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. Depending on the globality of the induced metric, we can prove the convergence of these algorithms. φ

Dedicated to the memory of Ezzeddine ZAHROUNI 1. Notation For a riemannian manifold (M, g) of dimension N we denote •, • g the scalar product dened on each tangent space. The induced norm is denoted • g (or • when there is no risk of confusion ) For a local system of coordinates on M , g ij will denote the coecient of the matrix dening the scalar product above.

Let us recall that a C 1 curve x : [0, 1] → M is called a geodesic between x(0) and x(1) i it is a critical point of the functional

L(γ) = 1 0 ||γ (t)|| g dt
restricted to the C 1 -curves γ : [0, 1] → M such that γ(0) = x(0) and γ(1) = x [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF].

For a dierentiable function f : M → R and p ∈ M we denote ∇ g f (p) the unique element of the tangent space T p M to M at p such that ∀u ∈ T p M, ∇ g f (p), u g = df (p).u 2. A implicit numerical scheme and main result of the paper Let us consider (M, g) a complete connected non compact riemaniann manifold and E a smooth real function. Associated to E, it is quite natural to consider the following gradient system (1)

Ẋ(t) + ∇ g E(X(t)) = 0.
In the paper [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applications[END_REF] the authors Merlet & Pierre consider the situation when (M, g) is the standard R N with its natural euclidian structure and prove the convergence of a sequence dened by an implicit scheme associated to [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. It is quite natural to extend the scheme there introduced to the case of more general manifolds. Such insights were initially considered in [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like ows on riemannian manifolds[END_REF] provided (M, g) is a submanifold of R N . However the specic case of the backward Euler scheme was not considered in this paper under the intrinsic point of view, i.e. the backward scheme is constructed ex post in [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like ows on riemannian manifolds[END_REF], considering the embedded situation. Here we try to focus on the The rst author wishes to thanks the organizers of ICAAM 2019 in Hammamet, Tunisia, where this work was initiated.

The second author wishes to thanks CNAM, France where this work was partially completed.

1 intrinsic geometry given by g even if we will use the existence of isometric embeddings in some euclidean space. Of course comparing the backward algorithm given in [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like ows on riemannian manifolds[END_REF] and the scheme constructed in the present paper is certainly of interest but we have not considered it yet for the moment being. We will assume in this section that M is complete, i.e. for any pair of distinct points of M there exists a minimizing geodesic between them. Without loss of much generality, according to Nash's theorem (see [START_REF] Hong | Isometric Embedding of Riemannian Manifolds in Euclidean Spaces[END_REF] and [START_REF] Nash | The imbedding problem for Riemannian manifolds[END_REF]) we can always assume that M is isometrically embedded in R P for a large enough P . The induced distance on M will be denoted by d.

For some δt > 0, we consider the following sequence : Assume that X 0 , .., X n are constructed, we consider (2)

X n+1 ∈ arg min d(X, X n ) 2 2δt + E(X).
The existence and uniqueness of X n+1 depends on dierent hypothesis. A natural assumption is that E is coercive and semi-convex. From now on, we assume the existence and uniqueness of the sequence (X n ) .

Denition 2.1. Provided that for each n, X n is uniquely dened, the sequence (X n ) is the implicit Euler scheme associated to (1), for the given time step δ t .

The convergence of the solutions of (1) has been extensively studied either in nite or innite dimensions. In the situation when E is analytic the convergence was rstly studied by S. Lojasiewicz in [START_REF] Lojasiewicz | Ensembles semi-analytiques[END_REF][START_REF] Lojasiewicz | Une proprièté topologique des sous ensembles analytiques réels[END_REF] (see also [START_REF] Jendoubi | Convergence des solutions globales et bornées de quelques problèmes d'évolution avec nonlinéarité analytique[END_REF][START_REF] Haraux | The convergence problem for dissipative autonomous systems[END_REF])

A major sucient assumption for proving the convergence is the fact that E satises the so-called Lojasiewicz's inequality at critical points:

∀p ∈ M, ∇ g E(p) = 0 ⇒ ∃θ ∈ (0, 1 2 ], ∃c p > 0, ∃σ p > 0, ∀q ∈ M, d(p, q) < σ p ⇒ ∇ g E(q) ≥ c p |E(p) -E(q)| 1-θ (3) 
In the following section we will prove the following theorem, main result of this paper.

Theorem 2.2. Assume that E is coercive and semi-convex and satises the Lojasiewicz's inequality then the sequence (X n ) converges to a critical point of E.

As we said, the convergence of the sequence dened by discretized schemes associated to dynamical systems has been recently studied. The pioneering work in that direction is given in [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF]. The case of implicit scheme was considered quite simultaneously in [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applications[END_REF] and [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications[END_REF].

In order to deal with this result, it is required to get some informations from the Euler-Lagrange equation satised by X n+1 .

The computation is similar to the one made in order to derive the geodesic equations. We closely follow it (see for example [START_REF] Klingenberg | Riemannian geometry[END_REF]). In order to do so, let be a C 2 map such that

φ n (., 0) : [0, 1] → M is a constant speed geodesic from X n to X n+1 φ n (0, s) = X n , ∀s ∈ [0, 1].
For any s ∈ [0, 1] we have

d(X n , φ(1, s)) = 1 0   i,j g i,j (φ(t, s)) ∂φ i ∂t ∂φ j ∂t   1/2 dt
The derivative of s → d(X n , φ(1, s)) with respect to s is thus

1 0 dt 2   i,j g i,j (φ(t, s)) ∂φ i ∂t ∂φ j ∂t   1/2   i,j k ∂g i,j ∂x k (φ(t, s)) ∂φ k ∂s ∂φ i ∂t ∂φ j ∂t + 2 i,j g i,j (φ(t, s)) ∂ 2 φ i ∂t∂s ∂φ j ∂t   (4) 
Now we take s = 0. Let us recall that, for s = 0, we have a constant speed geodesic, thus we get

  i,j g i,j (φ(t, 0)) ∂φ i ∂t ∂φ j ∂t   1/2 = d(X n , X n+1 ).
Thus, due to this and integrating by part in (4), we get

1 2d(X n , X n+1 ) 1 0   i,j k ∂g i,j ∂x k (φ(t, 0)) ∂φ k ∂s ∂φ i ∂t ∂φ j ∂t -2 i,j ∂ 2 φ i ∂t 2 ∂φ j ∂s -2 i,j k ∂g i,j ∂x k (φ(t, 0)) ∂φ k ∂t ∂φ i ∂s ∂φ j ∂t   dt (5) 
+ 1 d(X n , X) i,j g i,j (φ(t, 0)) ∂φ i ∂s ∂φ j ∂t .
Now using the fact that t → φ(t, 0) is a geodesic, the integral term in (5) vanishes. Thus we have ( 6)

d ds (s → d(X n , φ n (1, s))) s=0 = 1 d(X n , X) ∂φ ∂t (0, 1), ∂φ ∂s (0, 1) g .
Finally, the innitesimal variation associated to (2) with respect to the variation given by φ n is given by

1 δt ∂φ n ∂t (0, 1), ∂φ n ∂s (0, 1) + ∇ g E, ∂φ n ∂s (0, 1) = 0.
The Euler-Lagrange equation associated to (2) is thus : [START_REF] Jendoubi | Convergence des solutions globales et bornées de quelques problèmes d'évolution avec nonlinéarité analytique[END_REF] ∂φ n ∂t (0, 1)

δt + ∇ g E(X n+1 ) = 0.
Let us point out that this condition is natural. Indeed when M = R N with the standard euclidean metric, the constant speed geodesic joining X n to X n+1 in a time duration 1 is t → X n + t(X n+1 -X n ) which gives the standard Euler implicit scheme associated to [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF].

Let us give some estimates that will be useful in the sequel.

Since we can assume that M is isometrically embedded in R N we deduce that there is a universal constant A such that (8)

A||X n+1 -X n || ≤ d(X n , X n+1 ). Since t → φ n (t, 0) is a constant speed geodesic joigning X n to X n+1 for t ∈ [0, 1]
we have for some universal constant B, according to [START_REF] Klingenberg | Riemannian geometry[END_REF] and

|| ∂φ n ∂t (1, 0)|| g = d(X n , X n+1 ), (9) 
A||X n+1 -X n || ≤ || ∂φ n ∂t (1, 0)|| g ≤ B||X n+1 -X n ||.
Due to the left hand side of this estimate and by following the proof of the Merlet & Pierre results of [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applications[END_REF], we will show that the sequence (X n ) converges to some critical point of E.

Proof of the main result

In this section we give the proof of our main result, namely theorem (2.2). Let us note rst that the semi-convexity and coercivity of E assumptions are just given to ensure the existence and uniqueness of the sequence (X n ) given δ t .

We now closely follow [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applications[END_REF]. Let us note that since

X n+1 = argmin d(X n , X) 2 2δ t + E(X),
we have ( 10)

d(X n , X n+1 ) 2 2δ t + E(X n+1 ) ≤ E(X n ).
The sequence (E(X n )) n∈R N is therefore non increasing, converges due to our assumptions, and thus there exists a subsequence of (X n ) that converges to some X ∞ . Note that we also have lim n→∞ d(X n , X n+1 ) = 0. Note also that according to [START_REF] Jendoubi | Convergence des solutions globales et bornées de quelques problèmes d'évolution avec nonlinéarité analytique[END_REF], ( 9), ( 10) ∇E(X ∞ ) = 0.

Due to the Lojasiewicz inequality (3), there exist ν ∈ (0, 1/2], σ > 0 and γ > 0 such that (11)

∀X ∈ M, d(X, X ∞ ) < σ ⇒ |E(X)| 1-ν ≤ ||∇E(X)||.
Let n such that d(X n+1 , X ∞ ) < σ. Now, as in Merlet & Pierre [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applications[END_REF], two situations are to be treated.

Assume

rst that E(X n+1 ) > 1 2 E(X n ). E(X n ) ν -E(X n+1 ) ν = E(Xn) E(Xn+1) νx ν-1 dx ≥ 2 ν-1 νE(X n+1 ) ν-1 |E(X n ) -E(X n+1 )|.
According to [START_REF] Lojasiewicz | Une proprièté topologique des sous ensembles analytiques réels[END_REF] and ( 9), we get, for

C 1 = A 2 E(X n ) ν -E(X n+1 ) ν ≥ C 1 2 ν-2 ||X n+1 -X n || 2 δt(E(X n+1 ) 1-ν ≥ C 1 2 ν-2 ν||X n+1 -X n || ||∇E(X n+1 )|| g E(X n+1 ) 1-ν ≥ C 1 2 ν-2 ν γ ||X n+1 -X n ||,
by the Lojasiewicz' inequality [START_REF] Bolte | Characterizations of Lojasiewicz inequalities and applications[END_REF] .

Assume now that E(X n+1 ) ≤ 1 2 E(X n ).
We have, for

C 2 = 1 A , that ||X n+1 -X n || ≤ C 2 √ 2δt|E(X n ) -E(X n+1 )| 1/2 ≤ C 2 √ 2δt|E(X n )| 1/2 ≤ C 2 (1 - 1 √ 2 ) -1 √ 2δt(|E(X n )| 1/2 -|E(X n+1 )| 1/2 ).
Thus in both cases, we get that for all n such that d(X n+1 , X ∞ ) < σ, we have

||X n+1 -X n || ≤ 2 2-ν γ C 1 ν (|E(X n )| ν -|E(X n+1 )| ν ) +5C 2 √ δt(|E(X n )| 1/2 -|E(X n+1 )| 1/2 ).
Let Ē > 0 small enough such that

2 2-ν γ C 1 ν Ēν + 5C 2 √ δt Ē1/2 < σ/3.
Let n large enough such that ||X n -X ∞ || < σ/3 and E(X n ) < Ē and N the largest integer such that ||X n -X ∞ || < 2σ/3 for all n such that n ≤ n ≤ N . Assume that N is nite. We have

||X N +1 -X ∞ || ≤ ||X N -X ∞ || + ||X N +1 -X N || ≤ ||X N -X ∞ || + 2 δ t A 2 E(X n ) < σ.
Thus we get

N n=n ||X n+1 -X n || ≤ C 1 2 2-ν ν E(X n) ν + 5C 2 δ t E(X n) 1 2 ≤ σ 3 .
This implies

||X N +1 -X ∞ || ≤ ||X n -X ∞ || + σ 3 < 2 σ 3 ,
which is a contradiction if N is nite. As a consequence the sequence (X n ) converges which ends the proof of the main result.

Some generalizations and partial extensions

In the work by Chill & al [START_REF] Chill | Applications of the Lojasiewicz-Simon gra-dient inequality to gradient-like evolution equations[END_REF] , the equation ( 1) is also considered, as well as the so-called quasi-gradient system on R N [START_REF] Merlet | Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like ows on riemannian manifolds[END_REF] ẍ + ẋ + ∇F(x) = 0, as a particular case of a more general system on R M (13)

ẋ + F (x) = 0.
In [START_REF] Barta | Every ordinary dierential equation with a strict Lyapunov function is a gradient system[END_REF], it is shown that if there exists a continuously dierentiable, strict Lyapunov function E for (13), then there exists a riemannian metric g on the open set

M = {x ∈ R M , F (u) = 0} such that F = ∇ g E.
We will here assume the existence of this function E. Some fundamental properties of the metric g are strongly related to the so-called compatibility condition (C) and angle condition (AC).

Let us recall the following denitions. The rst is given in [START_REF] Chill | Applications of the Lojasiewicz-Simon gra-dient inequality to gradient-like evolution equations[END_REF] (see also [START_REF] Barta | Every ordinary dierential equation with a strict Lyapunov function is a gradient system[END_REF]). This angle condition (AC) has rst appeared in [START_REF] Absil | Convergence of the iterates of descent methods for analytic cost functions[END_REF].

We will say that E and F satises the angle condition (AC) i there exists a > 0 such that [START_REF] Whitehead | Convex regions in the geometry of paths[END_REF] ∇E, F ≥ a ∇E F .

We will also need the following one, given in [START_REF] Barta | Every ordinary dierential equation with a strict Lyapunov function is a gradient system[END_REF]. We will say that E and F satises the compatibility condition (C) i there exist c 1 , c 2 > 0 such that (15)

c 1 ∇E ≤ F ≤ c 2 ∇E .
The following result is proven in [START_REF] Barta | Every ordinary dierential equation with a strict Lyapunov function is a gradient system[END_REF] Theorem 4.1. The euclidean metric and the metric g are equivalent on M if and only if E and F satisfy the conditions (AC) and (C).

Though this property has a very nice appearance, it is not clear that it can be used according to the rst section of the present paper. Indeed, in order to do so, one has to check that this metric g can be extended or not to R M to a geodesic convex metric. If so, the results of part (1) can be applied.

Otherwise the situation is not clear. In this case we modify the algortihm given in section one the following way.

We will moreover assume that E is non-negative, that its inmum is 0 and that {x, F (x) = 0} is compact (for the initial topology). We choose R > 0 such that

{x, F (x) = 0} ⊂ B o (0, R).
We take ε > 0 such that ε < m. Let M ε/2,2R be the manifold {x, ε/2 < E(x), x < 2R} and let g be the metric constructed in [START_REF] Barta | Every ordinary dierential equation with a strict Lyapunov function is a gradient system[END_REF]. By compactness, it is standard there exists ρ > 0 such that for any x ∈ M 2ε/3,3R/2 , the geodesic ball B g (x, ρ) = exp x (B(0, ρ)) is geodesic convex (see [START_REF] Whitehead | Convex regions in the geometry of paths[END_REF]).

We can moreover assume that ρ < 1 and, moreover, if

x ∈ M ε,R (16) 
B g (x, ρ) ∈ M 2ε/3,3R/2
We choose x 0 ∈ M ε,R and consider the following minimization problem:

(17) min E(x) + d(x 0 , x) 2 2δ t , x ∈ B g (x 0 , ρ).
By compactness of the ball, the existence of a minimizer is obvious. We denote x 1 such a minimizer. Assume that we have constructed x 1 , ..., x N . We have two possibilities. Either x N ∈ M ε,R so that we take (18)

x N +1 ∈ arg min Bg(x0,ρ)

E(x) + d(x 0 , x) 2 2δ t or x N ∈ M 2ε/3,3R/2 \ M ε,R .
We then go on by replacing ε by ε/2, and this denes the sequence. Now let us study the convergence of this sequence. Assume that for some ε > 0 we have (19

) ∀n ∈ N, x n ∈ M ε,R .
Let n k an increasing injection of N such that (x n k ) converges and let l denotes the limit. Let x n k and x n k such that l ∈ B g (x n k , ρ/4) ∩ B g (x n k , ρ/4). This is impossible since this would imply

E(x n k ) < E(x n k ) < E(x n k )
The same proof implies that either there exists a N such that E(x N ) = 0 or ∀ε > 0 there exists N such that ∀n > N 0 < E(x n ) < ε.

Indeed, if there exists ε > 0 such that for any N , there is n N > N such that x n N ∈ M ε,R and we can apply our preceding argument. The only other possibilities are that the sequence (x n ) is stationnary from a certain rank. This in fact does not imply the convergence of the sequence which is for the moment being unknown to us.

Let us remark that if the metric g is globally dened, then the same argument as the proof of the main theorem shows that the sequence converges if we moreover assume (without loss of generality) that ρ is small enough in order to have for every

N min Sg(x N ,ρ) E > 1 2 E(x n ),
where S g (x N , ρ) is the sphere B g (x N , ρ) \ B g (x N , ρ). Indeed, in this case, ρ can be chosen globally on the set on the open set B(0, 2R) and the same strategy applies as in the proof of the main theorem.