, the distribution of the symbols is less biased than the one of becoming popular users, what leads to more patterns but with less support. Finally the non-popular class is characterized by a small number of patterns with an important support: the most frequent pattern is present among 30% of the sequence, the tenth most frequent among 1%. Finally, we observe a long tail of patterns with a support lower than 1%. Two parameters explain this observation: rst, the sequences of non-popular users are rather short since they have a low activity and we stop the evolution sequences if two or more symbols are missing, which is quite uncommon with popular or becoming popular users. Second, their number of followers is quite stable, as we can see in Table 4 with 86.7% of C-symbol. The results for a size 4 of pattern are similar, except we observe the power-law curves are a bit smooth compare to size 3. In fact, as explained above for Table 5, we have for the dierent classes fewer patterns with an important support but more with a medium support.

USING PATTERNS FOR AN EARLY DETECTION OF POPULAR USERS

Once we have identied the dierent sets of exclusive popularity patterns for the restrictions to the popular, non-popular and becoming popular evolution sets are denoted S ⇧ + , S ⇧ and S ⇧ ⇤ respectively, we intend to use them to identify users becoming popular before they reach the popularity threshold Y.

Popularity pattern matching

Our objective is to test the matching of any pattern ? 2 S ⇧ ⇤ with any popularity evolution sequence B 2 S whenever it increases with a new symbol. = { ⌫⇠⌫, ⌫⇠⇢, ⌫⇡⇡, ⇠⇡⌫, ⌫ ⇠⇠, ⌫ ⇡⇠, ⌫⇡⇡⇠} E 1. Figure 3 depicts an example of matching attempt. For our user, we report a new symbol ⇠ at week 9 corresponding to his popularity gain between weeks 8 and 9. We must then try to match each pattern of our whole set of becoming popular patterns with the suce of the popularity evolution sequence. The pattern, ⇡⇢⇡⇢ does not match the suce, oppositely to the pattern ⇡⇢⇠⇠. So we report a match and we consider the user corresponding to this popularity evolution sequence as a possible future popular user.

So basically, our problem is a multi-stream multi-pattern matching issue. The dierence with traditional pattern matching solutions (see Section 2) is that we have to deal with hundreds of millions of users and hundreds of patterns. This raises an important scalability issue. Our objective in the following is to propose a structure for a fast multi-pattern matching on a very large set of streams.

The 2 " index

To perform the matching of a set S ⇧ of patterns over a sequence c of symbols, several approaches are proposed in literature. Most ecient ones rely on nite state automaton (FSA). However, a traditional FSA presents some loops which results in testing for each state reached whether it corresponds to the nal state of a given pattern or not. To limit this number of tests, we propose to rely on a trie representation, in other words a tree-shaped deterministic nite automaton. Since we make the assumption that our popularity patterns have a xed size f, it means that all (1) the paths from the root to a leaf have a length of f and (2) only leaves correspond to the the nal symbol of a popularity pattern. E 2. Figure 4 is an example of the tree structure for the set of patterns { ABCB, ABCE, ABDD, ACDB, BACC, BADC, BDDC}. Here f = 4 so we can check that all paths to a leaf have a length of 4 and each leaf corresponds to one pattern.

This xed-size of patterns allows us to consider a sliding window on the dierent sequences with only the f last symbols which are used for the matching attempts.

Since we consider applications with hundreds of millions of users, we need to evaluate the transitions in a very ecient way. Thus we propose to choose the hash-based implementation for our [Pattern-Tree Hash index] A pattern-tree hash index %) is dened on a pattern set S ⇧ as a couple (+ , ⌘ CA84 ) where + is a set of nodes E = (83, 8B!405 ) 2 + with 83 a node id and 8B!405 a boolean set to CAD4 when this is a leaf node, and ⌘ CA84 : + ⇥⌦ ! + is a hash function which represents the edges with the following properties: 8) ⌘ CA84 is injective, so each node could only have one parent (except the root node), 5 represents the hash-based structure corresponding to the tree structure of the Figure 4. For instance with the symbol ⇢, the node whose id is 4 leads to the node whose id is 6.

88) if 8E 2 + , E.8B!405 = CAD4 ) 9(G 1 , G 2 , . . . , G f ) 2 ⌦ f , ⌘ CA84 (⌘ CA84 (. . . (⌘ CA84 (A>>C, G 1 ), G 2 ), . . . , G f ) = E^G 1 .G 2 . . . . G f 2 S ⇧ E 3. Figure
For any incoming symbol for a given sequence c, we use this trie and we determine the new positions reached in this one. The following proposition determines the number of position in the trie we have to store for any user. P 1. [Number of stored positions] Since the depth of the trie corresponds to the length of the patterns, f, the dierent suces with length in [1, f] must be considered when a new symbol is added and each suce could reach a position in the trie. So at any time we have :

• to record for next matching attempt the dierent positions reached with the suces with length in [1, f 1],

• to report potentially a match when reaching a leaf Consequently the space requirement for storing user information is $ (f).

To eciently retrieve the dierent positions in the trie for a given user, we propose to rely on a second hash structure. So consider the set I of the user identiers. We then dene our Automaton Positioning Index ( % 8=34G) which consists of entries. The indexing is "dense", i.e., every popularity evolution sequence in the database is indexed, as soon as a user appears in the system, and by a dierent entry. % =34G is a hash le, denoted % [0..! 1], with directory length L (Fig. 6). Building a hash le with a hash entry for each user will lead to an extremely large index, since it requires |S| memory blocks and thus the index structure could not t in memory. Consequently, the elements of % refer to buckets or lines, each containing a list of entries. Each % [START_REF] Cao | Popularity Prediction on Social Platforms with Coupled Graph Neural Networks[END_REF] contains the address of the i-th bucket. Since entries have a similar size, i.e., a user 83 and a set of positions with a number of elements between 1 and f 1, we can store in a block with size ⌫ between ⌫/(|83 |+(f 1).|? |) and ⌫/(|83 | + |? |) entries (|83 | and |? | denote respectively the size of a user id and an automaton node id). So we set the size of the list accordingly. We consider in the following the pessimistic approach where all entries inside a bucket have f 1 positions stored. We also assume we have |S| users to index. We explain below how to manage the dynamicity of the system, with users who join or leave frequently. With these settings, we can set the value of !:

! = |S| ⇥ |83 | + (f 1)
.|? | ⌫ Statistics over the entry size (so basically, what is the average number of automaton positions stored for a user) could permit to propose a ! value with a higher space gain.

All together, the % =34G line structure is similar to a posting list in an inverted le. Since the key used for hashing are user ids, it is easy to design a hash function that evenly distributes the entries in the buckets, at least when the index is built. To manage the dynamicity of the users set, we could have several strategies which could moreover be combined. First, we could adopt the strategy used in database systems for storing the data, i.e. not to ll the data block (the PCT-free parameter). Thus, we could for instance choose a higher ! value when creating the index and to have consequently some free space in each block to add new entries. In addition, since we use a hash le, lines should have a collision resolution method such as classical separate chaining that uses pointers to an overow space. Such a technique accommodates moderate growth, but if we need to accommodate large growth, then we need a dynamic hashing method such as linear hashing [START_REF] Litwin | Linear Hashing: A New Tool for File and Table Addressing[END_REF].

The combination of our two hash-based structures for an ecient matching, %) ' 8=34G and and % 8=34G, composes our proposal we name 2 " -index. -----------------------------------

EXPERIMENTS

All experiments have been realised on a dedicated machine with 8x Intel® Xeon® Processor E7-4830 v2 (80 cores) and 512 Gb RAM. We have chosen Python for our development. To validate our approach, we rst evaluate the quality of our detection, then we compare the performances of our matching structured with other implementations.

Quality of the detection approach

To estimate the quality of our approach, we split our global dataset of 32" users in a training set with 80% of the users, and a test set with the remaining 20%. We divide our training test into 3 groups of users according to their popularity evolution as explained in Section 4 and we perform our pattern extraction process on each of these user datasets. Tables 1, 2 and 5 describe the characteristics of these datasets along with their number of patterns. Then, we try to match the patterns of the dierent classes on our test dataset to detect respectively non-popular, popular and becoming-popular users. Due to space limitation, we only present here the matching of becoming-popular patterns. We report results in Table 6. We observe that we have an overall precision of 0.7260. However, this precision can be largely improved by a fast pre or post processing by discarding popular users. In fact, we can at any time stop following a user that is identied as popular, i.e. those having at any time more than 4,000 followers. When discarding these users, we reach a precision of 0.9972. The recall reaches 0.7604, so a good 1 value of 0.8629. We achieve a higher recall when reducing the minimal support during the pattern selection. If we keep patterns with a lower support, we achieve a 0.85 recall, but the precision drops to 0.75 because these patterns are less characteristic of the associate class and consequently some sequences of other classes may also match.

Since our objective is to detect future popular users before they become popular, everytime a matching occurs, we measure the number of weeks between the week of matching and the week during which they actually become popular. We report the ratio of becoming popular users detected with respect to the number of weeks in advance that this user is detected actually popular in Figure 7. We observe that in 80% of cases, our approach allows us to detect a popular user at least 1 month before they actually become popular, and in 60% of cases, at least 2 months before. This rate is still around 40% for detection at least 3 months in advance. This conrms the interest of our approach and its eectiveness.

Scalabity

Finally, we perform experiments to study the scalability of our index and matching compared to existing matching structures. As competitors we implement: • SimpleTree: implementation of a tree in standard python library with the possibility to search if a sub-sequence is in the tree. For each user we store in a hashmap the f 1 last symbol read (f is the pattern size).

• FSA: we have use Automata-lib 2 which implements the structures and algorithms for nite automata. • 2 ": our solution introduced above.

We generate according to the symbol distribution observed in our real dataset (see Table 4) datasets of respectively 1M, 10M and 50M popularity evolution sequences of 52 symbols (to simulate 1 year). We measure time to evaluate an incoming symbol for a user with the dierent structures along with the memory requirement to store information for the respectively 1M, 10M and 50M users. We report in Table 7 our results. We rst observe that 2 " index allows to get the best performances for the matching since a new incoming symbol can be processed in 0.2<B when managing 1M users, so a gain of 90% and 250% with respectively SimpleTree and FSA. This matching time increases with the pattern size. We notice a 40% increase of the matching time for all structures. The rationale is that we have a 4-symbol subsequence in SimpleTree or FSA, or 3 positions in our structure, to consider instead of 3. Regarding the number of users to manage, we observe a constant matching time as expected, since we adopt a dynamic extension of the hashmap for the dierent structures to keep the current states for each users to avoid collisions. Consequently, the treatment of an incoming symbol is constant. We can also observe that our implementation requires a similar memory space compare to FSA while it saves 24% space compare to SimpleTree. The rationale is that we have to keep the f 1 last symbols for any user for the SimpleTree while we keep only 1 to f 1 reachable states for a user with 2 ". The memory gain increases with the pattern size, and we reach 44% gain for patterns with size 4.

2 Automata-lib 3.1.0 : https://pypi.org/project/automata-lib/ 

CONCLUSION

This paper proposes a solution to tackle the early detection of future popular users. It is based on a characterization of users who become popular using popularity evolution patterns. Our analyzes show the existence of such patterns and our experiments conrm that they make it possible to detect future popular users several weeks before they are actually popular. We also oer a structure to allow scaling up of matching to millions of users.

We have several perspectives to complete this work. First of all we wish to make a more detailed analysis of the popularity evolution in order to determine the alphabet which will then allow a better detection. In addition, we want to look at other criteria (replies, quotes, likes, message propagation, etc.) and not only at simply the number of followers in order to identify inuencers rather than popular users.
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 3 [Popularity evolution] The popularity evolution of user D 2 U on the time period [0,) ] is represented by the time series c (D) =< 608=(D, 1), 608=(D, 2), . . . , 608=(D,) ) > .
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 4 [Popularity pattern] Consider a given size value f and assume the existence of a relevance threshold , a popularity pattern of size f is a word ? 2 ⌦ f such that Õ B 2S 2>=C08=B (?, B) |S|
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 7 Figure 7: Number of weeks in advance a popular user is detected

Table 1 :

 1 Sub-datasets for each class of users

		global	non-popular becoming pop.	popular
	# accounts	3.2289e+07	3.0106e+07	7.7364e+04 2.1056e+06
	# tweets	1.4984e+08	9.2258e+07	3.6330e+06 5.3951e+07
	tweets: mean	4.64	3.06	46.96	25.62

Table 2 :

 2 Followers for each class of users

		global		non-popular	becoming		becoming		popular
					pop. at t=0 pop. at t=T		
	mean	1.4280e+03		1.2737e+02 1.4059e+02 8.2574e+03 2.2431e+04
	std	5.2869e+04		1.1283e+02 1.2261e+02 4.9651e+04 2.3761e+05
	min	2.4000e+01		0.0000e+00 0.0000e+00 2.0010e+03 2.0010e+03
	25%	5.2000e+01		2.8000e+01 2.7000e+01 2.4420e+03 2.9330e+03
	50%	1.8800e+02		9.6000e+01 1.1050e+02 3.3160e+03 4.7430e+03
	75%	4.8800e+02		2.0800e+02 2.4000e+02 5.9640e+03 1.0699e+04
	85%	8.1900e+02		2.7000e+02 3.0100e+02 9.4710e+03 1.8553e+04
	90%	1.2040e+03		3.0700e+02 3.3300e+02 1.2800e+04 2.8601e+04
	max	7.7129e+07		3.9900e+02 3.9900e+02 6.7735e+06 7.7129e+07
	symbol	A	B	C	D	E	F	G	H
	range								

] 1, 2] [ 2, 0.7] [ 0.7, 0.7] [0.7, 1.6] [1.6, 2] [2, 2.7] [2.7, 3] [3, 1[

Table 3 :

 3 Popularity evolution encoding

Table 4 :

 4 Symbols distribution

	symbol	Becoming Pop.	Popular Non-popular	Global
	A	3.94%	3.39%	0.0%	1.39%
	B	7.20%	16.50%	0.60%	4.94%
	C	6.74%	20.27%	86.7%	59.14%
	D	14.72%	29.88%	12.30%	16.05%
	E	18.36%	12.02%	0.33%	5.91%
	F	36.55%	12.08%	0.05%	9.15%
	G	6.64%	2.58%	0.0%	1.72%
	H	5.82%	3.24%	0.0%	1.69%

Table 5 :

 5 Number of patterns found with a min. support of 1%

	pattern length	length 3 length 4 length 5
	non-popular	11	18	27
	popular	123	144	154
	becoming popular	182	194	165
	becoming popular -(non-popular + popular)	70	75	69

Table 6 :

 6 Quality of the detection

		precision	recall	F1
	Global dataset	0.7260 0.7604 0.7428
	Removing popular users	0.9972 0.7604 0.8629

Table 7 :

 7 Performances of the matching Type Nb of users Time (ms) RAM (MB) Time (ms) RAM (MB)

		Patterns size :	Size 3		Size 4	
		1M	0.57	275.05	0.82	319.54
	SimpleTree	10M	0.58	2526,00	0.81	3238.62
		50M	0.56	15067.56	0.80	16161.63
		1M	1.05	205.86	1.53	227.55
	FSA	10M	1.05	2152.37	1.50	2199.18
		50M	1.03	11570.12	1.48	11962.11
		1M	0.30	214.97	0.41	222.32
	2 "	10M	0.30	2120.89	0.42	2197.58
		50M	0.31	11568.76	0.42	11954.67