
HAL Id: hal-02936179
https://cnam.hal.science/hal-02936179

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A pattern-based Approach for an Early Detection of
Popular Twitter Accounts

Jonathan Debure, Stephan Brunessaux, Camelia Constantin, Cédric Du
Mouza

To cite this version:
Jonathan Debure, Stephan Brunessaux, Camelia Constantin, Cédric Du Mouza. A pattern-based
Approach for an Early Detection of Popular Twitter Accounts. International Database Engineering
& Applications Symposium (IDEAS), Aug 2020, Séoul, France. �10.1145/3410566.3410600�. �hal-
02936179�

https://cnam.hal.science/hal-02936179
https://hal.archives-ouvertes.fr

A Pa�ern-based Approach for an Early Detection of Popular
Twi�er Accounts

Jonathan Debure
AIRBUS & CNAM, Paris, France
jonathan.debure@airbus.com

Stephan Brunessaux
AIRBUS, Paris, France

stephan.brunessaux@airbus.com

Camelia Constantin
Sorbonne University, Paris, France

camelia.constantin@lip6.fr

Cédric du Mouza
CNAM, Paris, France
dumouza@cnam.fr

ABSTRACT
Social networks (SN) are omnipresent in our lives today. Not all
users have the same behaviour on these networks. If some have a
low activity, rarely posting messages and following few users, some
others at the other extreme have a signi�cant activity, with many
followers and regularly posts. The important role of these popular
SN users makes them the target of many applications for example
for content monitoring or advertising. It is therefore relevant to
be able to predict as soon as possible which SN users will become
popular.

In this work, we propose a technique for early detection of such
users based on the identi�cation of characteristic patterns. We
present an index, �2" , which allows a scaling up of our approach
to large social networks. We also describe our �rst experiments
that con�rm the validity of our approach.

CCS CONCEPTS
• Information systems! Social networks.

KEYWORDS
Twitter, popularity detection, pattern matching
ACM Reference Format:
Jonathan Debure, Stephan Brunessaux, Camelia Constantin, and Cédric du
Mouza. 2020. A Pattern-based Approach for an Early Detection of Popular
Twitter Accounts. In 24th International Database Engineering Applications
Symposium (IDEAS 2020), August 12–14, 2020, Seoul, Republic of Korea. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/3410566.3410600

1 INTRODUCTION
Online social networks have become nowadays an essential means
for communication, entertainment and marketing. Platforms like
YouTube, Facebook, Twitter and Instagram gather hundreds of mil-
lions of users every day. While they have their own speci�cs and
propose di�erent content and interactions ways, these platforms
share some common characteristics: �rst, their large number of
users and the phenomenal amount of data (texts, pictures, videos,
etc) produced daily; second, their network structure, with users con-
nected to other users to share content; third, their high dynamicity

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in 24th International
Database Engineering Applications Symposium (IDEAS 2020), August 12–14, 2020, Seoul,
Republic of Korea, https://doi.org/10.1145/3410566.3410600.

with new users joining the platforms, others leaving, and connec-
tions between users which are continuously created or deleted.

These di�erent characteristics make these platforms a tool par-
ticularly used to communicate information to a large number of
people. In these networks, the most popular and in�uential users
have quickly been the center of attention for many applications,
since they will accelerate the spread of information to the greatest
number of users [8]. For instance, for online advertising campaigns
on social networks or on the Web, advertisers seek to place their
advertisements among the users who have the most visibility in
order to reach a maximum of people [2, 5, 9]. Likewise, for market-
ing purposes, highly followed users, called in�uencers, are paid to
test and promote di�erent products. In another area, popular users
allow messages to be transmitted to a large audience for which
social networks are the main media of information. These are the
users who can quickly spread fake news or on the contrary bring a
denial [7, 31]. Checking the content they publish is therefore par-
ticularly important. In the area of security, monitoring the content
posted by some popular users who use social media for propaganda
and / or indoctrination is also essential.

The various existing works o�er techniques for detecting users
who are already popular or in�uential in social networks. However,
the various examples of applications presented above show that
it is important to be able to identify the appearance of popular
users on social networks as soon as possible. This article is, to our
knowledge, the �rst to try to identify users who are on the way to
more or less near future, to become popular. By detecting recurring
patterns in the evolution of the popularity of accounts becoming
popular, we manage with good precision to detect users several
weeks before they become really popular. In addition, the index
structure that we o�er makes it possible to scale up to hundreds of
millions of users and therefore allow our solution to be deployed
for real social media platforms. Our experiences with real Twitter
datasets validate our approach.

In summary, the contributions of our article are as follows:

(1) a characterization of the evolution of popularity for di�erent
classes of users (popular, non-popular, becoming popular);

(2) a pattern-based approach for early detection of popular
users;

(3) an indexing structure for an e�cient pattern-matchingwhich
scales to hundreds of millions of users to an early detection
of future popular users;

(4) a validation on a large real Twitter dataset.

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Jonathan Debure, Stephan Brunessaux, Camelia Constantin, and Cédric du Mouza

The rest of the paper is organized as follows. Section 2 reviews
the related work. Section 3 describes the data model for popularity
evolution. An analysis of a real Twitter dataset and the patterns
we extracted for di�erent classes of users is presented in Section 4.
We introduce our pattern-based approach along with its indexing
structure for an early detection of users becoming popular in Sec-
tion 5. Section 6 gathers some of the experiments we perform to
validate our approach. We conclude the paper and introduce some
future work in Section 7.

2 RELATEDWORK
Most of the recent work trying to estimate the popularity of ac-
counts in social networks have focused on in�uence spreading
([18], [21], [20], [19]) as a measure for popularity. Basically these
works observe how many users along with their distance (number
of intermediate users between the user who produces the news and
the one who receives them) will receive an item produced by a user.
They rely consequently on the topology and on the eventuality
(based on his homophily, his topics of interests, his activity, etc) for
a user to propagate this item. Some works try not only to study
the propagation but also to capture and to estimate the ability of
some users to trigger actions or change an opinion in the network,
generally their direct neighborhood. Di�erent in�uence studies
propose to score users ([1],[27],[28]) to rank them and to highlight
principal node of a social network.

Users popularity analysis in social media, especially in social
networks, has taken importance in the last decade because they ap-
pear to be a rather precise way to estimate the opinion of a pool of
users. For instance, during American elections, online social media
have been used by politician to spread their program [17]. Di�erent
analyses of the social networks try to determine the most popular
candidate and to predict the elections results [10], [15]. Similarly,
social media analyses try to predict future popular content [26], like
hot news [6] and try to understand hidden mechanisms. Multiple
studies try to �nd how information are spread on Twitter, with
probabilistic model [30] and others study the retweet action from
Twitter [14] as an indicator of users popularity. In [24], the authors
explain that retweet is time-sensitive. The main di�culty for these
approaches is that they assume we have a knowledge of the content
published or liked by any user, and also enough information to
estimate their opinion or interests which is most of the time either
very costly or impossible to get in real social network systems,
except for the platform owners.

A solution for popular user detection and prediction, that we
adopt in this work, is to identify features which characterize popu-
lar users, based on a large sample of users, and to perform machine
learning techniques to identify other popular users on the global
dataset and/or to perform predictions to early detect their appari-
tion.We propose in this paper to extract patterns which characterize
a class of popularity for users. Patterns mining is a popular method
to �nd frequent occurring patterns. Patterns mining is divided
in two majors models: item-set mining and string-mining. Item-
set mining focuses on detecting frequent item-set and is mostly
used in database mining. The two most popular algorithms for
item-set mining are APRIORI [25] and FPGrowth [13]. APRIORI

extracts all item-sets of a speci�c length respecting a minimum
support, and then scans transactions at each iteration that makes
this algorithm rather slow. FPGrowth is an improved APRIORI al-
gorithm which relies on a Tree (FP Tree) to mine frequent item-set
and which only needs to scan database twice. Item-set mining is
also used for association rules mining [4], i.e. the extraction of
correlation between items. String-mining is a distinct pattern min-
ing technique, which consists in detecting frequents patterns in
alphanumerical sequence generally very long. This technique is
mainly use in bioinformatics[3] to analyze DNA/RNA and to detect
or to extract proteins from nucleotide sequences. String mining
is mostly represented by three algorithms: SPADE [29] which is a
vertical sequential patterns mining, FreeSpan [11] which partitions
the search space and projects sequences and Pre�xSpan [12] that is
based on FreeSpan but avoids to check every possible combination.

3 THE DATA MODEL
We introduce in this section our notations and our data model. We
consider the Twitter platform and its underlying directed graph
(U, F) whereU denotes the set of nodes, i.e. users, and F ✓ U⇥U
is the set of edge, such as (D1,D2) 2 F means user D2 follows user
D1.

3.1 Account popularity
Remind that our objective is to perform early detection of (future)
popular users. Assuming the existence of the function �>;;>F :
U ⇥ [0,)] ! N which returns the number of followers for an
account D 2 U at the instant C 2 [0,)], we adopt in this paper the
following de�nition of popularity:

D��������� 1. [Popularity] The popularity of an account cor-
responds to its visibility, that means how many persons can read,
comment, propagate a message that this account produces. It is here
simply estimated by the number of followers �>;;>F (D, C) an account
D possesses at the instant C .

With respect to this de�nition we propose the following account
classi�cation:

• Non-popular accounts: this class regroups users that are
never popular all along the observation period [0,)]. So,
assuming an unpopularity threshold i , these accounts verify
that: D 2 U, 8C 2 [0,)] : �>;;>F (D, C) i

• Popular accounts: this class corresponds to users that are
already popular on our study period [0,)]. So assuming a
popularity threshold Y, this implies that at C = 0 we have
�>;;>F (D, 0) � Y.

• Becoming popular accounts: this class regroups users that
are not popular at the beginning of our period [0,)] but are
popular at the end. So, based on our two thresholds Y and i ,
it corresponds to users D 2 U such as �>;;>F (D, 0) i and
�>;;>F (D,)) � Y.

3.2 Popularity evolution
We assume that the platform periodically updates its statistics for
each user. The period between two updates is constant and is con-
sidered in the following as our indivisible time unit. So at each

A Pa�ern-based Approach for an Early Detection of Popular Twi�er Accounts IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

time instant C 2 [0,)], we report for each account D the number of
followers. To estimate the popularity evolution, we compute the
gain in number of followers between two time instants. To reduce
the impact of the size of the accounts, we propose to use the log
function on the gain since a gain of 10k followers should be consid-
ered as a gain of the same order as a gain of 20k followers when
the user has a popular account. Due to the domain de�nition of the
log function we use the following de�nition for the 608= function.

D��������� 2. [Popularity gain] Consider an instant C 2 [0,) �1],
the popularity gain for a user D 2 U is:

608=(D, C) =
8>>>>>><
>>>>>>:

log(�>;;>F (D, C) � �>;;>F (D, C � 1))
8 5 �>;;>F (D, C) > �>;;>F (D, C � 1) + 1

0 8 5 |�>;;>F (D, C) � �>;;>F (D, C � 1) | 1
� log(�>;;>F (D, C � 1) � �>;;>F (D, C))

8 5 �>;;>F (D, C � 1) > �>;;>F (D, C) + 1

Consequently, the popularity evolution for an account over a
given period [0,)] corresponds to a time series made up of the
popularity gain for each time unit. We formally adapt the following
de�nition for the popularity evolution.

D��������� 3. [Popularity evolution] The popularity evolution of
user D 2 U on the time period [0,)] is represented by the time series

c (D) =< 608=(D, 1),608=(D, 2), . . . ,608=(D,)) >
.

We denote with ⇧ the set of the popularity evolution for all users
from U.

This raw time series is interesting to extract some statistics
about the given dataset but is not suitable to compare users in order
to cluster them and to detect classes of users with some speci�c
behaviors, or oppositely to identify users who have a divergent
behavior. In order to achieve these goals, a traditional approach
(see for instance the SAX approach [16, 22]) consists in encoding
the time series using a limited set of symbols.

So we assume the existence of an alphabet of symbols ⌦ for the
encoding and of a mapping function<0??8=6 : R! ⌦. De�ning
the size of the alphabet and the mapping function is a di�cult task
which must highly rely on the properties of the studied dataset. The
size of the alphabet used for the encoding sets a level of re�nement
for the encoded sequence. Indeed, a large alphabet will provide
more precision about the popularity evolution, but it reduces the
number of similarities between sequences detected. Oppositely, a
small alphabet will lead to the extraction of numerous similar sub-
sequences between the di�erent sequences, while they correspond
in reality to an evolution relatively di�erent. Similarly the map-
ping function will highly impact the similarity detection between
sequences. When too many di�erent gain values are mapped to the
same symbols, while other symbols correspond to very few gains,
it results in an issue similar to the use of a small alphabet: similar
subsequences that are detected may correspond to very di�erent be-
haviors. So the choice of the alphabet and the mapping function has
an important impact on the results. We do not investigate further
this problem, but we take it into consideration when proposing our
alphabet and mapping function in our analysis and experimental
sections.

Based on this representation, we want to study whether some
subsequences, we will call ?0CC4A=B in the following, are charac-
teristic of a popularity class. If such subsequences exist, we expect
them to allow us to perform early detection of emerging popular
accounts.

Assume a 2>=C08=B function, 2>=C08=B : 2⌦ ⇥ S ! N , with 2⌦
denoting the powerset of ⌦, where 2>=C08=B (G,~) returns 1 the
sequence ~ contains the word G , and 0 otherwise. Then we adopt
the following de�nition for a popularity pattern.

D��������� 4. [Popularity pattern] Consider a given size value
f and assume the existence of a relevance threshold �, a popularity
pattern of size f is a word ? 2 ⌦f such thatÕ

B2S 2>=C08=B (?, B)
|S| � �

The relevance threshold � allows to set a minimal support for a
pattern. In other words, we only keep patterns which are signi�cant
because they are enough present in several sequences.

We denote S⇧ the set of all the popularity patterns for a popu-
larity evolution set ⇧. The sets of exclusive popularity patterns for
the restrictions to the popular, unpopular and becoming popular
evolution sets are denoted S⇧+ , S⇧� and S⇧⇤ respectively. By ex-
clusive we mean the popularity patterns which are present only in
the considered class of users.

4 POPULARITY ANALYSIS

This section aimed at analyzing a real Twitter dataset to check
the existence of such characteristic evolution patterns in our three
classes of users. We �rst introduce our dataset along with its main
features, then we extract the popularity patterns for each class and
we analyze these di�erent sets of patterns.

4.1 Presentation of our dataset
To build our dataset we use the Twitter API Stream that allows
us to collect 1% of all tweets published on the platform. For our
dataset, we only collect users metadata and we select users that had
a su�cient activity, i.e. at least 3 tweets, during our observation
period of 36 weeks. We obtain a dataset consisting of around 32.9M
users along with 150M tweets.

Then we set the two thresholds i and Y necessary to determine
our three groups of users according to their popularity. Based on
the follower distribution of our dataset depicted in Figure 1, we
decide arbitrarily that an account with less than i = 400 follow-
ers is considered as unpopular, while an account with more than
Y = 2, 000 is identi�ed as a popular account. Thus, the class of be-
coming popular accounts corresponds to the accounts which have
less than 400 followers at the beginning of our observation period
and more than 2, 000 at the end. We report in Table 1 the size of
each class of accounts in our dataset that we will investigate in the
following. As expected, most accounts belong to the non-popular
class and present a low activity with 3-4 tweets generally on the
period of observation. The 2.1 million popular accounts have a more
important activity, but there is an important discrepency between
accounts as it is enlightened by a high standard deviation. In fact,
this class is quite heterogeneous with for instance news agency

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Jonathan Debure, Stephan Brunessaux, Camelia Constantin, and Cédric du Mouza

Figure 1: Follower distribution

Table 1: Sub-datasets for each class of users

global non-popular becoming pop. popular
accounts 3.2289e+07 3.0106e+07 7.7364e+04 2.1056e+06

tweets 1.4984e+08 9.2258e+07 3.6330e+06 5.3951e+07
tweets: mean 4.64 3.06 46.96 25.62

or brand accounts with an important activity, and popular person-
alities (actors, singers, etc) with many followers but few tweets.
Accounts that are not popular at the beginning of the observation
period but then become popular are not as numerous, but they
have a higher activity. This can somehow explain that they become
popular on a speci�c topic because they publish more on this topic
what attracts followers.

Table 2 shows the number of followers for each class of users. In
our dataset the average number of followers is 1,428, which is more
than the last published estimation 1 due to our 3-week threshold for
the user activity which discards accounts with few followers and
extremely low activity (especially remember that we use the Twitter
API with only 1% of the messages). We observe that non-popular
accounts have a quite stable number of followers. Oppositely, we see
that while becoming popular accounts and popular have generally
between 2.103 and 3.104 followers, the last decile of users reaches
respectively millions and dozens of millions of followers, with a
more important discrepancy for popular accounts.

4.2 Pattern extraction
In order to perform our pattern extraction, we have �rst to set
the size of the alphabet ⌦ and to determine the mapping function
used for the popularity evolution encoding. As explained above, the
mapping function should, as much as possible, uniformly distribute
the gain values on the di�erent symbols of ⌦.

We compare di�erent sizes of alphabet for ⌦ and we �nally
choose |⌦ | = 8. Remember that a small alphabet do not allow
1https://www.brandwatch.com/blog/twitter-stats-and-statistics/

Table 2: Followers for each class of users

global non-popular becoming becoming popular
pop. at t=0 pop. at t=T

mean 1.4280e+03 1.2737e+02 1.4059e+02 8.2574e+03 2.2431e+04
std 5.2869e+04 1.1283e+02 1.2261e+02 4.9651e+04 2.3761e+05
min 2.4000e+01 0.0000e+00 0.0000e+00 2.0010e+03 2.0010e+03
25% 5.2000e+01 2.8000e+01 2.7000e+01 2.4420e+03 2.9330e+03
50% 1.8800e+02 9.6000e+01 1.1050e+02 3.3160e+03 4.7430e+03
75% 4.8800e+02 2.0800e+02 2.4000e+02 5.9640e+03 1.0699e+04
85% 8.1900e+02 2.7000e+02 3.0100e+02 9.4710e+03 1.8553e+04
90% 1.2040e+03 3.0700e+02 3.3300e+02 1.2800e+04 2.8601e+04
max 7.7129e+07 3.9900e+02 3.9900e+02 6.7735e+06 7.7129e+07

symbol A B C D E F G H
range] �1,�2] [�2,�0.7] [�0.7, 0.7] [0.7, 1.6] [1.6, 2] [2, 2.7] [2.7, 3] [3,1[

Table 3: Popularity evolution encoding

Table 4: Symbols distribution

symbol Becoming Pop. Popular Non-popular Global
A 3.94% 3.39% 0.0% 1.39%
B 7.20% 16.50% 0.60% 4.94%
C 6.74% 20.27% 86.7% 59.14%
D 14.72% 29.88% 12.30% 16.05%
E 18.36% 12.02% 0.33% 5.91%
F 36.55% 12.08% 0.05% 9.15%
G 6.64% 2.58% 0.0% 1.72%
H 5.82% 3.24% 0.0% 1.69%

to capture signi�cant patterns since they will cover very distinct
behaviors, while a large alphabet provides very precise patterns but
these patterns only correspond to a very small number of sequences.

We report in Table 3 our implementation of themapping function
for the computed gain values according to De�nition 2.

Then we compute the gain of followers for each week of the
36-week observation period and we apply the mapping function
for the encoding. Due to the low capture rate of the Twitter API
(only 1% of the tweets) and the non-uniform publishing behavior of
the users, several values are missing in many popularity evolution
sequences. Consequently, we decide to apply linear interpolation to
�ll small gap of maximum twomissing values. Users with sequences
presenting gaps of more than 2 symbols are discarded from our
dataset. Table 4 presents the symbol distributions for the di�erent
datasets. We observe that non-popular accounts have as expected a
zero or very moderate growth with 86.7% of C-symbol, i.e., a gain or
loss of maximum 5 followers. We note that they also have very few
follower losses (0.6% of B-symbol which represents a loss of 5 to 100
followers), and are therefore very stable. For the popular accounts,
the evolution is more varied: they can show signi�cant growth,
stagnate or have a signi�cant decrease. Signi�cant decreases can
have several reasons: a sudden unpopularity due, for example, to a
questionable decision-making, or else identi�cation as a false ac-
count or an account having bought followers. Finally, accounts that
become popular generally have rather long periods of signi�cant
growth, which explains our observation of around 49% of F, G and
H symbols, so a gain of more than 100 followers.

A Pa�ern-based Approach for an Early Detection of Popular Twi�er Accounts IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

Table 5: Number of patterns foundwith amin. support of 1%

pattern length length 3 length 4 length 5
non-popular 11 18 27
popular 123 144 154
becoming popular 182 194 165
becoming popular - (non-popular + popular) 70 75 69

Traditional pattern extraction algorithms return item-set of sym-
bols that are not necessarily closed. For our matching model, we
need to extract only patterns that contains symbols which follow
each others without gap. To execute a pattern extraction algorithm
which take only frequents item-sets of consecutive symbols, we per-
form a pattern extraction on our 3 datasets using a sliding windows
approach and reporting all sequences of k-symbols encountered.
We decide to only keep patterns with a support greater than 1%.
We report in Table 5 the number of patterns we found. We observe
that the non-popular class is characterized by a low number of pat-
terns. There are two reasons for this result: �rst, non-popular users
exhibit a number of followers which does not vary in an important
way, so most of the symbols for their popularity evolution are C or
D symbols. Moreover, the class of non-popular users is very large,
so a minimum support of 1% implies that this pattern is present
in a very large number of popularity evolution sequences. With a
support of 0.5%, the number of patterns is 286, 1051 and 2782 for
respectively length 3, 4 and 5. The classes of popular and becoming
popular users have approximately the same number of patterns,
between 100 and 200. Observe that the size of the extracted patterns
have a double impact on the number of patterns. Indeed, a pattern
of : symbols with a support greater than 1% can provide potentially
2 or more patterns with : + 1 symbols with a support greater than
1%. But oppositely, it can provide patterns with a support lower
than 1%. This explains for instance why the number of patterns
increases from 182 for size 3 to 194 for size 4 for the becoming pop-
ular dataset, and then decreases to 165 for size 5. When comparing
the patterns found in the becoming-popular class to patterns from
other classes, we see that several patterns are present in several
classes. Nonetheless, we exhibit around 70 exclusive patterns that
we will use for our detection.

We report in Figure 2 the support for the top-100 most frequent
patterns that we extracted for each dataset. We �rst observe that
regardless of the data set or the size of the extracted patterns, the
frequency distribution of the patterns follows a power law. Patterns
for the becoming-popular class have a more important support that
those of other classes. For a size 3, the most frequent pattern is
present among 55% of the sequences, the tenthmost frequent among
15% and the �ftieth is still present in around 5% of the sequences.
It results that the popularity evolution of becoming popular users
is characterized by several dozens of patterns which can be used
consequently to identify users from this class. The support for pop-
ular patterns is less important but remains signi�cant: the most
frequent pattern is present among 30% of the sequences, the tenth
most frequent among 8% and the �ftieth is still present in around
3% of the sequences. For this class, we consequently observe the
existence of a large number of characteristic patterns. However, as
noticed in Table 4, the distribution of the symbols is less biased than
the one of becoming popular users, what leads to more patterns but

Figure 2: Support for 3 (left) and 4 (right) -symbol patterns

⇡ ⇢ ⇠ ⇠

⌫ � ⇠ � ⇠ ⇡ ⇢ ⇠ ⇠ ? ?

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11
.

⇡ ⇢ ⇡ ⇢

Figure 3: Example of matching attempt for patterns DECC
and DEDE on a popularity evolution sequence

with less support. Finally the non-popular class is characterized by
a small number of patterns with an important support: the most
frequent pattern is present among 30% of the sequence, the tenth
most frequent among 1%. Finally, we observe a long tail of patterns
with a support lower than 1%. Two parameters explain this obser-
vation: �rst, the sequences of non-popular users are rather short
since they have a low activity and we stop the evolution sequences
if two or more symbols are missing, which is quite uncommon
with popular or becoming popular users. Second, their number of
followers is quite stable, as we can see in Table 4 with 86.7% of
C-symbol. The results for a size 4 of pattern are similar, except we
observe the power-law curves are a bit smooth compare to size 3.
In fact, as explained above for Table 5, we have for the di�erent
classes fewer patterns with an important support but more with a
medium support.

5 USING PATTERNS FOR AN EARLY
DETECTION OF POPULAR USERS

Once we have identi�ed the di�erent sets of exclusive popular-
ity patterns for the restrictions to the popular, non-popular and
becoming popular evolution sets are denoted S⇧+ , S⇧� and S⇧⇤

respectively, we intend to use them to identify users becoming
popular before they reach the popularity threshold Y.

5.1 Popularity pattern matching
Our objective is to test the matching of any pattern ? 2 S⇧⇤ with
any popularity evolution sequence B 2 S whenever it increases
with a new symbol.

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Jonathan Debure, Stephan Brunessaux, Camelia Constantin, and Cédric du Mouza

1

. . .12

18

19

20

C

D

13

16

17

C

14

15

C

C
D

A
D

2

9

10

11

B

D

3

7

8

D

4

65

B
E

C
D

B
C

A
B . . .

Figure 4: Tree structure for ⇡?>? =
{�⌫⇠⌫,�⌫⇠⇢,�⌫⇡⇡,�⇠⇡⌫,⌫�⇠⇠,⌫�⇡⇠,⌫⇡⇡⇠}

E������ 1. Figure 3 depicts an example of matching attempt. For
our user, we report a new symbol ⇠ at week 9 corresponding to his
popularity gain between weeks 8 and 9. We must then try to match
each pattern of our whole set of becoming popular patterns with the
su�ce of the popularity evolution sequence. The pattern, ⇡⇢⇡⇢ does
not match the su�ce, oppositely to the pattern ⇡⇢⇠⇠ . So we report
a match and we consider the user corresponding to this popularity
evolution sequence as a possible future popular user.

So basically, our problem is a multi-stream multi-pattern match-
ing issue. The di�erence with traditional patternmatching solutions
(see Section 2) is that we have to deal with hundreds of millions of
users and hundreds of patterns. This raises an important scalability
issue. Our objective in the following is to propose a structure for a
fast multi-pattern matching on a very large set of streams.

5.2 The � 2" index
To perform the matching of a set S⇧ of patterns over a sequence
c of symbols, several approaches are proposed in literature. Most
e�cient ones rely on �nite state automaton (FSA). However, a
traditional FSA presents some loops which results in testing for
each state reached whether it corresponds to the �nal state of a
given pattern or not. To limit this number of tests, we propose to rely
on a trie representation, in other words a tree-shaped deterministic
�nite automaton. Since wemake the assumption that our popularity
patterns have a �xed size f , it means that all (1) the paths from the
root to a leaf have a length of f and (2) only leaves correspond to
the the �nal symbol of a popularity pattern.

E������ 2. Figure 4 is an example of the tree structure for the set
of patterns { ABCB, ABCE, ABDD, ACDB, BACC, BADC, BDDC}. Here
f = 4 so we can check that all paths to a leaf have a length of 4 and
each leaf corresponds to one pattern.

This �xed-size of patterns allows us to consider a sliding window
on the di�erent sequences with only the f last symbols which are
used for the matching attempts.

Since we consider applications with hundreds of millions of
users, we need to evaluate the transitions in a very e�cient way.
Thus we propose to choose the hash-based implementation for our

1

2

3

4

5

6

. . .

. . .

⌘(4, ⇢)

⌘(2,⌫)

Figure 5: Our hash-based implementation

pattern tree structure. So formally our pattern tree is de�ned thanks
to our Pattern-Tree Hash index (PTH-index) as:

D��������� 5. [Pattern-Tree Hash index] A pattern-tree hash in-
dex %)� is de�ned on a pattern set S⇧ as a couple (+ ,⌘CA84) where+
is a set of nodes E = (83, 8B!405) 2 + with 83 a node id and 8B!405 a
boolean set to CAD4 when this is a leaf node, and⌘CA84 : + ⇥⌦ ! + is a
hash function which represents the edges with the following properties:

8) ⌘CA84 is injective, so each node could only have one parent
(except the root node),

88) if 8E 2 + , E .8B!405 = CAD4) 9(G1, G2, . . . , Gf) 2 ⌦f ,
⌘CA84 (⌘CA84 (. . . (⌘CA84 (A>>C, G1), G2), . . . , Gf) = E^G1 .G2 Gf 2
S⇧

E������ 3. Figure 5 represents the hash-based structure corre-
sponding to the tree structure of the Figure 4. For instance with the
symbol ⇢, the node whose id is 4 leads to the node whose id is 6.

For any incoming symbol for a given sequence c , we use this
trie and we determine the new positions reached in this one. The
following proposition determines the number of position in the trie
we have to store for any user.

P���������� 1. [Number of stored positions] Since the depth of the
trie corresponds to the length of the patterns, f , the di�erent su�ces
with length in [1,f] must be considered when a new symbol is added
and each su�ce could reach a position in the trie. So at any time we
have :

• to record for next matching attempt the di�erent positions
reached with the su�ces with length in [1,f � 1],

• to report potentially a match when reaching a leaf Conse-
quently the space requirement for storing user information is
$ (f).

To e�ciently retrieve the di�erent positions in the trie for a given
user, we propose to rely on a second hash structure. So consider
the set I of the user identi�ers. We then de�ne our Automaton
Positioning Index (�% � 8=34G) which consists of entries.

A Pa�ern-based Approach for an Early Detection of Popular Twi�er Accounts IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

831 =3 837 =5 =9

833 =1 =3 839 =4 8312 =5 =11

834 =2 =4 8321 =12 =10

1

2

3

=

⌘(8312)

Figure 6: Our hash-based implementation

D��������� 6. Let 83 2 I a user identi�er and + denotes the set
of nodes ids from the trie. The entry indexing % , denoted % (83), is a
tuple (83, ?>B) with ?>B 2 2+

f
(the powerset of +f) a set of positions

in the automaton.

The indexing is “dense”, i.e., every popularity evolution sequence
in the database is indexed, as soon as a user appears in the system,
and by a di�erent entry.�%��=34G is a hash �le, denoted�% [0..!�
1], with directory length L (Fig. 6). Building a hash �le with a hash
entry for each user will lead to an extremely large index, since it
requires |S| memory blocks and thus the index structure could not
�t in memory. Consequently, the elements of �% refer to buckets
or lines, each containing a list of entries. Each �% [8] contains the
address of the i-th bucket. Since entries have a similar size, i.e., a user
83 and a set of positions with a number of elements between 1 and
f�1, we can store in a blockwith size⌫ between⌫/(|83 |+(f�1).|? |)
and ⌫/(|83 | + |? |) entries (|83 | and |? | denote respectively the size
of a user id and an automaton node id). So we set the size of the list
accordingly. We consider in the following the pessimistic approach
where all entries inside a bucket have f � 1 positions stored. We
also assume we have |S| users to index. We explain below how to
manage the dynamicity of the system, with users who join or leave
frequently. With these settings, we can set the value of !:

! = |S| ⇥ |83 | + (f � 1).|? |
⌫

Statistics over the entry size (so basically, what is the average
number of automaton positions stored for a user) could permit to
propose a ! value with a higher space gain.

All together, the �% � �=34G line structure is similar to a posting
list in an inverted �le. Since the key used for hashing are user ids, it
is easy to design a hash function that evenly distributes the entries
in the buckets, at least when the index is built. To manage the
dynamicity of the users set, we could have several strategies which
could moreover be combined. First, we could adopt the strategy
used in database systems for storing the data, i.e. not to �ll the data
block (the PCT-free parameter). Thus, we could for instance choose
a higher ! value when creating the index and to have consequently
some free space in each block to add new entries. In addition, since
we use a hash �le, lines should have a collision resolution method
such as classical separate chaining that uses pointers to an over�ow
space. Such a technique accommodates moderate growth, but if
we need to accommodate large growth, then we need a dynamic
hashing method such as linear hashing [23].

The combination of our two hash-based structures for an e�cient
matching, %)'� 8=34G and and�% � 8=34G , composes our proposal
we name �2" -index.

Table 6: Quality of the detection

precision recall F1
Global dataset 0.7260 0.7604 0.7428
Removing popular users 0.9972 0.7604 0.8629

——————————————————————————————————-

6 EXPERIMENTS
All experiments have been realised on a dedicated machine with 8x
Intel® Xeon® Processor E7-4830 v2 (80 cores) and 512 Gb RAM. We
have chosen Python for our development. To validate our approach,
we �rst evaluate the quality of our detection, then we compare the
performances of our matching structured with other implementa-
tions.

6.1 Quality of the detection approach
To estimate the quality of our approach, we split our global dataset
of 32" users in a training set with 80% of the users, and a test set
with the remaining 20%. We divide our training test into 3 groups
of users according to their popularity evolution as explained in
Section 4 and we perform our pattern extraction process on each
of these user datasets. Tables 1, 2 and 5 describe the characteristics
of these datasets along with their number of patterns.

Then, we try to match the patterns of the di�erent classes on
our test dataset to detect respectively non-popular, popular and
becoming-popular users. Due to space limitation, we only present
here the matching of becoming-popular patterns. We report results
in Table 6. We observe that we have an overall precision of 0.7260.
However, this precision can be largely improved by a fast pre or post
processing by discarding popular users. In fact, we can at any time
stop following a user that is identi�ed as popular, i.e. those having
at any time more than 4,000 followers. When discarding these users,
we reach a precision of 0.9972. The recall reaches 0.7604, so a good
�1 value of 0.8629. We achieve a higher recall when reducing the
minimal support during the pattern selection. If we keep patterns
with a lower support, we achieve a 0.85 recall, but the precision
drops to 0.75 because these patterns are less characteristic of the
associate class and consequently some sequences of other classes
may also match.

Since our objective is to detect future popular users before they
become popular, everytime a matching occurs, we measure the
number of weeks between the week of matching and the week
during which they actually become popular. We report the ratio
of becoming popular users detected with respect to the number
of weeks in advance that this user is detected actually popular in
Figure 7. We observe that in 80% of cases, our approach allows us to
detect a popular user at least 1 month before they actually become
popular, and in 60% of cases, at least 2 months before. This rate is
still around 40% for detection at least 3 months in advance. This
con�rms the interest of our approach and its e�ectiveness.

6.2 Scalabity
Finally, we perform experiments to study the scalability of our
index and matching compared to existing matching structures. As
competitors we implement:

IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea Jonathan Debure, Stephan Brunessaux, Camelia Constantin, and Cédric du Mouza

Figure 7: Number of weeks in advance a popular user is de-
tected

• SimpleTree: implementation of a tree in standard python
library with the possibility to search if a sub-sequence is in
the tree. For each user we store in a hashmap the f � 1 last
symbol read (f is the pattern size).

• FSA: we have use Automata-lib 2 which implements the
structures and algorithms for �nite automata.

• �2" : our solution introduced above.
We generate according to the symbol distribution observed in

our real dataset (see Table 4) datasets of respectively 1M, 10M and
50M popularity evolution sequences of 52 symbols (to simulate 1
year). We measure time to evaluate an incoming symbol for a user
with the di�erent structures along with the memory requirement
to store information for the respectively 1M, 10M and 50M users.
We report in Table 7 our results. We �rst observe that �2" index
allows to get the best performances for the matching since a new
incoming symbol can be processed in 0.2<B when managing 1M
users, so a gain of 90% and 250% with respectively SimpleTree and
FSA. This matching time increases with the pattern size. We notice
a 40% increase of the matching time for all structures. The rationale
is that we have a 4-symbol subsequence in SimpleTree or FSA, or 3
positions in our structure, to consider instead of 3. Regarding the
number of users to manage, we observe a constant matching time
as expected, since we adopt a dynamic extension of the hashmap
for the di�erent structures to keep the current states for each users
to avoid collisions. Consequently, the treatment of an incoming
symbol is constant. We can also observe that our implementation
requires a similar memory space compare to FSA while it saves
24% space compare to SimpleTree. The rationale is that we have to
keep the f � 1 last symbols for any user for the SimpleTree while
we keep only 1 to f � 1 reachable states for a user with �2" . The
memory gain increases with the pattern size, and we reach 44%
gain for patterns with size 4.

2Automata-lib 3.1.0 : https://pypi.org/project/automata-lib/

Table 7: Performances of the matching

Patterns size : Size 3 Size 4
Type Nb of users Time (ms) RAM (MB) Time (ms) RAM (MB)

SimpleTree
1M 0.57 275.05 0.82 319.54
10M 0.58 2526,00 0.81 3238.62
50M 0.56 15067.56 0.80 16161.63

FSA
1M 1.05 205.86 1.53 227.55
10M 1.05 2152.37 1.50 2199.18
50M 1.03 11570.12 1.48 11962.11

� 2"
1M 0.30 214.97 0.41 222.32
10M 0.30 2120.89 0.42 2197.58
50M 0.31 11568.76 0.42 11954.67

7 CONCLUSION
This paper proposes a solution to tackle the early detection of
future popular users. It is based on a characterization of users who
become popular using popularity evolution patterns. Our analyzes
show the existence of such patterns and our experiments con�rm
that they make it possible to detect future popular users several
weeks before they are actually popular. We also o�er a structure to
allow scaling up of matching to millions of users.

We have several perspectives to complete this work. First of
all we wish to make a more detailed analysis of the popularity
evolution in order to determine the alphabet which will then allow
a better detection. In addition, we want to look at other criteria
(replies, quotes, likes, message propagation, etc.) and not only at
simply the number of followers in order to identify in�uencers
rather than popular users.

REFERENCES
[1] Klout score: Measuring in�uence across multiple social networks. In IEEE Intl.

Conf. on Big Data (Big Data), pages 2282–2289, 2015.
[2] Zeinab Abbassi, Aditya Bhaskara, and Vishal Misra. Optimizing Display Ad-

vertising in Online Social Networks. In Aldo Gangemi, Stefano Leonardi, and
Alessandro Panconesi, editors, Proc. Intl. Conf. on World Wide Web, (WWW) 2015,
pages 1–11. ACM, 2015.

[3] Mohamed Abouelhoda and Moustafa Ghanem. String mining in bioinformatics.
In Scienti�c Data Mining and Knowledge Discovery, pages 207–247. Springer, 2009.

[4] Rakesh Agrawal, Tomasz Imieliunde�nedski, and Arun Swami. Mining associa-
tion rules between sets of items in large databases. SIGMOD Rec., 22(2):207–216,
June 1993.

[5] Çigdem Aslay, Wei Lu, Francesco Bonchi, Amit Goyal, and Laks V. S. Lakshmanan.
Viral Marketing Meets Social Advertising: Ad Allocation with Minimum Regret.
Proc. VLDB Endow., 8(7):822–833, 2015.

[6] Roja Bandari, Sitaram Asur, and Bernardo A Huberman. The pulse of news in
social media: Forecasting popularity. In Proc. Intl. AAAI Conf. on Weblogs and
Social Media (ICWSM), 2012.

[7] Cody Buntain and Jennifer Golbeck. Automatically Identifying Fake News in
Popular Twitter Threads. In Proc. IEEE Intl. Conf. on Smart Cloud (SmartCloud),
pages 208–215. IEEE Computer Society, 2017.

[8] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng. Popularity
Prediction on Social Platforms with Coupled Graph Neural Networks. In Proc.
ACM Intl. Conf. on Web Search and Data Mining WSDM, pages 70–78. ACM, 2020.

[9] David Dupuis, Cédric du Mouza, Nicolas Travers, and Gaël Chareyron. RTIM: A
Real-Time In�uence Maximization Strategy. In Reynold Cheng, Nikos Mamoulis,
Yizhou Sun, and Xin Huang, editors, Proc. Intl. Conf. on Web Information Systems
Engineering (WISE).

[10] Manish Gaurav, Amit Srivastava, Anoop Kumar, and Scott Miller. Leveraging
candidate popularity on twitter to predict election outcome. In Proc. Intl. Work.
on Social Network Mining and Analysis, pages 1–8, 2013.

[11] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Qiming Chen, Umeshwar Dayal, and
Mei-Chun Hsu. Freespan: frequent pattern-projected sequential pattern mining.
In Proc. ACM Intl. Conf. on Knowledge Discovery and Data mining (KDD), pages
355–359, 2000.

[12] Jiawei Han, Jian Pei, BehzadMortazavi-Asl, Helen Pinto, Qiming Chen, Umeshwar
Dayal, and Meichun Hsu. Pre�xspan: Mining sequential patterns e�ciently by
pre�x-projected pattern growth. In Proc. Intl. Conf. on Data Engineering (ICDE),

A Pa�ern-based Approach for an Early Detection of Popular Twi�er Accounts IDEAS 2020, August 12–14, 2020, Seoul, Republic of Korea

pages 215–224, 2001.
[13] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. ACM sigmod record, 29(2):1–12, 2000.
[14] Liangjie Hong, Ovidiu Dan, and Brian D Davison. Predicting Popular Messages

in Twitter. In Proc. Intl. Conf. on World Wide Web (WWW), pages 57–58, 2011.
[15] Sounman Hong and Daniel Nadler. Which candidates do the public discuss online

in an election campaign?: The use of social media by 2012 presidential candidates
and its impact on candidate salience. Government information quarterly, 29(4):455–
461, 2012.

[16] Imran N. Junejo and Zaher Al Aghbari. Using SAX representation for human
action recognition. Journal of Visual Communication and Image Representation,
23(6):853–861, August 2012.

[17] Amir Karami and Aida Elkouri. Political Popularity Analysis in Social Media.
CoRR, abs/1812.03258, 2018.

[18] David Kempe, Jon Kleinberg, and Eva Tardos. Maximizing the Spread of In�uence
through a Social Network. Theory of Computing, 11:43, 2015.

[19] Paul Lagree, Olivier Cappe, Bogdan Cautis, and Silviu Maniu. E�ective Large-
Scale Online In�uence Maximization. pages 937–942. IEEE, November 2017.

[20] Hui Li, Sourav S. Bhowmick, and Aixin Sun. CASINO: Towards Conformity-aware
Social In�uence Analysis in Online Social Networks.

[21] Hui Li, Sourav S. Bhowmick, and Aixin Sun. CINEMA: conformity-aware greedy
algorithm for in�uence maximization in online social networks. page 323. ACM
Press, 2013.

[22] Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX:
a novel symbolic representation of time series. Data Mining and Knowledge

Discovery, 15(2):107–144, August 2007.
[23] Witold Litwin. Linear Hashing: A New Tool for File and Table Addressing. In

Intl Conf. on Very Large Data Bases (VLDB), pages 212–223, 1980.
[24] Sasa Petrovic, Miles Osborne, and Victor Lavrenko. Rt toWin! PredictingMessage

Propagation in Twitter. In Proc. Intl. AAAI Conf. on Weblogs and Social Media
(ICWSM), 2011.

[25] Ramakrishnan Srikant. Fast algorithms for mining association rules and sequential
patterns. PhD thesis, Citeseer, 1996.

[26] Gabor Szabo and Bernardo A Huberman. Predicting the popularity of online
content. Communications of the ACM, 53(8):80–88, 2010.

[27] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. TwitterRank: �nding topic-
sensitive in�uential twitterers. page 261. ACM Press, 2010.

[28] Yuto Yamaguchi, Tsubasa Takahashi, Toshiyuki Amagasa, and Hiroyuki Kitagawa.
TURank: Twitter User Ranking Based on User-Tweet Graph Analysis. In Lei
Chen, Peter Trianta�llou, and Torsten Suel, editors, Intl. Conf. on Web Information
Systems Engineering (WISE), pages 240–253, 2010.

[29] Mohammed J Zaki. Spade: An e�cient algorithm for mining frequent sequences.
Machine learning, 42(1-2):31–60, 2001.

[30] Tauhid R Zaman, Ralf Herbrich, Jurgen Van Gael, and David Stern. Predicting
information spreading in twitter. In Proc. Intl. Work. on Computational Cocial
Science and the Wisdom of Crowds, volume 104, pages 17599–601, 2010.

[31] Zilong Zhao, Jichang Zhao, Yukie Sano, Orr Levy, Hideki Takayasu, Misako
Takayasu, Daqing Li, Junjie Wu, and Shlomo Havlin. Fake News Propagates
Di�erently from Real News even at Early Stages of spreading. EPJ Data Sci.,
9(1):7, 2020.

