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AN EXTENSION OF A LYAPUNOV APPROACH TO THE
STABILIZATION OF SECOND ORDER COUPLED SYSTEMS*»*****

THIERRY HORSIN'**** AND MOHAMED ALI JENDOUBI*?

Abstract. This paper deals with the convergence to zero of the energy of the solutions of a second
order linear coupled system. It revisits some previous results on the stabilization of such systems by
exhibiting Lyapunov functions. The ones used are constructed according to some scalar cases situations.
These simpler situations explicitely show that the assumptions made on the operators in the coupled
systems seem, first, natural and, second, give insight on their forms.
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1. INTRODUCTION, FUNCTIONAL FRAMEWORK

Let us consider a quite general coupled system in abstract form

uw'+ Bu + Aju+ aCv =0

(1.1)
v + Agv + aC*u = 0,

where A; and A; and C are, in general, unbounded operators. F. Alabau et al. considered in [4], the case when
C = 1d, and A; and As are densely closed linear self-adjoint coercive operator and B is a coercive bounded
self-adjoint operator. They proved that if |«|||C|| < 1 then the energy of the solution (u,v) in polynomially
decreasing under quite large assumption on A; and A,. In this paper our main concern is the case Ay = A?
which is a special case of the aforementioned paper.

When A; = A2 and |al||C]| < 1, A. Haraux and M.A. Jendoubi proved in [9] (see also [8]) the polynomial
convergence to 0 of the energy by means of a Lyapunov method.
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As we previously said, in this paper, we investigate such a method in the case when Ay = A% and C = A’f
with 5 € [0, %] The main result of this paper is Theorem 3.3 which also proves the polynomial convergence to
0 of the solution (u,v). Compared to the result in ([4], p. 144, Prop. 5.3), the convergence that we obtain is in
weaker norms, but requires less regularity on the initial data.

Let us mention that the stabilization of such systems settled in abstract form has been widely studied and
many results are connected to those in our paper. The case when A; and As are unbounded operators, and C
is a bounded was considered by Alabau in [3] and by Alabau et al. in [5] where the polynomial statibility is
proven. The optimal energy decay was proven in [11] in the case A; = As = A, C = I and B = AY where v < 0.
The indirect stabilization of abstract coupled equations is also considered in [1, 2, 6, 7].

Nonlinear damping are also currently investigated. See e.g. [12].

In order to motivate the Lyapunov function that we construct in the proof of our main result, we explain the
strategy in Section 2 in the framework of a coupled scalar differential system.

In Section 3 we introduce the functional framework and an existence theorem that lead to state and prove
our main result, namely Theorem 3.3.

2. A LYAPUNOV FUNCTION FOR THE SCALAR CASE

As mentioned in the preceding section, we consider the (real) scalar coupled system

' +u +du+cv=0
(2.1)

v +pv+cu=0

where A, > 0, and ¢ are such that 0 < ¢ < Au. The damping coefficient is set to 1 for simplicity but a time
scale change reduces general damping terms bu’ to this case. In order to shorten the formulas, let us introduce
for each solution (u,v) of (2.1), its total energy

1
E(u, v/, v,0") = = [u? + 0 + M + po®] + cuv.

2
Then we have for all ¢t > 0
%5(u,u',v,v’) = —u?.
Now we introduce
1
K(t) = 3 [ + 0" + A® + ] .

Our first result is the following

Proposition 2.1. There are some constants n > 0, § > 0 such that
Yt >0 K(t) <ne ®K(0).

Proof. For all € > 0 we define the function

3
H. =& —evv' + 2eud + Q—E(uu'v —duv’). (2.2)
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It is easy to check that

C1K(t) < He(t) < C2K(1) (2.3)
where
_ | YN —€ 2 —— max
@@= VA min (ﬁ, \/ﬁ) * 2|C| (f f) 24)
and
VK I I
Co= | ¥ n e — (ﬁ, \/ﬁ) + 30 (f f) . (2.5)

In fact, using Young’s inequality, we get

¢ 4[]
cuv| = ——VAul/alv] < [ + =
ol = Al < [

—eo| = = ol < = [+ 2]
—EVV' | = — vl|lv —l——
f \/>
/ f / A 2 u/2
2eut’ | = —=V A\ ul|v'| < —= | =u* + —
o] = T Ml < 22 G+
5 | = i < 2 it + B
zc”“”_2||“ HIPL= 51 2 "2
”
—ﬁ)\uv’ = ffuv <—\F)\ )\uf—kvf
2|c| || 2|c| 2 2

Then we deduce

r ) 3 12
H. < 1+€<+ \/ﬁ)]u+

U\ 2] 2
Ay Ag

[l 2 3], g RIS ORI

+ﬁ u+ <\/X+2|c|>]2 + 1+\ﬂ\/ﬁ+€<\/ﬁ+26|>12 )

It is clear that for all i € {1,2,3,4}

Ai S C27

where Cy is given in (2.5). A similar proof gives similar inequalities for Cj.
Let €1 > 0 the value of ¢ such that C defined in (2.4) is equal to 0. Let € € (0,&1). In this case C; becomes
positive.
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A straightforward computation gives

3e
H! = —u/? —ev? — cvv” + 2eu/? + 2eun” + —[(u — Mu/'v" + pu"v — Aun”’]

€ 2¢
= —(1—2e)u? — ev? + ecuv + epv® — 2eun’ — pedu® — 2ecuv
3
+—€[(u — Ny — pu'v — phuv — pev? + Aeu® + ]

2c
1 1
= —(1—2)u? —ev? — A5§u2 - ,ueivz — 2eun’ — ecuw
3 3
—psQ—cu’v + (p— )\)sQ—Cu’v'.

Now we have

2
Au? + 2cuv + ,1w2 =\ (UQ 4 Xcuv + /;U2>

_ c \2 pooA\
a2

Similarly, we get

2
Au? + 2cuv + qu > Mu2,
I

and then

A —c? (1 1
u? + 2cuv + pv? > BZC (Zy2 + —o?
2 I A

Using Young’s inequality, we can find some constants ¢, ca, c3 > 0 such that
[2un’| < L()\u — A + %
— SILL )

3 1
%|,uu’v| < 8—>\(Au — )+ cpu'?;

3 1
2—|u = AlJuv| < 51}’2 + czu’®.
c

Finally we obtain

H < —(1—(2+c1 +ez+c3)e)u — S &

Mo — A2 — O — ).
S s = e = =

Now by choosing € € (0,e71) such that 1 — (24 ¢; + ¢2 + ¢3)e > 0, some constant C5 > 0 can be found such
that

H. < -C3K(t).
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By combining this with the inequality (2.3), we get for all ¢ > 0

HI(1) <~ 2L HL(1)
Co
We conclude the proof by integrating this last inequality and using (2.3) again. O

3. THE CASE Ay = A%, AND C' = A7 wiTH § € [0, 3]

This section is devoted to the proof of Theorem 3.3. In order to proceed we first introduce the functional
framework and give an existence theorem.

3.1. Functional framework

Let H be a separable Hilbert space, whose norm and scalar product will be denoted || - || and (-, -) respectively.
We consider A : H — H an unbounded closed self-adjoint operator such that the injection D(A) C H is dense
and compact. We assume moreover throughout the paper that there exists a > 0 such that

Yu € D(A), (Au,u) > alu,u). (3.1)

Following for example the exposition given in [10], by denoting (A,)nen+ the increasing sequence of eigenvalues
of A, the largest a for which (3.1) is true is A;.

Besides, let us consider (e, )nen+ an orthonormal basis of H constituted by eigenvectors of A. For any § > 0,
o0 o0

we consider u = Z(u,eﬁei, €H (ueH <~ Z(u, e;)? < 00), and we set A? : H — H given by

n=1 n=1
APy = i Af(u, e;)e; (3.2)
i=1
then (see e.g. [10])
D(AP) ={u € H, i/\?ﬁ<u,ei>2 < o0}
i=1

and A” is an unbounded self-adjoint operator such that the inclusion D(A®) C H is dense and compact. We
also have

Vu € D(AP),  (APu,u) > alu,u), (3.3)
for some a > 0. The largest a for which this inequality is true being )\f .
As usual we write A? = Id. In this case of course the operator A% is a continuous linear operator on H.
We will denote V' = D(A'/2?) and W = D(A). Thus V and W are Hilbert spaces whose norms || - ||y and
Il - [lw are given respectively by
lullv = A 2ull, ullw = [[Aull.

We have, if we identify H with its dual

WcVcHcCV cW (3.4)
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with dense and compact injections when the norms on the Hilbert spaces V' and W’ are given by
Vue V', ully = (u, A" u)Ry
and
Vue W', ullwr = (u, A2
where (-, )y denotes the action of V/ on V (with a similar notation for W). Of course when u € H one has
v = (A, )2, ullws = (A~ 2u, u)/2.
Let us remark that with these definitions A maps continuously V' to V' and A% maps W to W'.

3.2. Existence result

Let a and 8 two reals numbers with 8 > 0. We recall that we consider the problem

u +u' + Au+ aAPu=0
(3.5)
V" + A%+ aAPu =0
which can be rewritten as the first order system
v —w=0
vV —2=0
(3.6)

w' + Au+w + aAPv =0
2+ A%y + aAPu = 0.
Let us first establish an existence and uniqueness result for (3.5).
We concentrate on the case 3 € [3, 3], the case 8 € [0, 1) being easier.
Let us consider
H:=VxxWxHxH.

For two elements of H U; = (u;, v;, wy, 2;), @ = 1,2, we define

(U1, Uz)p i= (Aug,u1)vrv + (A%, v1)wrw + (wi, we) + (21, 22)
+a(APvy, u)yr v + a(APug, v)wrw,
where (-, )y v denotes the usual duality pairing between V' and V', with similar notation for W, while (-, -)
denotes the scalar product on H for which it is a Hilbert space.

It is straightforward to prove that (-, )4 defines a scalar product on H for which it is a Hilbert space provided
that

3-28
o] < A2 . (3.7)

From now on we assume that (3.7) holds true.



AN EXTENSION OF A LYAPUNOV APPROACH TO THE STABILIZATION OF SECOND ORDER COUPLED SYSTEMS

We now consider the unbounded operator A : H — H defined by
D(A) == {U = (u,v,w,2) € H, (—w, —z, Au + aAPv 4+ w, A%v + aAPu) € H}
and for U = (u,v,w, z) € D(A)
AU = (—w, —z, Au+ aAPv 4+ w, A% + aAPu).

It is clear that A has a dense domain in H.
Let us remark that for any U = (u,v,w, 2) € D(A) one has

(AU, U)gy = —(Au, w)yr v — (A%, 2)wr w + (Au + aAPv + w,w) + (A% + aAPu, 2)
—a(APv, W)y v — a(APu, 2)wiw,

and therefore (AU, U) = ||w||? > 0. Indeed
(A% + aAPu, 2) = (A%v + aAPu, 2)wr w,

since A%u € W’ for 3 € [1,3/2] and u € V = D(A'Y/?).

7

Let us show that I 4+ A is onto. For this we take (f,g,h, k) € H. We want to find (u,v,w, z) € D(A) such

that

u—w=f

v—z=g

Au+ aAPv + 2u = h+ 2f
A2+ aAPu+v=k+g.

We define @ : (V x W)? — R by

q)(’ll/l,'l)l, UQ,'UQ) = <A1/2'LL1,A1/2U2> + <AU1, A'U2> + O[<AB’U1, u2>V’,V +
04<AU1,AB_1’U2>VI,V + 2<U1,U2> + <’U1,Ug>.

3-—28
Clearly ® is continuous on V' x W. It is also clear that ® is coercive if we assume |o| < A; 2 .

By the Lax-Milgram theorem, there exists a unique (u,v) € V- x W such that
V(ou,ov) € Vx W, @(u,v,du,dv) = (h+2f du)+ (k+ g,0v).
We therefore get

Ao+ adPu+v=g+k

Au+ aAPv +2u = h +2f.

Now if we denote w =u — f and z = v — g then w € V since u, f € V and z € W since v,g € W.
We have thus proven that A is maximal monotone. By classical theory, we get that

Theorem 3.1. For any (ug,v,u1,v1) € H, there exists a unique solution to (3.5) in C([0,T],H) x

CH([0,T], D(A)).
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Remark 3.2. It is also well known that if (ug,vg,u1,v1) € D(A) then the solution to (3.5) belongs to
C([0,T], D(A)) N CH0, T, H).

3.3. Main result of the paper

Our main result is the following

Theorem 3.3. Assume 8 € [0,3] and o # 0. Let (u, v) be a solution of (3.5) such that (u(0),v'(0),v(0),v'(0)) €
H, then there exists a constant ¢ > 0 such that

5 s_ =1 8
vt >0, AR (@O + AT @1 + AT ) + A= e@)][5
Cc .
< < [/ O) + 1 (O + [[w(O) 15, + [[(0) 5] 4 5 € [0,1];
=8 =8 1-8 _8
¥t >0, A= W (@)l + A= VOl + 1A= u@®) 5 + 1A= 0@y

< % [l )11 + [0 )1 + w(O)IF, + l(O) I3y ] i 8 € [1, gl

Remark 3.4. If we replace (3.5) by

(3.8)

u”’ 4+ Bu' + Au+ aAPv =0
v+ A%v 4+ aAPu=0

where, as mentionned in the introduction, B is a bounded self-adjoint operator on H for which there exists
@ > 0 such that

(Bu,u) > pl|ull?,

the results of Theorem 3.1 and Remark 3.4 remain true.

Remark 3.5. If we replace (3.5) by

W’ + Bu' + Au+ aAPv =0
v 4+ Asv + aAPu =0

where A, is a self-adjoint unbounded operator such that D(Ay) = D(A?) and there exist 1, v5 > 0 such that
Yu € D(Ag), v (A%u,u) < (Agu,u) < vo(A%u,u),

and if B is as in the remark 3.4, the result of Theorem 3.3 remains true provided || is small enough (depending
on A\, v and vs).

Remark 3.6. In the case § = 0, in order to obtain the decay of the energy, we must assume
A%u(0) €V, A%(0) e W, A%/(0) € H, A%/(0)¢€ H.
In the paper [4], the authors obtain such a decay with merely

Au(0) €V, A%v(0) e W, AJ/(0)e H, A*/(0) <€ H.
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We, of course, would expect that the energy decay also holds with
(u(0),v(0),4(0),v'(0)) € D(A)

but unfortunately we are not able to prove it for the moment being.
Proof of Theorem 3.3. All the computations below will be made assuming that (ug,vg,u1,v1) € D(A) which
ascertains them. By density and continuity the inequalities stated in Theorem 3.3 remain true.

3-28
Let us also recall that o satisfies |a] < Ay 2 .
We introduce the energy of the system by

Et) = 5 [l @I + [0 @O + [u@)l + [v@)i] + a(Afv,u).

[N

Then we have
E'(t) =~ |l (t)]*.
Let p > 1 and € > 0 two real numbers to be fixed later and let
H. = E — Xy P (AP20, 0 Yy + ped] (A%, Yo + pe [/, 0)w — (u, A72 )]
where p = %A?iﬁ and a = min(0,1 — ). We find easily

H. = —[[u/|? = eX | A5 71 B — X} (AP 20, 0" b + peXT e AR Wy

—peA] YA, U+ Au + a APy + pelul 0 Yy — pe(u’, AT Yy
—pe(u’ + Au+ aAPv,v)yw + pelu, A7 (A% + aAPu))

= [ ||2 = eXZTPAT | + eX3TP (AP 20, A%0 + aAPu)y + peAT | A3,
—peA] “(A%u,u )y — pe)\f“HAaTﬂuH%V, — AT “a A%, APv) o 4 pe(u 0w
—p{u, A Y — pelu v — peor| A2 vl + peal AT ulfy

= |2 = eXTAS TN B + AT P AT ol + X TPl AP 20, AP + pedT ARy
—peA] “(A%u, )y — ps/\l_a”AaTﬂuH%,V, — e, A%, APv) 4 pe(u 0w
—pe{u, A7 Y — peul v — peor AZulfys + peal AT ulfy

= [+ peAT AT F — eXTP AR s — peaTe | A%E

p—1 o 8
s — 22 bl
+p€a||A%uH%V, + NP (AP0, AP Uy — peAT (A%, u )y — peAT Ca{A%u, APv)
+pe(u’ vy — pe(u’, AT Yy — pe(u v)w.

First case : § € [0,1]. In this case a = 0. We have

p—1
2
+p6a||AL51u||%,V/ + X2 P (AP 20, APu)w — pelu, v — pealu, APv)w

+pe(u! v Yy — pe(u’, AT Y wr — pelu, v) .

H. = —|[u'|? + pell |3y — eXT P AT |3 — pel| A2y — eEo= 220 A% 03,
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Now since
-1 1 1 1
||A 2 UH%/V/ S )\2776<AU7U>W' = WHAZUH%/V/,
1 1
we get
_ 8_ -1 1 —1.9_ 8
HL < —|lo|? + pelle [ — eXi 21 A5 [ = Pgmell AR ullfy — P AR

+eX2P (AP0, AUy — pelu, v — pealu, APv)y

+pe(u’ v Yo — pe(u’, AT Yy — pe(u v)w.
Let us remark that
X P (AP 2y, APu) < X2 P al||AZvlw | AT ~2u|w

_ 8 1 1
< X Plall| Az vllw —s=gz | AZ |
2

Ay

B-1 B 1
<ed? all[AZv]lwe || A2 ullw

and that
8 B B
—peau, A%v)wr < pelal[|[ A2 v]lw [[AZ ullw
-1 8 1
<ped® lalAZvlw||AZ ulfw.
Thus
5A§_6a<AB_2v, APy — pealu, APv)y
a1 8 1 st 8 1
<ed? |all[AZvllwr|[AZullw 4+ pery ® ol A2 v]lw [ A2 ullw

81 8 1
<ed? lal(p+ DAz v]lw | A> ul[w

-1 «o 1 1, 8
<o o 0I5 (latulf + 1At )
where we choose v > 0 such that
P Ak e PR Y PO P el TS b MR (3.9)
2 2 ’ 2 2y

which is equivalent to

B—1
A2 (p+1 -1
@+l

2— B .
(p—1)AT7 A2 (p+ 1o

This choice is possible provided that

2 3-28
p+1 Al
—_— —_ 3.10
(p1> < Tap? (3.10)
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Now we choose p > 1 such that (3.10) is satisfied. Then we have

By 48— 1 8
HL = —|[/|” + pel|o [y — eATPI|AZ 7|3y — e8]l A2 ullfy — eCl|AZ o]l
—peu, u Yy + pelu’ v Ywr — pelu, AT Yo — peu’, v)we.

Now let us observe first that if one considers some U € W’ one has
WUIBy, = (U, A=20 e = (A™20, A=20) yy = AV2UR,. (3.11)
Second, since v’ € V, one has Au’ € V'. Therefore according to (3.11) we have
A By = A2 |3 (3.12)
Moreover A2y € H, thus, one has
1Au' [y = I|AY24 [} = (AT AV 20!, AV = ||| (3.13)
According to (3.13), since
(W', v )ywr = (A, A7 ),
we have

(', 0w | < [{Au’, A7 )|
< |4/ flw | Al
= [/l A7 [l

Yet we have

- 1 - _ g_
A= %y < EMBA L AT e = /\gHA -

Using Young’s inequality, we find some constants ¢y, ¢a, c3,cq4 > 0 such that

I1* + §||A%uH12/V,; (6 defined by (3.9))

)\2 B s
p(u/, 0" Yy < eo||W|]? + 3 2 AT R,

—plu, vy < cifu

)\2’
Pl A7 Yy < sl + So— | AR
—pu’,v)wr < eqlld]]? + gHAva%V, (¢ defined by (3.9)).

By choosing ¢ small enough, we find a constant n = n(p,e) > 0 such that for all ¢t > 0

H < = (2 + A5 By + ARl + A7 ol )
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Let

el

B _ B _ B=1 B8
[IIAQ )+ 1A T O + 1A w®)f + A= ey

DN | =

+04<A2572U,U>W/
and
1.1 2 B_1.1 2 51 2 g 2
K(t) = |AZ7 ()l + [[A2 70 Ol + [A =7 u(@) i + [[AZ0(@) [y

For all t > 0, we have

B = || AT ()3
Then E is nonincreasing. Observe that
_ (&% B—1 B
(42520, ]| <~ A%E () AR o (0) o,
A2
from which we deduce that
. —lof L +laf
AN - N 4o
LK) <E< S0 —K(1). (3.14)
2\, 2, °
Now since
B_ -1 1 1
1A= (t)llwr < ——5 I/, A= u(®)lwr < ——5 A% ullw,
A2 AP

then there exists a constant v > 0 such that for all t > 0
H. < —yK(u,v,u’,v"). (3.15)

From (3.15), assuming ¢ possibly smaller in order to achieve positivity of the quadratic form H., we get

/O K (u(s),v(s),u'(s),v'(s)) ds < %HE(U(O),’U(O),U'(O),v/(o))-

Using inequality (3.14), we obtain

3—

20 / Blu(s), v(s), ' (), 0/(5)) ds < - H.(u(0), v(0), ' (0), v'(0)).
APt lal o 7
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Now since F is nonincreasing, it follows

- A2 ol
Ba(0), o), (0), v (1) < M U (0),0(0), (0), '(0)
20 7y
Using inequality (3.14) we get
3-28
A2 Haf 1

Second case : 3 € (1, 2]. In this case a =1 — 3.

- = _ - -1 .9
HL =~/ |> 4+ peX; AT W = XTI AT T Ry - peX] AT Bl — <P AT AR ol

+p5a\|A%uH%,V, +eXTP (AP0, APu)yyr — peXTHAY P )
—peNy LAV Pu, AP0V 4 pe(u! 0 Y — pe(u!, AN Y — pe(u!, v

Now since

B—1 1 _ 1 _8
1A= ullfyr < =55 (A u,u)wr = A 2y,

— 3—2
)‘1 )‘1 g

we get

_ - _ -1 _
HL < — /|2 4+ peX{ AT Wy — Xy AR — Emed] T AT s
p—
2
—pe Ny T AV Pu, APV + pe(u Y — pelu, AN Yy — pe(u, v)w

1 _ _ —
—¢ NP A% 0|2 + X2 P (AP 20, APuyr — pedTH A Py o)

Let us remark that

NP (A2, APy < eXZPal|| AT ol lw | AT 2w

_ 8 1 8
< X lalll A% vl 55 14T Fullw

1
B—1 8 1-8
<eXal|AZvl|we || AT 2 ullwe
and that

_ _ _ B _B

—peNy T (A Pu, APuY < peXP T al|| A ollwe | AT T ulw,

we therefore get

skffﬁa(A'B*QU,ABmw/ —psAf71a<A1*ﬂu,Aﬁv>W/
< )\5_1 B8 1—8 B—1 B8 1—8
<edi oAz oflwo | AT 2 ullwe + pedy ol A ollw [AT 2 ullwe
_ 8 _8
= ep+ DA ol | AZ vl | A" 2w

13
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— o 8 1. s
<o+ 0l (14 Ful 4 21akl )
where we choose 7 > 0 such that
§o= =Ly M+ 1)M’y >0, (=22 Lo _ N+ 1)@ >0
2 1 ! 2 ’ 2 1 ! 2
which is equivalent to
A p+ 1ol p—1
(p— AT P+ Dled
This choice is possible provided that
2 3-28
p+1 Al
— < —. 3.16
(5) <% (316)

We choose p > 1 such that (3.16) is satisfied. Then we have
_ 1-8 _ B _ _B8 8
HL < —[[u'|| +peX{ A= [[fr — AT 7N AZ 7 [fy — 0]l AT 2 a3y — eCllA 0]y
—pe Ny THAY Pu i) + pe(u! 0 Y — pe(u!, AN Y — peu!, o).
By use of Young’s inequality we deduce that there are c1, ca, c3,c4 > 0 such that

_ _ 1) _8
—pA{ (A ﬁu7u’>§01|\u’\\2+5|\A1 ullfy,

2-p8
A

B _
plu’, 0" ywr < collu’ || + —5ll4® '3y,
NB
pelul, A7 e < el + L AR

B
ol v < eall |2+ S ATy

By choosing ¢ small enough, we find a constant n = n(p,e) > 0 such that for all t > 0

8 _ Y 8
HL < = (/1 + 4370 By + AT Sl + Aol )

Let

~ 1 -8 =8 1-8 _B
E=glllaz o' ()3 + A=V O + 1A u®)F + (1A zv(t)H%w} + alv, uywr

and

=B =B 1-8 s
K@) = [A=d' @Ol + 1A= o0 + 1A= u(®)li + A2 o) -
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For all t > 0, we have
E' =~ A5 (1)

Then FE is nonincreasing.

Since
|| 1-8 _8
(v, wyw| < —5=g5 A7 u(t)llw A"~ 2 o(t) lwr
A2
then we get
A —lal A +al
2 — | - 2 + o
L K({t)<E<—F0—K(1). (3.17)
2\, 2 2\, 2
Now since
_8, 1 8_1 1-8 1. 4.8
A7 O)lw < =142 lw, A= u@®)llw < < [[AZullwr,
A A7
then there exists a constant v > 0 such that for all t > 0
H! < —yK(u,v,u’,v"). (3.18)

From (3.18), assuming & possibly smaller in order to achieve positivity of the quadratic form H., we get

/0 K(u(s),v(s),u'(s),v'(s))ds < %Hg(u(O),v(O),u'(O),v’(O)).

Using inequality (3.17), we obtain

2 [ )06 (9),419)) s < L B0, (00,001, 0))
APt lal o 7

Now since F is nonincreasing, it follows

B
~ A2 A all
BG(t) o0, w(0),0'0) < U (0), 00),0/(0), v/ (0)

2X 7y

Using inequality (3.17) we get

3-28
A2 Hla 1
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4. EXAMPLES

This section is devoted to giving examples of operators to which Theorem 3.3 applies.

Example 4.1. The first case that we consider is when H = L?(2) and

0 0
Au = — Z 87@((1”87]-”)’
1,7=1
where the coefficients a; ; € C1(Q) satisfy
A5 = Qji, Vivja (41)

and the matrix (a; ;) is uniformly coercive on Q. With these assumptions we have D(A) = H?(Q) N H ().

Example 4.2. The second example considered is H = L?(Q), D(A) = {u € H*(Q), g—x =0 on 9N}, and
Au = —Au + pyu,

where p; > 0.
Here we can, as in [4] consider the case where

D(Az) = D(A?), Asu = A*u+ pou,

where pa > 0.

Example 4.3. Let us remark that due to remark 3.5 and the Poincaré inequality, our result applies to the case
when A; = A is as in example 1 and Ay = A? + (A; for any ¢ > 0.
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