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AN EXTENSION OF A LYAPUNOV APPROACH TO THE

STABILIZATION OF SECOND ORDER COUPLED SYSTEMS

THIERRY HORSIN AND MOHAMED ALI JENDOUBI

Abstract. This paper deals with the convergence to zero of the energy of the
solutions of a second order linear coupled system. It revisits some previous
results on the stabilization of such systems by exhibiting Lyapunov functions.
The ones used are constructed according to some scalar cases situations. These
simpler situations explicitely show that the assumptions made on the operators
in the coupled systems seem, first, natural and, second, give insight on their
forms.

1. Introduction, functional framework.

Let us consider a quite general coupled system in abstract form

(1)

{
u′′ +Bu′ +A1u+ αCv = 0

v′′ +A2v + αC∗u = 0,

where A1 and A2 and C are, in general, unbounded operators. F. Alabau and al.
considered in [4], the case when C = Id, andA1 andA2 are densely closed linear self-
adjoint coercive operator and B is a coercive bounded self-adjoint operator. They
proved that if |α|‖C‖ < 1 then the energy of the solution (u, v) in polynomially
decreasing under quite large assumption on A1 and A2. In this paper our main
concern is the case A2 = A2

1 which is a special case of the aforementioned paper.
When A1 = A2 and |α|‖C‖ < 1, A. Haraux and M.A. Jendoubi proved in [9] (see
also [8]) the polynomial convergence to 0 of the energy by means of a Lyapunov
method.
As we previously said, in this paper, we investigate such a method in the case when

A2 = A2
1 and C = Aβ

1 with β ∈ [0, 3
2
]. The main result of this paper is Theorem 4

which also proves the polynomial convergence to 0 of the solution (u, v). Compared
to the result in [4, p. 144, Proposition 5.3], the convergence that we obtain is in
weaker norms, but requires less regularity on the initial data.

Let us mention that the stabilization of such systems settled in abstract form has
been widely studied and many results are connected to those in our papers. The
case when A1 and A2 are unbounded operators, and C is a bounded was considered
by F. Alabau in [3] and by F. Alabau and al in [5] where the polynomial statibility
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is proven. The optimal energy decay was proven in [11] in the case A1 = A2 = A,
C = I and B = Aγ where γ < 0. The indirect stabilization of abstract coupled
equations is also considered in [1] [2] [7] [6].

Nonlinear damping are also currently investigated. See e.g. [12] .
In order to motivate the Lyapunov function that we construct in the proof of

our main result, we explain the strategy in section 2 in the framework of a coupled
scalar differential system.

In section 3 we introduce the functional framework and an existence theorem
that lead to state and prove our main result, namely Theorem 4.

2. A Lyapunov function for the scalar case

As mentioned in the preceding section, we consider the (real) scalar coupled
system

(2)

{
u′′ + u′ + λu + cv = 0

v′′ + µv + cu = 0

where λ, µ > 0, and c are such that 0 < c2 < λµ. The damping coefficient is set to
1 for simplicity but a time scale change reduces general damping terms bu′ to this
case. In order to shorten the formulas, let us introduce for each solution (u, v) of
(2), its total energy

E(u, u′, v, v′) =
1

2

[
u′2 + v′2 + λu2 + µv2

]
+ cuv.

Then we have for all t ≥ 0

d

dt
E(u, u′, v, v′) = −u′2.

Now we introduce

K(t) =
1

2

[
u′2 + v′2 + λu2 + µv2

]
.

Our first result is the following

Proposition 1. There are some constants η > 0, δ > 0 such that

∀t ≥ 0 K(t) ≤ ηe−δtK(0).

Proof. For all ε > 0 we define the function

(3) Hε = E − εvv′ + 2εuu′ +
3ε

2c
(µu′v − λuv′).

It is easy to check that

(4) C1K(t) ≤ Hε(t) ≤ C2K(t)

where

(5) C1 =





√
λµ− |c|√

λµ
− ε




2

min
(√

λ,
√
µ
) +

3

2|c| max
(√

λ,
√
µ
)









and

(6) C2 =





√
λµ+ |c|√

λµ
+ ε




2

min
(√

λ,
√
µ
) +

3

2|c| max
(√

λ,
√
µ
)







 .
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In fact, using Young’s inequality, we get

|cuv| =
c√
λ
√
µ

√
λ|u|√µ|v| ≤ |c|√

λ
√
µ

[
λ

2
u2 +

µ

2
v2
]

|−εvv′| =
ε√
µ

√
µ|v||v′| ≤ ε√

µ

[
µ

2
v2 +

v′2

2

]

|2εuu′| =
2ε√
λ

√
λ|u||u′| ≤ 2ε√

λ

[
λ

2
u2 +

u′2

2

]

∣
∣
∣
∣

3ε

2c
µu′v

∣
∣
∣
∣

=
3ε

2|c|
√
µ|u′|√µ|v| ≤ 3ε

2|c|
√
µ

[
u′2

2
+

µ

2
v2
]

∣
∣
∣
∣
− 3ε

2|c|λuv
′

∣
∣
∣
∣

=
3ε

2|c|
√
λ
√
λuv′ ≤ 3ε

2|c|
√
λ

[

λ
u2

2
+

v′2

2

]

Then we deduce

Hε ≤
[

1 + ε

(
2√
λ
+

3
√
µ

2|c|

)]

︸ ︷︷ ︸

A1

u′2

2
+

[

1 + ε

(

1√
µ
+

3
√
λ

2|c|

)]

︸ ︷︷ ︸

A2

v′2

2
+

[

1 +
|c|√
λ
√
µ
+ ε

(

2√
λ
+

3
√
λ

2|c|

)]

︸ ︷︷ ︸

A3

λ

2
u2 +

[

1 +
|c|√
λ
√
µ
+ ε

(

1√
µ
+

3
√
λ

2|c|

)]

︸ ︷︷ ︸

A4

µ

2
v2.

It is clear that for all i ∈ {1, 2, 3, 4}

Ai ≤ C2,

where C2 is given in (6). A similar proof gives similar inequalities for C1.
Let ε1 > 0 the value of ε such that C1 defined in (5) is equal to 0. Let ε ∈ (0, ε1).

In this case C1 becomes positive.
A straightforward computation gives

H ′
ε = −u′2 − εv′2 − εvv′′ + 2εu′2 + 2εuu′′ +

3ε

2c
[(µ− λ)u′v′ + µu′′v − λuv′′]

= −(1− 2ε)u′2 − εv′2 + εcuv + εµv2 − 2εuu′ − pελu2 − 2εcuv

+
3ε

2c
[(µ− λ)u′v′ − µu′v − µλuv − µcv2 + λcu2 + λµuv]

= −(1− 2ε)u′2 − εv′2 − λε
1

2
u2 − µε

1

2
v2 − 2εuu′ − εcuv

−µε
3

2c
u′v + (µ− λ)ε

3

2c
u′v′.

Now we have

λu2 + 2cuv + µv2 = λ

(

u2 +
2c

λ
uv +

µ

λ
v2
)

= λ

[(

u+
c

λ
v
)2

+

(
µ

λ
− c2

λ2

)

v2
]

≥ λµ− c2

λ
v2.
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Similarly, we get

λu2 + 2cuv + µv2 ≥ λµ− c2

µ
u2,

and then

λu2 + 2cuv + µv2 ≥ λµ− c2

2

(
1

µ
u2 +

1

λ
v2
)

Using Young’s inequality, we can find some constants c1, c2, c3 > 0 such that

|2uu′| ≤ 1

8µ
(λµ− c2)u2 + c1u

′2;

3

2c
|µu′v| ≤ 1

8λ
(λµ− c2)v2 + c2u

′2;

3

2c
|µ− λ||u′v′| ≤ 1

2
v′2 + c3u

′2.

Finally we obtain

H ′
ε ≤ −(1− (2 + c1 + c2 + c3)ε)u

′2 − ε

2
v′2 − ε

8µ
(λµ − c2)u2 − ε

8µ
(λµ− c2)v2.

Now by choosing ε ∈ (0, ε1) such that 1− (2 + c1 + c2 + c3)ε > 0, some constant
C3 > 0 can be found such that

H ′
ε ≤ −C3K(t).

By combining this with the inequality (4), we get for all t ≥ 0

H ′
ε(t) ≤ −C3

C2

Hε(t).

We conclude the proof by integrating this last inequality and using (4) again. �

3. The case A2 = A2, and C = Aβ with β ∈ [0, 3
2
]

This section is devoted to the proof of Theorem 4. In order to proceed we first
introduce the functional framework and give an existence theorem.

3.1. Functional framework. LetH be a separable Hilbert space, whose norm and
scalar product will be denoted ‖ · ‖ and 〈·, ·〉 respectively. We consider A : H → H
an unbounded closed self-adjoint operator such that the injection D(A) ⊂ H is
dense and compact. We assume moreover throughout the paper that there exists
a > 0 such that

(7) ∀u ∈ D(A), 〈Au, u〉 ≥ a〈u, u〉.
Following for example the exposition given in [10], by denoting (λn)n∈N∗ the in-
creasing sequence of eigenvalues of A, the largest a for which (7) is true is λ1.

Besides, let us consider (en)n∈N∗ an orthonormal basis ofH constituted by eigen-

vectors of A. For any β > 0, we consider u =

∞∑

n=1

〈u, ei〉ei,∈ H (u ∈ H ⇐⇒
∞∑

n=1

〈u, ei〉2 < ∞), and we set Aβ : H → H given by

(8) Aβu =

∞∑

i=1

λβ
i 〈u, ei〉ei
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then (see e.g. [10])

D(Aβ) = {u ∈ H,

∞∑

i=1

λ2β
i 〈u, ei〉2 < ∞}

and Aβ is an unbounded self-adjoint operator such that the inclusion D(Aβ) ⊂ H
is dense and compact. We also have

(9) ∀u ∈ D(Aβ), 〈Aβu, u〉 ≥ a〈u, u〉,
for some a > 0. The largest a for which this inequality is true being λβ

1 .
As usual we write A0 = Id. In this case of course the operator Aα is a continuous

linear operator on H .
We will denote V = D(A1/2) and W = D(A). Thus V and W are Hilbert spaces

whose norms ‖ · ‖V and ‖ · ‖W are given respectively by

‖u‖V = ‖A1/2u‖, ‖u‖W = ‖Au‖.
We have, if we identify H with its dual

(10) W ⊂ V ⊂ H ⊂ V ′ ⊂ W ′

with dense and compact injections when the norms on the Hilbert spaces V ′ and
W ′ are given by

∀u ∈ V ′, ‖u‖V ′ = 〈u,A−1u〉1/2V ′,V

and

∀u ∈ W ′, ‖u‖W ′ = 〈u,A−2u〉1/2W ′,W

where 〈·, ·〉V ′,V denotes the action of V ′ on V (with a similar notation for W ). Of
course when u ∈ H one has

‖u‖V ′ = 〈A−1u, u〉1/2, ‖u‖W ′ = 〈A−2u, u〉1/2.
Let us remark that with these definitions A maps continuously V to V ′ and A2

maps W to W ′.

3.2. Existence result. Let α and β two reals numbers with β ≥ 0. We recall that
we consider the problem

(11)

{
u′′ + u′ +Au+ αAβv = 0

v′′ +A2v + αAβu = 0

which can be rewritten as the first order system

(12)







u′ − w = 0

v′ − z = 0

w′ +Au + w + αAβv = 0

z′ +A2v + αAβu = 0.

Let us first establish an existence and uniqueness result for (11).
We concentrate on the case β ∈ [ 1

2
, 3

2
], the case β ∈ [0, 1

2
) being easier.

Let us consider

H := V ×W ×H ×H.
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For two elements of H Ui = (ui, vi, wi, zi), i = 1, 2, we define

〈U1, U2〉H := 〈Au2, u1〉V ′,V + 〈A2v2, v1〉W ′,W + 〈w1, w2〉+ 〈z1, z2〉
+α〈Aβv2, u1〉V ′,V + α〈Aβu2, v1〉W ′,W ,

where 〈·, ·〉V ′,V denotes the usual duality pairing between V and V ′, with similar
notation for W , while 〈·, ·〉 denotes the scalar product on H for which it is a Hilbert
space.

It is straightforward to prove that 〈·, ·〉H defines a scalar product on H for which
it is a Hilbert space provided that

(13) |α| < λ
3−2β

2

1 .

From now on we assume that (13) holds true.
We now consider the unbounded operator A : H −→ H defined by

D(A) := {U = (u, v, w, z) ∈ H, (−w,−z, Au+ αAβv + w,A2v + αAβu) ∈ H}
and for U = (u, v, w, z) ∈ D(A)

AU = (−w,−z, Au+ αAβv + w,A2v + αAβu).

It is clear that A has a dense domain in H.
Let us remark that for any U = (u, v, w, z) ∈ D(A) one has

〈AU,U〉H = −〈Au,w〉V ′,V − 〈A2v, z〉W ′,W + 〈Au+ αAβv + w,w〉 + 〈A2v + αAβu, z〉
−α〈Aβv, w〉V ′,V − α〈Aβu, z〉W ′,W ,

and therefore 〈AU,U〉 = ‖w‖2 ≥ 0. Indeed

〈A2v + αAβu, z〉 = 〈A2v + αAβu, z〉W ′,W ,

since Aβu ∈ W ′ for β ∈ [1, 3/2] and u ∈ V = D(A1/2).
Let us show that I +A is onto. For this we take (f, g, h, k) ∈ H. We want to find
(u, v, w, z) ∈ D(A) such that

u− w = f

v − z = g

Au+ αAβv + 2u = h+ 2f

A2 + αAβu+ v = k + g.

We define Φ : (V ×W )2 → R by

Φ(u1, v1, u2, v2) := 〈A1/2u1, A
1/2u2〉+ 〈Av1, Av2〉+ α〈Aβv1, u2〉V ′,V +

α〈Au1, A
β−1v2〉V ′,V + 2〈u1, u2〉+ 〈v1, v2〉.

Clearly Φ is continuous on V ×W . It is also clear that Φ is coercive if we assume

|α| < λ
3−2β

2

1 .
By the Lax-Milgram theorem, there exists a unique (u, v) ∈ V ×W such that

∀(δu, δv) ∈ V ×W, Φ(u, v, δu, δv) = 〈h+ 2f, δu〉+ 〈k + g, δv〉.
We therefore get

A2v + αAβu+ v = g + k

Au + αAβv + 2u = h+ 2f.
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Now if we denote w = u − f and z = v − g then w ∈ V since u, f ∈ V and z ∈ W
since v, g ∈ W .
We have thus proven that A is maximal monotone. By classical theory, we get that

Theorem 2. For any (u0, v0, u1, v1) ∈ H, there exists a unique solution to (11) in
C([0, T ],H)× C1([0, T ], D(A)′).

Remark 3. It is also well known that if (u0, v0, u1, v1) ∈ D(A) then the solution
to (11) belongs to C([0, T ], D(A)) ∩ C1(0, T,H).

3.3. Main result of the paper. Our main result is the following

Theorem 4. Assume β ∈ [0, 3
2
] and α 6= 0. Let (u, v) be a solution of (11) such

that (u(0), u′(0), v(0), v′(0)) ∈ H, then there exists a constant c > 0 such that

∀t > 0, ‖Aβ

2
−1u′(t)‖2W ′ + ‖Aβ

2
−1v′(t)‖2W ′ + ‖Aβ−1

2 u(t)‖2W ′ + ‖Aβ

2 v(t)‖2W ′

≤ c

t

[
‖u′(0)‖2 + ‖v′(0)‖2 + ‖u(0)‖2V + ‖v(0)‖2W

]
if β ∈ [0, 1];

∀t > 0, ‖A−β

2 u′(t)‖2W ′ + ‖A−β

2 v′(t)‖2W ′ + ‖A 1−β

2 u(t)‖2W ′ + ‖A1−
β

2 v(t)‖2W ′

≤ c

t

[
‖u′(0)‖2 + ‖v′(0)‖2 + ‖u(0)‖2V + ‖v(0)‖2W

]
if β ∈ [1,

3

2
].

Remark 5. If we replace (11) by

(14)

{
u′′ +Bu′ +Au+ αAβv = 0

v′′ +A2v + αAβu = 0

where, as mentionned in the introduction, B is a bounded self-adjoint operator on
H for which there exists µ > 0 such that

〈Bu, u〉 ≥ µ‖u‖2,
the results of Theorem 2 and Remark 5 remain true.

Remark 6. If we replace (11) by
{

u′′ +Bu′ +Au+ αAβv = 0

v′′ +A2v + αAβu = 0

where A2 is a self-adjoint unbounded operator such that D(A2) = D(A2) and there
exist ν1, ν2 > 0 such that

∀u ∈ D(A2), ν1〈A2u, u〉 ≤ 〈A2u, u〉 ≤ ν2〈A2u, u〉,
and if B is as in the remark 5, the result of Theorem 4 remains true provided |α|
is small enough (depending on λ1, ν1 and ν2).

Remark 7. In the case β = 0, in order to obtain the decay of the energy, we must
assume

A2u(0) ∈ V, A2v(0) ∈ W, A2u′(0) ∈ H, A2v′(0) ∈ H.

In the paper [4], the authors obtain such a decay with merely

Au(0) ∈ V, A2v(0) ∈ W, Au′(0) ∈ H, A2v′(0) ∈ H.

We, of course, would expect that the energy decay also holds with

(u(0), v(0), u′(0), v′(0)) ∈ D(A)

but unfortunately we are not able to prove it for the moment being.
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Proof of Theorem 4. All the computations below will be made assuming that
(u0, v0, u1, v1) ∈ D(A) which ascertains them. By density and continuity the in-
equalities stated in Theorem 4 remain true.

Let us also recall that α satisfies |α| < λ
3−2β

2

1 .
We introduce the energy of the system by

E(t) =
1

2

[
‖u′(t)‖2 + ‖v′(t)‖2 + ‖u(t)‖2V + ‖v(t)‖2W

]
+ α〈Aβv, u〉.

Then we have

E′(t) = −‖u′(t)‖2.
Let p > 1 and ε > 0 two real numbers to be fixed later and let

Hε = E − ελ2−β
1 〈Aβ−2v, v′〉W ′ + pελ−a

1 〈Aau, u′〉W ′ + ρε
[
〈u′, v〉W ′ − 〈u,A−1v′〉W ′

]

where ρ = p+1

2α λ2−β
1 and a = min(0, 1− β). We find easily

H ′
ε = −‖u′‖2 − ελ2−β

1 ‖Aβ

2
−1v′‖2W ′ − ελ2−β

1 〈Aβ−2v, v′′〉W ′ + pελ−a
1 ‖A a

2 u′‖2W ′

−pελ−a
1 〈Aau, u′ +Au+ αAβv〉W ′ + ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′

−ρε〈u′ +Au+ αAβv, v〉W ′ + ρε〈u,A−1(A2v + αAβu)〉W ′

= −‖u′‖2 − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ + ελ2−β

1 〈Aβ−2v,A2v + αAβu〉W ′ + pελ−a
1 ‖A a

2 u′‖2W ′

−pελ−a
1 〈Aau, u′〉W ′ − pελ−a

1 ‖A a+1

2 u‖2W ′ − pελ−a
1 α〈Aau,Aβv〉W ′ + ρε〈u′, v′〉W ′

−ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ − ρεα‖Aβ

2 v‖W ′ + ρεα‖Aβ−1

2 u‖2W ′

= −‖u′‖2 − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ + ελ2−β

1 ‖Aβ

2 v‖2W ′ + ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ + pελ−a

1 ‖A a
2 u′‖2W ′

−pελ−a
1 〈Aau, u′〉W ′ − pελ−a

1 ‖A a+1

2 u‖2W ′ − pελ−a
1 α〈Aau,Aβv〉W ′ + ρε〈u′, v′〉W ′

−ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ − ρεα‖Aβ

2 v‖2W ′ + ρεα‖Aβ−1

2 u‖2W ′

= −‖u′‖2 + pελ−a
1 ‖A a

2 u′‖2W ′ − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ − pελ−a

1 ‖A a+1

2 u‖2W ′ − ε
p− 1

2
λ2−β
1 ‖Aβ

2 v‖2W ′

+ρεα‖Aβ−1

2 u‖2W ′ + ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pελ−a

1 〈Aau, u′〉W ′ − pελ−a
1 α〈Aau,Aβv〉W ′

+ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .

First case : β ∈ [0, 1]. In this case a = 0. We have

H ′
ε = −‖u′‖2 + pε‖u′‖2W ′ − ελ2−β

1 ‖Aβ

2
−1v′‖2W ′ − pε‖A 1

2u‖2W ′ − ε
p− 1

2
λ2−β
1 ‖Aβ

2 v‖2W ′

+ρεα‖Aβ−1

2 u‖2W ′ + ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pε〈u, u′〉W ′ − pεα〈u,Aβv〉W ′

+ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .

Now since

‖Aβ−1

2 u‖2W ′ ≤ 1

λ2−β
1

〈Au, u〉W ′ =
1

λ2−β
1

‖A 1
2 u‖2W ′ ,

we get

H ′
ε ≤ −‖u′‖2 + pε‖u′‖2W ′ − ελ2−β

1 ‖Aβ

2
−1v′‖2W ′ − p− 1

2
ε‖A 1

2u‖2W ′ − ε
p− 1

2
λ2−β
1 ‖Aβ

2 v‖2W ′

+ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pε〈u, u′〉W ′ − pεα〈u,Aβv〉W ′

+ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .



STABILIZATION OF A COUPLED SYSTEM BY LYAPUNOV’S METHODS 9

Let us remark that

ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ ≤ ελ2−β

1 |α|‖Aβ

2 v‖W ′‖A 3β

2
−2u‖W ′

≤ ελ2−β
1 |α|‖Aβ

2 v‖W ′

1

λ
5−3β

2

1

‖A 1
2u‖W ′

≤ ελ
β−1

2

1 |α|‖Aβ

2 v‖W ′‖A 1
2 u‖W ′

and that

−pεα〈u,Aβv〉W ′ ≤ pε|α|‖Aβ
2 v‖W ′‖Aβ

2 u‖W ′

≤ pελ
β−1

2

1 |α|‖Aβ

2 v‖W ′‖A 1
2u‖W ′ .

Thus

ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pεα〈u,Aβv〉W ′

≤ ελ
β−1

2

1 |α|‖Aβ

2 v‖W ′‖A 1
2 u‖W ′ + pελ

β−1

2

1 |α|‖Aβ

2 v‖W ′‖A 1
2u‖W ′

≤ ελ
β−1

2

1 |α|(p + 1)‖Aβ

2 v‖W ′‖A 1
2u‖W ′

≤ ελ
β−1

2

1 (p+ 1)
|α|
2

(

γ‖A 1
2u‖2W ′ +

1

γ
‖Aβ

2 v‖2W ′

)

where we choose γ > 0 such that

(15) δ :=
p− 1

2
− λ

β−1

2

1 (p+ 1)
|α|
2
γ > 0, ζ :=

p− 1

2
λ2−β
1 − λ

β−1

2

1 (p+ 1)
|α|
2γ

> 0

which is equivalent to

λ
β−1

2

1 (p+ 1)|α|
(p− 1)λ2−β

1

< γ <
p− 1

λ
β−1

2

1 (p+ 1)|α|
.

This choice is possible provided that

(16)

(
p+ 1

p− 1

)2

<
λ3−2β
1

|α|2 .

Now we choose p > 1 such that (16) is satisfied. Then we have

H ′
ε = −‖u′‖2 + pε‖u′‖2W ′ − ελ2−β

1 ‖Aβ
2
−1v′‖2W ′ − εδ‖A 1

2u‖2W ′ − εζ‖Aβ
2 v‖2W ′

−pε〈u, u′〉W ′ + ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .

Now let us observe first that if one considers some U ∈ W ′ one has

(17) ‖U‖2W ′ = 〈U,A−2U〉W ′,W = 〈A−1/2U,A−3/2U〉V ′,V = ‖A−1/2U‖2V ′ .

Second, since u′ ∈ V , one has Au′ ∈ V ′. Therefore according to (17) we have

(18) ‖Au′‖2W ′ = ‖A1/2u′‖2V ′ .

Moreover A1/2u′ ∈ H , thus, one has

(19) ‖Au′‖2W ′ = ‖A1/2u′‖2V ′ = 〈A−1A1/2u′, A1/2u′〉 = ‖u′‖2.
According to (19), since

〈u′, v′〉W ′ = 〈Au′, A−1v′〉W ′ ,
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we have

|〈u′, v′〉W ′ | ≤ |〈Au′, A−1v′〉W ′ |
≤ ‖Au′‖W ′‖A−1v′‖W ′

= ‖u′‖‖A−1v′‖W ′ .

Yet we have

‖A−1v′‖2W ′ ≤ 1

λβ
1

〈AβA−1v′, A−1v′〉W ′ =
1

λβ
1

‖Aβ

2
−1v′‖2W ′ .

Using Young’s inequality, we find some constants c1, c2, c3, c4 > 0 such that

−p〈u, u′〉W ′ ≤ c1‖u′‖2 + δ

2
‖A 1

2u‖2W ′ ; (δ defined by (15))

ρ〈u′, v′〉W ′ ≤ c2‖u′‖2 + λ2−β
1

3
‖Aβ

2
−1v′‖2W ′

ρ〈u′, A−1v′〉W ′ ≤ c3‖u′‖2 + λ2−β
1

3
‖Aβ

2
−1v′‖2W ′

−ρ〈u′, v〉W ′ ≤ c4‖u′‖2 + ζ

2
‖Aβ

2 v‖2W ′ (ζ defined by (15)).

By choosing ε small enough, we find a constant η = η(p, ε) > 0 such that for all
t ≥ 0

H ′
ε ≤ −η

(

‖u′‖2 + ‖Aβ

2
−1v′‖2W ′ + ‖A 1

2u‖2W ′ + ‖Aβ

2 v‖2W ′

)

.

Let

Ẽ =
1

2

[

‖Aβ

2
−1u′(t)‖2W ′ + ‖Aβ

2
−1v′(t)‖2W ′ + ‖Aβ−1

2 u(t)‖2W ′ + ‖Aβ

2 v(t)‖2W ′

]

+α〈A2β−2v, u〉W ′

and

K(t) = ‖Aβ

2
−1u′(t)‖2W ′ + ‖Aβ

2
−1v′(t)‖2W ′ + ‖Aβ−1

2 u(t)‖2W ′ + ‖Aβ

2 v(t)‖2W ′ .

For all t ≥ 0, we have

Ẽ′ = −‖Aβ

2
−1u′(t)‖2W ′ .

Then Ẽ is nonincreasing. Observe that

∣
∣α〈A2β−2v, u〉W ′

∣
∣ ≤ |α|

λ
3−2β

2

1

‖Aβ−1

2 u(t)‖W ′‖Aβ

2 v(t)‖W ′ ,

from which we deduce that

(20)
λ

3−2β
2

1 − |α|
2λ

3−2β

2

1

K(t) ≤ Ẽ ≤ λ
3−2β

2

1 + |α|
2λ

3−2β

2

1

K(t).

Now since

‖Aβ

2
−1u′(t)‖W ′ ≤ 1

λ
2−

β

2

1

‖u′‖, ‖Aβ−1

2 u(t)‖W ′ ≤ 1

λ
1−

β

2

1

‖A 1
2 u‖W ′ ,

then there exists a constant γ > 0 such that for all t ≥ 0

(21) H ′
ε ≤ −γK(u, v, u′, v′).
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From (21), assuming ε possibly smaller in order to achieve positivity of the quadratic
form Hε, we get

∫ t

0

K(u(s), v(s), u′(s), v′(s)) ds ≤ 1

γ
Hε(u(0), v(0), u

′(0), v′(0)).

Using inequality (20), we obtain

2λ
3−2β

2

1

λ
3−2β

2

1 + |α|

∫ t

0

Ẽ(u(s), v(s), u′(s), v′(s)) ds ≤ 1

γ
Hε(u(0), v(0), u

′(0), v′(0)).

Now since Ẽ is nonincreasing, it follows

Ẽ(u(t), v(t), u′(t), v′(t)) ≤ λ
3−2β

2

1 + |α|
2λ

3−2β

2

1 γ

1

t
Hε(u(0), v(0), u

′(0), v′(0)).

Using inequality (20) we get

K(u(t), v(t), u′(t), v′(t)) ≤ λ
3−2β

2

1 + |α|
(λ

3−2β

2

1 − |α|)γ
1

t
Hε(u(0), v(0), u

′(0), v′(0)).

Second case : β ∈ (1, 3
2
]. In this case a = 1− β.

H ′
ε = −‖u′‖2 + pελβ−1

1 ‖A 1−β

2 u′‖2W ′ − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ − pελβ−1

1 ‖A1−
β

2 u‖2W ′ − ε
p− 1

2
λ2−β
1 ‖Aβ

2 v‖2W ′

+ρεα‖Aβ−1

2 u‖2W ′ + ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pελβ−1

1 〈A1−βu, u′〉
−pελβ−1

1 α〈A1−βu,Aβv〉W ′ + ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .

Now since

‖Aβ−1

2 u‖2W ′ ≤ 1

λ3−2β
1

〈A2−βu, u〉W ′ =
1

λ3−2β
1

‖A1−
β

2 u‖2W ′ ,

we get

H ′
ε ≤ −‖u′‖2 + pελβ−1

1 ‖A 1−β

2 u′‖2W ′ − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ − p− 1

2
ελβ−1

1 ‖A1−
β

2 u‖2W ′

−ε
p− 1

2
λ2−β
1 ‖Aβ

2 v‖2W ′ + ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pελβ−1

1 〈A1−βu, u′〉

−pελβ−1

1 α〈A1−βu,Aβv〉W ′ + ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′

Let us remark that

ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ ≤ ελ2−β

1 |α|‖Aβ

2 v‖W ′‖A 3β

2
−2u‖W ′

≤ ελ2−β
1 |α|‖Aβ

2 v‖W ′

1

λ3−2β
1

‖A1−
β

2 u‖W ′

≤ ελβ−1

1 |α|‖Aβ

2 v‖W ′‖A1−
β

2 u‖W ′

and that

−pελβ−1

1 α〈A1−βu,Aβv〉W ′ ≤ pελβ−1

1 |α|‖Aβ

2 v‖W ′‖A1−
β

2 u‖W ′ ,
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we therefore get

ελ2−β
1 α〈Aβ−2v,Aβu〉W ′ − pελβ−1

1 α〈A1−βu,Aβv〉W ′

≤ ελβ−1

1 |α|‖Aβ

2 v‖W ′‖A1−
β

2 u‖W ′ + pελβ−1

1 |α|‖Aβ

2 v‖W ′‖A1−
β

2 u‖W ′

= ε(p+ 1)λβ−1

1 |α|‖Aβ

2 v‖W ′‖A1−
β

2 u‖W ′

≤ ελβ−1

1 (p+ 1)
|α|
2

(

γ‖A1−
β

2 u‖2W ′ +
1

γ
‖Aβ

2 v‖2W ′

)

where we choose γ > 0 such that

δ :=
p− 1

2
λβ−1

1 − λβ−1

1 (p+ 1)
|α|
2
γ > 0, ζ :=

p− 1

2
λ2−β
1 − λβ−1

1 (p+ 1)
|α|
2γ

> 0

which is equivalent to

λβ−1

1 (p+ 1)|α|
(p− 1)λ2−β

1

< γ <
p− 1

(p+ 1)|α| .

This choice is possible provided that

(22)

(
p+ 1

p− 1

)2

<
λ3−2β
1

|α|2 .

We choose p > 1 such that (22) is satisfied. Then we have

H ′
ε ≤ −‖u′‖2 + pελβ−1

1 ‖A 1−β

2 u′‖2W ′ − ελ2−β
1 ‖Aβ

2
−1v′‖2W ′ − εδ‖A1−

β

2 u‖2W ′ − εζ‖Aβ

2 v‖2W ′

−pελβ−1

1 〈A1−βu, u′〉+ ρε〈u′, v′〉W ′ − ρε〈u′, A−1v′〉W ′ − ρε〈u′, v〉W ′ .

By use of Young’s inequality we deduce that there are c1, c2, c3, c4 > 0 such that

−pλβ−1

1 〈A1−βu, u′〉 ≤ c1‖u′‖2 + δ

2
‖A1−

β

2 u‖2W ′ ,

ρ〈u′, v′〉W ′ ≤ c2‖u′‖2 + λ2−β
1

3
‖Aβ

2
−1v′‖2W ′ ,

ρε〈u′, A−1v′〉W ′ ≤ c3‖u′‖2 + λ2−β
1

3
‖Aβ

2
−1v′‖2W ′ ,

−ρ〈u′, v〉W ′ ≤ c4‖u′‖2 + ζ

2
‖Aβ

2 v‖2W ′ .

By choosing ε small enough, we find a constant η = η(p, ε) > 0 such that for all
t ≥ 0

H ′
ε ≤ −η

(

‖u′‖2 + ‖Aβ

2
−1v′‖2W ′ + ‖A1−

β

2 u‖2W ′ + ‖Aβ

2 v‖2W ′

)

Let

Ẽ =
1

2

[

‖A−β

2 u′(t)‖2W ′ + ‖A−β

2 v′(t)‖2W ′ + ‖A 1−β

2 u(t)‖2W ′ + ‖A1−
β

2 v(t)‖2W ′

]

+α〈v, u〉W ′

and

K(t) = ‖A−β

2 u′(t)‖2W ′ + ‖A−β

2 v′(t)‖2W ′ + ‖A 1−β

2 u(t)‖2W ′ + ‖A1−
β

2 v(t)‖2W ′ .

For all t ≥ 0, we have

Ẽ′ = −‖A−
β

2 u′(t)‖2W ′ .
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Then Ẽ is nonincreasing.
Since

|α〈v, u〉W ′ | ≤ |α|
λ

3−2β

2

1

‖A 1−β
2 u(t)‖W ′‖A1−

β
2 v(t)‖W ′

then we get

(23)
λ

3−2β

2

1 − |α|
2λ

3−2β

2

1

K(t) ≤ Ẽ ≤ λ
3−2β

2

1 + |α|
2λ

3−2β

2

1

K(t).

Now since

‖A−
β

2 v′(t)‖W ′ ≤ 1

λβ−1

1

‖Aβ

2
−1v′‖W ′ , ‖A 1−β

2 u(t)‖W ′ ≤ 1

λ
1
2

1

‖A1−
β

2 u‖W ′ ,

then there exists a constant γ > 0 such that for all t ≥ 0

(24) H ′
ε ≤ −γK(u, v, u′, v′).

From (24), assuming ε possibly smaller in order to achieve positivity of the quadratic
form Hε, we get

∫ t

0

K(u(s), v(s), u′(s), v′(s)) ds ≤ 1

γ
Hε(u(0), v(0), u

′(0), v′(0)).

Using inequality (23), we obtain

2λ
3−2β

2

1

λ
3−2β

2

1 + |α|

∫ t

0

Ẽ(u(s), v(s), u′(s), v′(s)) ds ≤ 1

γ
Hε(u(0), v(0), u

′(0), v′(0)).

Now since Ẽ is nonincreasing, it follows

Ẽ(u(t), v(t), u′(t), v′(t)) ≤ λ
3−2β

2

1 + |α|
2λ

3−2β
2

1 γ

1

t
Hε(u(0), v(0), u

′(0), v′(0)).

Using inequality (23) we get

K(u(t), v(t), u′(t), v′(t)) ≤ λ
3−2β

2

1 + |α|
(λ

3−2β

2

1 − |α|)γ
1

t
Hε(u(0), v(0), u

′(0), v′(0)).

�

4. Examples

This section is devoted to giving examples of operators to which Theorem 4
applies.
Example 1 : The first case that we consider is when H = L2(Ω) and

Au = −
N∑

i,j=1

∂

∂xi
(aij

∂

∂xj
u),

where the coefficients ai,j ∈ C1(Ω̄) satisfy

aij = aji, ∀i, j,(25)

and the matrix (ai,j) is uniformly coercive on Ω. With these assumptions we have
D(A) = H2(Ω) ∩H1

0 (Ω).
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Example 2 : The second example considered is H = L2(Ω), D(A) = {u ∈
H2(Ω), ∂u

∂n = 0 on ∂Ω}, and
Au = −∆u+ ρ1u,

where ρ1 > 0.
Here we can, as in [4] consider the case where

D(A2) = D(A2), A2u = ∆2u+ ρ2u,

where ρ2 > 0.
Example 3 : Let us remark that due to remark 6 and the Poincaré inequality,
our result applies to the case when A1 = A is as in example 1 and A2 = A2

1 + ζA1

for any ζ > 0.
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