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We consider an optimal control problem associated to Dirichlet boundary value

problem for linear elliptic equations on a bounded domain Ω. We take the matrix-

valued coe�cients A(x) of such system as a control in L1(Ω;RN × RN ). One of the

important features of the admissible controls is the fact that the coe�cient matrices

A(x) are non-symmetric, unbounded on Ω, and eigenvalues of the symmetric part

Asym = (A+At)/2 may vanish in Ω.
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1. Introduction

The aim of this paper is to study the following optimal control problem (OCP)
for a linear elliptic equation with unbounded coe�cients in the main part of the
elliptic operator

Minimize I(A, y) = ∥y − yd∥2L2(Ω) +

ˆ
Ω

(∇y,Asym∇y)RN dx

subject to the constraints
−div

(
A(x)∇y

)
+ a0(x)y = −div f in Ω, ,

y = 0 on ∂Ω,

(1.1)

where the matrix A = Asym + Askew ∈ L1(Ω; SNsym) ⊕ L2p(Ω;SNskew) is adopted
as a control, f ∈ D′(Ω;RN ) and yd ∈ L2(Ω) are given distributions, p ≥ 1, and
a0 ∈ L∞(Ω) is such that a0(x) ≥ α > 0 almost everywhere in Ω. We de�ne a
class of admissible controls Aad as a nonempty compact subset of L1(Ω; SNsym) ⊕
L2p(Ω; SNskew) such that for every A ∈ Aad we have

A∗(x) ≼ Askew(x) ≼ A∗∗(x) a.e. in Ω,

ζad(x)I ≤ Asym(x) ≤ β(x)I a. e. in Ω,

ˆ
Ω
Asym(x) dx = M,

�����������������
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where M ∈ SNsym and A∗, A∗∗ ∈ L2p(Ω; SNskew) are given nonzero matrices, β ∈
L1(Ω), β ≥ ζad, and ζ

−1
ad ∈ L2q(Ω) for q = p/(p− 1).

This kind of problems naturally appears in the optimal design theory for
linearized elliptic boundary value problems. Their characteristic feature of the
problem (1.1) is the fact that the existence, uniqueness, and variational properties
of the weak solution to (1.1) are drastically di�erent from the corresponding
properties of solutions to the elliptic equations with coercive L∞-matrices in
coe�cients. Typically, in such cases, the boundary value problem (1.1) with
unbounded matrices A ∈ Aad may admit many or even in�nitely many weak
solutions [21, 22].

Optimal control in coe�cients for partial di�erential equations is a classical
subject initiated by Lurie [17], Lions [16], and Pironneau [19]. Since the range of
such optimal control problems is very wide, including as well optimal shape design
problems, some problems originating in mechanics and others, this topic has been
widely studied by many authors. However, most of these results and methods rely
on linear PDEs with bounded coe�cients in the main part of elliptic operators,
while only a few articles deal with with unbounded and degenerate coe�cients,
see [1, 3, 7�11,13,14].

The principal feature of OCP (1.1) is that the corresponding boundary value
problem (1.1)2�(1.1)3 is ill-possed and the class of admissible controls A ∈ Aad
belongs to L1(Ω;MN ). We note that these assumptions on the class of admissible
controls together with L2p-properties of the skew-symmetric parts are essentially
weaker than they usually are in the literature. In Sections 2 and 3, we discuss
some auxiliary results that are closely related with the correctness of the notion of
weak solutions to the above boundary value problem and describe a mathematical
background for convergence formalism in variable Sobolev spaces.

We give the precise de�nition of the class of admissible controls in Section 4
and, using the direct method in the Calculus of variations, we show that a set
of optimal pairs to the above problem is nonempty provided the so-called non-
triviality condition on the set of admissible solutions. Since this condition is
closely related with the existence of weak solutions to the boundary value problem
(1.1)2�(1.1)3, we show in Section 5 that this question can be solved due to the
approximation approach.

2. Notation and Preliminaries

Let Ω be a bounded open connected subset of RN (N ≥ 2) with Lipschitz
boundary ∂Ω. Let χE be the characteristic function of a subset E ⊂ Ω, i.e.
χE(x) = 1 if x ∈ E, and χE(x) = 0 if x ̸∈ E.

LetMN be the set of all N×N real matrices. We denote by SNskew the set of all
skew-symmetric matrices C = [cij ]

N
i,j=1, i.e., C is a square matrix whose transpose

is also its opposite. Thus, if C ∈ SNskew then cij = −cji and, hence, cii = 0.

Therefore, the set SNskew can be identi�ed with the Euclidean space R
N(N−1)

2 . Let
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SNsym be the set of all N ×N symmetric matrices, which are obviously determined
by N(N+1)/2 scalars. For each matrix B ∈ MN , we have a unique representation

B = Bsym +Bskew, (2.1)

where Bsym := 1
2

(
B +Bt

)
∈ SNsym and Bskew := 1

2

(
B −Bt

)
∈ SNskew. In the

sequel, we will always identify each matrix B ∈ MN with its decomposition in the
form (2.1).

Let p, q ∈ [1,∞] be given real numbers such that 1
p + 1

q = 1. Let L2p
(
Ω; SNskew

)
be the normed space of measurable 2p-integrable functions whose values are skew-
symmetric matrices.

Let A(x) and B(x) be given matrices such that A,B ∈ L2p(Ω; SNskew). We say
that these matrices are related by the binary relation ≼ on the set L2p(Ω; SNskew)
(in symbols, A(x) ≼ B(x) a.e. in Ω), if

LN
(
∪Ni=1 ∪Nj=i+1

{
x ∈ Ω : aij(x) > bij(x)

})
= 0. (2.2)

Here, LN (E) denotes the N -dimensional Lebesgue measure of E ⊂ RN de�ned
on the completed borelian σ-algebra.

Let α ∈ R be a �xed positive value. Let ζad and β be given L1(Ω)-functions
satisfying the properties

β > ζad ≥ 0 a.e. in Ω, ζ−1
ad ∈ L2q(Ω) for q = p/(p− 1), p ≥ 1, (2.3)

β, ζad : Ω → R1
+ are smooth functions along the boundary ∂Ω, (2.4)

ζad = β = α on ∂Ω. (2.5)

By Mβ
ζad

(Ω) we denote the set of all matrices A = [ai j(·) ] ∈ L1(Ω; SNsym) such
that

ζadI ≤ A(x) ≤ β(x)I a. e. in Ω (2.6)

Here, I is the identity matrix in RN×N , and (2.6) should be considered in the
sense of quadratic forms de�ned by (Aξ, ξ)RN for ξ ∈ RN . Therefore, condition
(2.6) implies the following inequalities:

if A ∈ Mβ
ζad

(Ω), then ∥A∥L1(Ω;SNsym) ≤ ∥β∥L1(Ω) < +∞, (2.7)

ζad(x)∥ξ∥2RN ≤ (A(x)ξ, ξ)RN a. e. in Ω, ∀ ξ ∈ RN (2.8)

∥A−1/2(x)ξ∥2RN ≤ ζ−1
ad (x)∥ξ∥2RN a. e. in Ω, ∀ ξ ∈ RN , (2.9)

and, therefore,

A−1/2 ∈ L4q(Ω; SNsym) and ∥A−1/2∥L4q(Ω;SNsym) ≤
√

∥ζ−1
ad ∥L2q(Ω). (2.10)
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To each matrix A ∈ Mβ
ζad

(Ω) ⊂ L1(Ω;SNsym) we will associate two weighted
Sobolev spaces: WA(Ω) = W (Ω;Adx) and HA(Ω) = H(Ω;Adx), where WA(Ω)
is the set of functions y ∈W 1,1

0 (Ω) for which the norm

∥y∥A =
( ˆ

Ω

(
y2 + (∇y,A(x)∇y)RN

)
dx
)1/2

(2.11)

is �nite, and HA(Ω) is the closure of C∞
0 (Ω) in WA(Ω)-norm. It is well-known

that due to the inequality (2.8) the space WA(Ω) is complete with respect to the
norm ∥ · ∥A (see [11]). It is clear that HA(Ω) ⊂ WA(Ω), and WA(Ω), HA(Ω) are
Hilbert spaces.

For our further analysis, we make use of the following observation.

Remark 2.1. If N ≥ 2 and there exists a value ν ∈
(
N
2 ,+∞

)
such that u−ν ∈

L1(Ω), then the expressions (for more details see [4, pp.46]):

||y||1,Hu =

[ˆ
Ω
u |∇y|2 dx

]1/2
and (2.12)

∥y∥2,Hu =
(ˆ

Ω

(
y2 + u |∇y|2

)
dx
)1/2

(2.13)

can be considered as equivalent norms on Hu := cl∥·∥2,Hu
C∞
0 (Ω). Moreover, in

this case the embedding Hu ↪→ L2(Ω) is compact. Taking this fact and de�nition
of the classMβ

ζad
(Ω) into account, we deduce that the norm ∥·∥A, given by (2.11),

is equivalent to the following one

∥y∥1,A =
(ˆ

Ω
(∇y,A(x)∇y)RN dx

)1/2
(2.14)

on HA(Ω) provided A ∈ Mβ
ζad

(Ω), ζ−1
ad ∈ L2q(Ω) with q = p/(p− 1), where

p ∈ [1,∞) if N ∈ {2, 3}, and 1 ≤ p ≤ N

N − 4
if N ≥ 4. (2.15)

Indeed, since the conditions (2.15) implies the ful�lment of inequality q = p/(p−
1) > N/4, it follows that ν := 2q ∈

(
N
2 ,+∞

)
and ζ−νad ∈ L1(Ω).

Let A = Asym + Askew ∈ L1
(
Ω;MN

)
be a given matrix matrix such that

Askew ∈ L2p
(
Ω;SNskew

)
. In what follows, we associate with A the bilinear skew-

symmetric form

Φ(y, v)A =

ˆ
Ω

(
∇v,Askew(x)∇y

)
RN dx, ∀ y, v ∈WAsym(Ω),

and introduce the matrix C(x) ∈ SNskew following the rule

C(x) = A−1/2
sym (x)Askew(x)A−1/2

sym (x) a.e. in Ω. (2.16)
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It is easy to see that C ∈ L2
(
Ω;SNskew

)
. Indeed, by the Cauchy-Bunyakowsky

inequality and estimate (2.10), we have

∥C∥2
L2(Ω;SNskew)

≤
ˆ
Ω
∥Askew∥2L(RN ,RN )∥A

− 1
2

sym∥4L(RN ,RN ) dx

≤
(ˆ

Ω
∥Askew∥2pL(RN ,RN )

dx

)1/p(ˆ
Ω
∥A− 1

2
sym∥4qL(RN ,RN )

dx

)1/q

= ∥Askew∥2L2p(Ω;SNskew)
∥A− 1

2
sym∥4L4q(Ω;SNsym)

≤ ∥ζ−1
ad ∥

2
L2q(Ω)∥Askew∥

2
L2p(Ω;SNskew)

< +∞. (2.17)

Hence, the form Φ(y, v)A is unbounded on WAsym(Ω), in general.
However, if we temporary assume that C ∈ L∞(Ω; SNskew), then the bilinear

form Φ(·, ·)A is obviously bounded on WAsym(Ω). In this case we have∣∣∣ ˆ
Ω

(
∇φ,Askew∇y

)
RN dx

∣∣∣2 =

∣∣∣∣ˆ
Ω

(
A

1
2
sym∇φ,

[
A

− 1
2

symAskewA
− 1

2
sym

]
A

1
2
sym∇y

)
RN dx

∣∣∣∣2
≤ ∥C∥L∞(Ω;SNskew)

ˆ
Ω
|A

1
2
sym∇φ|2RN dx

ˆ
Ω
|A

1
2
sym∇y|2RN dx

≤ ∥C∥L∞(Ω;SNskew) ∥φ∥Asym∥y∥Asym .

In order to deal with the case C ̸∈ L∞(Ω; SNskew), we notice that the value
Φ(y, v)A is always �nite provided y ∈WAsym(Ω) and φ ∈ C∞

0 (Ω). Indeed,

|Φ(y, v)A|2 :=

∣∣∣∣ˆ
Ω

(
∇φ,Askew∇y

)
RN dx

∣∣∣∣2 ≤ ∥φ∥2
C1(Ω)

(ˆ
Ω
|Askew∇y|RN dx

)2

≤ ∥φ∥2
C1(Ω)

ˆ
Ω

∥∥AskewA− 1
2

sym

∥∥2
L(RN ,RN )

dx

ˆ
Ω

∣∣A 1
2
sym∇y

∣∣2
RN dx

≤ ∥φ∥2
C1(Ω)

ˆ
Ω

∥∥Askew∥∥2L(RN ,RN )
ζ−1
ad dx

ˆ
Ω

(
∇y,Asym∇y

)
RN dx

≤ ∥φ∥2
C1(Ω)

∥y∥2A
(ˆ

Ω
∥Askew∥2pL(RN ,RN )

dx

)1/p(ˆ
Ω
ζ−qad dx

)1/q

≤ ∥φ∥2
C1(Ω)

∥y∥2A|Ω|1/2q ∥ζ−1
ad ∥L2q(Ω) ∥Askew∥2L2p(Ω;SNskew)

< +∞.

Hence, if C ∈ L2
(
Ω; SNskew

)
then the integral

ˆ
Ω

(
∇φ,Askew(x)∇y

)
RN dx is

well de�ned for every y ∈ WAsym(Ω) and φ ∈ C∞
0 (Ω). Taking this fact into

account, we set

[y, φ]A =

ˆ
Ω

(
∇φ,Askew(x)∇y

)
RN dx =

ˆ
Ω

(
A1/2
sym∇φ,C(x)A1/2

sym∇y
)
RN dx,

∀ y ∈WAsym(Ω), ∀φ ∈ C∞
0 (Ω),

where the matrix C is de�ned by (2.16), and introduce of the following notion.
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Let VAsym(Ω) be some intermediate space with HAsym(Ω) ⊆ VAsym(Ω) ⊆
WAsym(Ω).

De�nition 2.1. Let A = Asym + Askew ∈ L1
(
Ω;MN

)
be a given matrix such

that Askew ∈ L2p
(
Ω;SNskew

)
. We say that an element y ∈ VAsym(Ω) belongs to the

set D(VAsym) if∣∣∣∣ˆ
Ω

(
∇φ,Askew∇y

)
RN dx

∣∣∣∣ ≤ c(y,A)

(ˆ
Ω
φ2 dx+

ˆ
Ω

(∇φ,Asym∇φ)RN dx

)1/2

= c(y,A)∥φ∥Asym , ∀φ ∈ C∞
0 (Ω) (2.18)

with some constant c depending on y and A.

As a result, if y ∈ D(VAsym) then the mapping φ 7→ [y, φ]A can be de�ned for
all φ ∈ HAsym(Ω) using (2.18) and the standard rule

[y, φ]A = lim
ε→0

[y, φε]A, (2.19)

where {φε}ε>0 ⊂ C∞
0 (Ω) and φε → φ strongly in HAsym(Ω) (it is the case where

we essentially use the fact that C∞
0 (Ω) is dense in HAsym(Ω)). In particular, if

y ∈ D(HAsym), then we can de�ne the value [y, y]A and this one is �nite for
every y ∈ D(HAsym), although the "integrand"

(
∇y,Askew∇y

)
RN needs not be

integrable on Ω, in general.
Let f : Ω → R be a function of L1(Ω). We de�ne

TV (f) :=

ˆ
Ω
|Df | = sup

{ˆ
Ω
f (∇, φ)RN dx :

φ = (φ1, . . . , φN ) ∈ C1
0 (Ω;RN ), |φ(x)| ≤ 1 for x ∈ Ω

}
,

where (∇, φ)RN =
∑N

i=1
∂φi

∂xi
.

According to the Radon-Nikodym theorem, if TV (f) < +∞ then the distribu-
tion Df is a measure and there exist a vector-valued function ∇f ∈ [L1(Ω)]N and
a measure Dsf , singular with respect to the N -dimensional Lebesgue measure
LN⌊Ω restricted to Ω, such that Df = ∇fLN⌊Ω +Dsf.

De�nition 2.2. A function f ∈ L1(Ω) is said to have a bounded variation in Ω
if TV (f) < +∞. By BV (Ω) we denote the space of all functions in L1(Ω) with
bounded variation, i.e. BV (Ω) =

{
f ∈ L1(Ω) : TV (f) < +∞

}
.

Under the norm ∥f∥BV (Ω) = ∥f∥L1(Ω)+TV (f), BV (Ω) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [5]):

Proposition 2.1. Let {fk}∞k=1 be a sequence in BV (Ω) strongly converging to
some f in L1(Ω) and satisfying condition supk∈N TV (fk) < +∞. Then

f ∈ BV (Ω) and TV (f) ≤ lim inf
k→∞

TV (fk)

and for every bounded sequence {fk}∞k=1 ⊂ BV (Ω) there exists a subsequence,
still denoted by fk, and a function f ∈ BV (Ω) such that fk → f in L1(Ω).
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Let Ik : Uk × Yk → R be a cost functional, Yk be a space of states, and Uk
be a space of controls. Let min {Ik(u, y) : (u, y) ∈ Ξk} be a parameterized OCP,
where

Ξk ⊂ {(uk, yk) ∈ Uk × Yk : uk ∈ Uk, Ik(uk, yk) < +∞}

is a set of all admissible pairs linked by some state equation. Hereinafter we always
associate to such OCP the corresponding constrained minimization problem:

(CMPk) :

⟨
inf

(u,y)∈Ξk

Ik(u, y)

⟩
. (2.20)

Since the sequence of constrained minimization problems (2.20) lives in variable
spaces Uk × Yk, we assume that there exists a Banach space U× Y with respect
to which a convergence in the scale of spaces {Uk × Yk}k∈N is well de�ned (for
the details, we refer to [12, 20]). In the sequel, we use the following notation for
this convergence (uk, yk)

µ−→ (u, y) in Uk × Yk. Moreover, we assume that every
bounded sequence in variable space Uk ×Yk is sequentially compact with respect
to the µ-convergence.

In order to study the asymptotic behavior of a family of (CMPk), the passage
to the limit in (2.20) as the parameter k tends to +∞ has to be realized. The
expression �passing to the limit�means that we have to �nd a kind of �limit cost
functional� I and �limit set of constraints� Ξ with a clearly de�ned structure such
that the limit object

⟨
inf(u,y)∈Ξ I(u, y)

⟩
may be interpreted as some OCP.

Following the scheme of the direct variational convergence [12], we adopt
the following de�nition for the convergence of minimization problems in variable
spaces.

De�nition 2.3. A problem
⟨
inf(u,y)∈Ξ I(u, y)

⟩
is the variational µ-limit of the

sequence (2.20) as k → ∞, if and only if the following conditions are satis�ed:

(d) If sequences {kn}n∈N and {(un, yn)}n∈N are such that kn → 0 as n → ∞,

(un, yn) ∈ Ξkn ∀n ∈ N, and (un, yn)
µ−→ (u, y) in Ukn × Ykn , then

(u, y) ∈ Ξ; I(u, y) ≤ lim inf
n→∞

Ikn(un, yn); (2.21)

(dd) For every (u, y) ∈ Ξ ⊂ U × Y, there are an integer k0 > 0 and a sequence
{(uk, yk)}k∈N (called a Γ-realizing sequence) such that

(uk, yk) ∈ Ξk, ∀ k ≥ k0, (uk, yk)
µ−→ (û, ŷ) in Uk × Yk, (2.22)

I(u, y) ≥ lim sup
k→∞

Ik(uk, yk). (2.23)

Then the following result takes place [12].

Theorem 2.1. Assume that the constrained minimization problem⟨
inf

(u,y)∈Ξ0

I0(u, y)
⟩

(2.24)
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is the variational µ-limit of sequence (2.20) in the sense of De�nition 2.3 and this
problem has a nonempty set of solutions

Ξopt0 :=

{
(u0, y0) ∈ Ξ0 : I0(u

0, y0) = inf
(u,y)∈Ξ0

I0(u, y)

}
.

For every k ∈ N, let (u0k, y
0
k) ∈ Ξk be a minimizer of Ik on the corresponding

set Ξk. If the sequence {(u0k, y
0
k)}k∈N is relatively compact with respect to the µ-

convergence in variable spaces Uk × Yk, then there exists a pair (u0, y0) ∈ Ξopt0

such that

(u0k, y
0
k)

µ−→ (u0, y0) in Uk × Yk, (2.25)

inf
(u,y)∈Ξ0

I0(u, y) = I0
(
u0, y0

)
= lim

k→∞
Ik(u

0
k, y

0
k) = lim

k→∞
inf

(uk,yk)∈Ξk

Ik(uk, yk).

(2.26)

3. Weak Convergence in Variable L2-Spaces Associated with
SNsym-Valued Radon Measures

By a nonnegative Radon measure on Ω we mean a nonnegative Borel measure
which is �nite on every compact subset of Ω. The space of all nonnegative Radon
measures on Ω will be denoted by M+(Ω). According to the Riesz theory, each
Radon measure µ ∈ M+(Ω) can be interpreted as an element of the dual of the
space C0(Ω) of all continuous functions with compact support. Let M(Ω; SNsym)

denote the space of all SNsym-valued Borel measures. Then µ = [µij ] ∈M(Ω; SNsym)
⇔ µij ∈ C ′

0(Ω), i, j = 1, . . . , N .
Let µ and the sequence {µk}k∈N be matrix-valued Radon measures. We say

that {µk}k∈N weakly-∗ converges to µ in M(Ω; SNsym) if

lim
k→∞

ˆ
Ω
φ · dµk =

ˆ
Ω
φ · dµ ∀φ ∈ C0(Ω; SNsym).

A typical example of such measures is

dµk = Ak(x) dx, dµ = A(x) dx, (3.1)

where Ak, A ∈ L1(Ω; SNsym) and Ak → A in L1(Ω;SNsym). (3.2)

Hereinafter we suppose that the measures µ and {µk}k∈N are de�ned by (3.1)�
(3.2). Then µk

∗
⇀ µ in M(Ω; SNsym). Further, we will use L2(Ω, A dx)N to denote

the Hilbert space of measurable vector-valued functions f ∈ RN on Ω such that

∥f∥L2(Ω,A dx)N =
(ˆ

Ω
(f,A(x)f)RN dx

)1/2
< +∞.

We say that a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N in is bounded if

lim sup
k→∞

ˆ
Ω

(vk, Ak(x)vk)RN dx < +∞.
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De�nition 3.1. A bounded sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is weakly con-

vergent to a function v ∈ L2(Ω, A dx)N in variable space L2(Ω, Ak dx)N if

lim
k→∞

ˆ
Ω

(φ,Ak(x)vk)RN dx =

ˆ
Ω

(φ,A(x)v)RN dx ∀φ ∈ C∞
0 (Ω)N . (3.3)

De�nition 3.2. A sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is said to be strongly

convergent to a function v ∈ L2(Ω, A dx)N if

lim
k→∞

ˆ
Ω

(bk, Ak(x)vk)RN dx =

ˆ
Ω

(b, A(x)v)RN dx (3.4)

whenever bk ⇀ b in L2(Ω, Ak dx)N as k → ∞.

Remark 3.1. Note that in the case Ak ≡ A, De�nitions 3.1�3.2 leads to the usual
notion of convergence in weighted Hilbert space L2(Ω, A dx)N .

The main properties of the weak and strong convergences in Lp(Ω, dµε) can
be expressed as follows (see [11] for the details):

Proposition 3.1. If a sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N is bounded and the

condition (3.2) holds true, then it contains a weakly convergent subsequence in
L2(Ω, Ak dx)N .

Proposition 3.2. If the sequence
{
vk ∈ L2(Ω, Ak dx)N

}
k∈N converges weakly to

v ∈ L2(Ω, A dx)N and the condition (3.2) holds true, then

lim inf
k→∞

ˆ
Ω

(vk, Ak(x)vk)RN dx ≥
ˆ
Ω

(v,A(x)v)RN dx. (3.5)

Proposition 3.3. Assume the condition (3.2) holds true. Then the weak conver-
gence of a sequence

{
vk ∈ L2(Ω, Ak dx)N

}
k∈N to v ∈ L2(Ω, A dx)N and

lim
k→∞

ˆ
Ω

(vk, Ak(x)vk)RN dx =

ˆ
Ω

(v,A(x)v)RN dx (3.6)

are equivalent to the strong convergence of {vk}k∈N in L2(Ω, Ak dx)N to v ∈
L2(Ω, A dx)N .

In what follows, we make use of the following result.

Lemma 3.1. Let Askew ∈ L2p(Ω; SNskew) be a given matrix, and let
{
Asymk

}
k∈N ⊂

Mβ
ζad

(Ω) be a sequence such that

Asymk → Asym0 in L1(Ω; SNsym). (3.7)

Let φ ∈ C∞
0 (Ω) be an arbitrary test function. Then

vk :=
(
Asymk

)−1∇φ→ (Asym0 )
−1∇φ =: v0 and

wk :=
(
Asymk

)−1
Askew∇φ→ (Asym0 )

−1
Askew∇φ =: w0

strongly in variable space L2(Ω, Asymk dx)N as k → ∞.
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Proof. Let φ ∈ C∞
0 (Ω) be an arbitrary test function. Since

∥vk∥2L2(Ω,Asym
k dx)N =

ˆ
Ω

(
vk, A

sym
k vk

)
RN dx =

ˆ
Ω

(
∇φ,

(
Asymk

)−1∇φ
)
RN

dx

≤
ˆ
Ω
|∇φ|2RN ζ

−1
ad dx ≤ ∥φ∥2C1(Ω)|Ω|

2p
p+1 ∥ζ−1

ad ∥L2q(Ω) < +∞,

∥wk∥2L2(Ω,Asym
k dx)N =

ˆ
Ω

(
wk, A

sym
k wk

)
RN dx

=

ˆ
Ω

(
Askew∇φ,

(
Asymk

)−1
Askew∇φ

)
RN

dx

≤
ˆ
Ω
ζ−1
ad |A

skew∇φ|2 dx ≤ ∥φ∥2C1(Ω)∥ζ
−1
ad ∥Lq(Ω)∥Askew∥2L2p(Ω;SNskew)

< +∞

and, for each ψ ∈ C∞
0 (Ω),

ˆ
Ω

(
∇ψ,Asymk vk

)
RN dx =

ˆ
Ω

(
∇ψ,Asymk

(
Asymk

)−1∇φ
)
RN

dx

=

ˆ
Ω

(∇ψ,∇φ)RN dx =

ˆ
Ω

(∇ψ,Asym0 v0)RN dx,

ˆ
Ω

(
∇ψ,Asymk wk

)
RN dx =

ˆ
Ω

(
∇ψ,Asymk

(
Asymk

)−1
Askew∇φ

)
RN

dx

=

ˆ
Ω

(
∇ψ,Askew∇φ

)
RN

dx =

ˆ
Ω

(∇ψ,Asym0 w0)RN dx,

(3.8)

it follows that the sequences {vk}k∈N and {wk}k∈N are bounded and weakly
convergent in variable space L2(Ω, Asymk dx)N to vector-valued functions v0 ∈
L2(Ω, Asym0 dx)N and w0 ∈ L2(Ω, Asym0 dx)N , respectively.

In order to show that the sequence {vk}k∈N is strongly convergent to v0 :=

(Asym0 )
−1∇φ, we make use of Proposition 3.3. Following this assertion, it is enough

to prove the equality

lim
k→∞

ˆ
Ω

(
vk, A

sym
k vk

)
RN dx = lim

k→∞

ˆ
Ω

(
∇φ,

(
Asymk

)−1∇φ
)
RN

dx

=

ˆ
Ω

(
∇φ, (Asym0 )

−1∇φ
)
RN

dx =

ˆ
Ω

(v0, A
sym
0 v0)RN dx. (3.9)

In view of estimate
(
∇φ,

(
Asymk

)−1∇φ
)
RN

≤ ∥φ∥2C1(Ω)ζ
−1
ad < +∞, ∀ k ∈ N, the

sequence
{(

∇φ,
(
Asymk

)−1∇φ
)
RN

}
k∈N

ie equi-integrable. On the other hand,

property (3.7) implies that, within a subsequence, we have the pointwise conver-
gence

(
Asymk

)−1 → (Asym0 )
−1 almost everywhere in Ω. Hence, up to a subsequence,(

∇φ,
(
Asymk

)−1∇φ
)
RN

→
(
∇φ, (Asym0 )

−1∇φ
)
RN

a.e. in Ω.
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Thus, the equality (3.9) is a direct consequence of Lebesgue Dominated Theorem,
and hence,(
Asymk

)−1∇φ→ (Asym0 )
−1∇φ strongly in L2(Ω, Asymk dx)N ∀φ ∈ C∞

0 (Ω).

Following the same arguments, it can be shown that

lim
k→∞

ˆ
Ω

(
wk, A

sym
k wk

)
RN dx = − lim

k→∞

ˆ
Ω

(
∇φ,Askew

(
Asymk

)−1
Askew∇φ

)
RN

dx

= −
ˆ
Ω

(
∇φ,Askew (Asym0 )

−1
Askew∇φ

)
RN

dx =

ˆ
Ω

(w0, A
sym
0 w0)RN dx.

Combining this fact with relation (3.8), by Proposition 3.3 we have:(
Asymk

)−1
Askew∇φ→ (Asym0 )

−1
Askew∇φ strongly in L2(Ω, Asymk dx)N

∀φ ∈ C∞
0 (Ω). The proof is complete.

4. Setting of the Optimal Control Problem

Let p ≥ 1 be a given exponent and let f : Ω → RN be a vector-valued function
such that f ∈ L4p/(p+1)(Ω;RN ). Let M ∈ SNsym be a constant matrix satisfying
the condition

(Mξ, ξ)RN ≥ m∥ξ∥2RN for some m > 0.

The optimal control problem we consider in this paper is to minimize the discre-
pancy (tracking error) between a given distribution yd ∈ L2(Ω) and a solution y
of the Dirichlet boundary value problem for the linear elliptic equation

−div
(
A(x)∇y

)
+ a0(x)y = −div f in Ω, (4.1)

y = 0 on ∂Ω. (4.2)

by choosing an appropriate matrix-valued control A(x) = Asym(x) + Askew(x).
Here, a0 ∈ L∞(Ω) is a given function such that a0(x) ≥ α > 0 almost everywhere
in Ω.

More precisely, we are concerned with the following OCP

Minimize I(A, y) = ∥y − yd∥2L2(Ω) +

ˆ
Ω

(∇y,Asym∇y)RN dx (4.3)

subject to the constraints (4.1)�(4.2) with A ∈ Aad ⊂ L1(Ω;MN ). (4.4)

In order to de�ne the class of admissible controls Aad, we begin with some
preliminaries. Let A∗, A∗∗ ∈ L2p(Ω; SNskew) be given nonzero matrices such that
A∗ ≼ A∗∗ a.e. in Ω, let c be a given positive constant, and let Q be a nonempty
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convex compact subset of L2p(Ω; SNskew) such that the null matrix A ≡ [0] belongs
to Q. Further we make use of the following sets

Ua,1 =
{
A = [ai j ] ∈ L1(Ω; SNsym)

∣∣TV (aij) ≤ c, 1 ≤ i ≤ j ≤ N
}
, (4.5)

Ub,1 =

{
A = [ai j ] ∈ L1(Ω; SNsym)

∣∣A ∈ Mβ
ζad

(Ω),

ˆ
Ω
A(x) dx = M

}
, (4.6)

Ua,2 =
{
A = [ai j ] ∈ L2p(Ω; SNskew)

∣∣ A∗(x) ≼ A(x) ≼ A∗∗(x) a.e. in Ω
}
, (4.7)

Ub,2 =
{
A = [ai j ] ∈ L2p(Ω; SNskew)

∣∣ A ∈ Q
}
. (4.8)

Remark 4.1. Hereinafter we assume that

Aad,1 := Ua,1 ∩ Ub,1 ̸= ∅ and Aad,2 := Ua,2 ∩ Ub,2 ̸= ∅,

and, hence, the set Aad := Aad,1 ⊕ Aad,2 is nonempty. Moreover, it is easy to see
that for a given A∗, A∗∗ ∈ L2p(Ω; SNskew), we can always guarantee the ful�lment
of condition Aad ̸= ∅ by an appropriate choice of functions ζad ∈ L1(Ω) and
β ∈ L1(Ω), a matrix M ∈ SNsym, and a compact subset Q.

De�nition 4.1. We say that a matrix A = Asym+Askew is an admissible control
to the Dirichlet boundary value problem (4.1)�(4.2) (it is written as A ∈ Aad) if
Asym ∈ Aad,1 and Askew ∈ Aad,2.

For our further analysis, we use of the following results.

Proposition 4.1. The set Aad is convex and sequentially compact with respect
to the strong topology of L1(Ω;MN ).

Proof. Let
{
Ak = Asymk +Askewk

}
k∈N ⊂ Aad be an arbitrary sequence of admissible

controls. Since

Aad = Aad,1 ⊕ Aad,2, Aad,1 ⊂ BV (Ω; SNsym),

Aad,2 ⊂ Ub,2, and Ub,2 is a compact in L2p(Ω; SNskew),

it follows by the compactness of BV -functions (see Proposition 2.1) that there
exist matrices Asym0 ∈ BV (Ω; SNsym) and Askew0 ∈ Ub,2 ⊂ L2p(Ω; SNskew) such that
within a subsequence

Asymk → Asym0 in L1(Ω; SNsym), (4.9)

Askewk → Askew0 in L2p(Ω; SNskew), (4.10)

and Ak → A0 := Asym0 +Askew0 almost everywhere in Ω. (4.11)

Combining these facts with de�nition of the binary relation ≼ (see (2.4)), we
arrive at the conclusion: Askew0 ∈ Ua,2, Askew0 ∈ Ub,2, and A

sym
0 ∈ Ua,1. Hence, it

remains to show the condition Asym0 ∈ Ub,1. With that in mind we make use of
the following observation.
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By the initial suppositions, we have Asymk ∈ Mβ
ζad

(Ω) for all k ∈ N. Hence, in
view of L1-convergence Asymk → Asym0 , we may assume that, up to a subsequence,
Asymk → Asym0 almost everywhere in Ω. Since Ak(x) ≥ ζadI a. e. in Ω, it follows
that

M = lim
k→∞

ˆ
Ω
Asymk (x) dx =

ˆ
Ω
Asym0 (x) dx,

Asym0 (x) = lim
k→∞

Asymk (x) ≤ β(x)I a. e. in Ω,

ζad(x)I ≤ lim
k→∞

Asymk (x) = Asym0 (x) a. e. in Ω.

Thus, Asym0 ∈ Ub,1. As a result, we have

Ak := Asymk +Askewk → Asym0 +Askew0 =: A0 in L1(Ω;MN ).

and A0 ∈ Aad. Since the convexity of Aad is obviously valid, this concludes the
proof.

De�nition 4.2. We say that a function y = y(A, f) is a weak solution to the
boundary value problem (4.1)�(4.2) for a �xed admissible control A = Asym +
Askew ∈ Aad and given distribution f ∈ L4p/(p+1)(Ω;RN ) if y ∈ WAsym(Ω) and
the integral identity
ˆ
Ω

[(
∇φ,Asym∇y

)
RN + a0yφ

]
dx+

ˆ
Ω

(
∇φ,Askew∇y

)
RN dx =

ˆ
Ω

(f,∇φ)RN dx

(4.12)
holds for each φ ∈ C∞

0 (Ω).

We note that by the initial assumptions and H�older's inequality, this de�nition
makes a sense because (Askew∇y) ∈ L1(Ω;RN ) for each y ∈WAsym(Ω). Indeed,
ˆ
Ω
|Askew∇y|RN dx ≤

ˆ
Ω
∥AskewA−1/2

sym ∥L(RN ,RN ) |A1/2
sym∇y|RN dx

≤
(ˆ

Ω
∥Askew∥2L(RN ,RN )∥A

−1/2
sym ∥2L(RN ,RN ) dx

)1/2(ˆ
Ω

(∇y,Asym∇y)RN dx

)1/2

≤
(ˆ

Ω
∥Askew∥2pL(RN ,RN )

dx

)1/2p(ˆ
Ω
∥A−1/2

sym ∥2qL(RN ,RN )
dx

)1/2q

∥y∥Asym

≤ |Ω|1/4q ∥Askew∥L2p(Ω;SNskew) ∥A
−1/2
sym ∥L4q(Ω;SNskew) ∥y∥Asym .

On the other hand, De�nition 4.2 gives another motivation to introduce the
set D(WAsym).

Proposition 4.2. Let A = Asym + Askew ∈ Aad and f ∈ L4p/(p+1)(Ω;RN )
be given distributions. Let y ∈ VAsym(Ω) be a weak solution to the boundary
value problem (4.1)�(4.2) for some intermediate space VAsym(Ω) with HAsym(Ω) ⊆
VAsym(Ω) ⊆WAsym(Ω). Then y ∈ D(VAsym).
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Proof. In order to prove this assertion it is enough to rewrite the integral identity
(4.12) in the form

[y, φ]A = −
ˆ
Ω

(
Asym∇y,∇φ

)
RN dx−

ˆ
Ω
a0yφ dx+

ˆ
Ω

(f,∇φ)RN dx (4.13)

and apply H�older's inequality to the right-hand side of (3.4). As a result, we have

∣∣∣ ˆ
Ω

(
Asym∇y,∇φ

)
RN dx

∣∣∣ ≤ (ˆ
Ω
|A1/2

sym∇y|2RN dx

)1/2(ˆ
Ω
|A1/2

sym∇φ|2RN dx

)1/2

≤ ∥y∥Asym∥φ∥Asym ,∣∣∣ˆ
Ω
a0yφ dx

∣∣∣ ≤ ∥a0∥L∞(Ω)∥y∥L2(Ω)

(
∥φ∥2L2(Ω) +

ˆ
Ω
|A1/2

sym∇φ|2RN dx

) 1
2

≤ ∥a0∥L∞(Ω)∥y∥Asym∥φ∥Asym ,

∣∣∣∣ˆ
Ω

(f,∇φ)RN dx

∣∣∣∣ ≤ (ˆ
Ω
|A−1/2

sym f |2RN dx

)1/2(ˆ
Ω
|A1/2

sym∇φ|2RN dx

)1/2

=

(ˆ
Ω
|A−1/2

sym f |2RN dx

)1/2(ˆ
Ω

(∇φ,Asym∇φ)RN dx

)1/2

≤
(ˆ

Ω
∥A−1/2

sym ∥4qL(RN ,RN )
dx

)1/4q (ˆ
Ω
|f |4p/p+1

RN dx

)(p+1)/4p

×
(ˆ

Ω
(∇φ,Asym∇φ)RN dx

)1/2

≤
√

∥ζ−1
ad ∥L2q(Ω) ∥f∥L4p/p+1(Ω;RN )∥φ∥Asym , (4.14)

and, hence,

|[y, φ]A| ≤
((

1 + ∥a0∥L∞(Ω)

)
∥y∥Asym +

√
∥ζ−1
ad ∥L2q(Ω) ∥f∥L4p/p+1(Ω;RN )

)
×
(ˆ

Ω
(∇φ,Asym∇φ)RN dx

)1/2

≤ c(y,A)∥φ∥Asym , ∀φ ∈ C∞
0 (Ω).

As estimate (4.14) obviously indicates, Proposition 4.2 can be speci�ed as
follows.

Corollary 4.1. Let A = Asym +Askew ∈ Aad be an arbitrary admissible control,

and let f be a distribution such that A
−1/2
sym f ∈ L2(Ω;RN ). Let y ∈ VAsym(Ω) be a

weak solution to the boundary value problem (4.1)�(4.2). Then y ∈ D(VAsym).
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Remark 4.2. Due to Proposition 4.2, De�nition 4.2 can be reformulated as follows:
y is a weak solution to the problem (4.1)�(4.2) for a given control A = Asym +
Askew ∈ Aad, if and only if y ∈ D(WAsym) and

ˆ
Ω

[(
∇φ,Asym∇y

)
RN + a0yφ

]
dx+ [y, φ]A =

ˆ
Ω

(f,∇φ)RN dx ∀φ ∈ C∞
0 (Ω).

(4.15)
Moreover, as follows from (2.19), (4.15), and (4.14), if a weak solution to the
problem (3.1)�(3.2) belongs to the space HAsym(Ω) then it satis�es the energy
equality

ˆ
Ω

(
∇y,Asym∇y

)
RN dx+

ˆ
Ω
a0y

2 dx+ [y, y]A =

ˆ
Ω

(f,∇y)RN dx. (4.16)

It is worth to notice that the original boundary value problem (4.1)�(4.2) is
ill-possed and, in general. Moreover, in view of de�nition of the set Mβ

ζad
(Ω),

the existence of a weak solution to (4.1)�(4.2) for �xed A ∈ Aad and f ∈
L4p/(p+1)(Ω;RN ) seems to be an open question. This means that there are no
reasons to expect that for every admissible given data f ∈ L4p/(p+1)(Ω;RN ) and
A ∈ Aad, this problem admits at least one weak solution y ∈ WAsym(Ω) in the
sense of De�nition 4.2. At the same time, even if a weak solution to the above
problem exists, the question about its uniqueness remains open. Indeed, because
of the properties of function ζad, we face with the problem of density of smooth
functions C∞

0 (Ω) in WAsym(Ω). As was indicated in [21], there exists a diagonal
matrix-valued function A(x) = ρ(x)I with ρ ≥ ζad such that the subspace C∞

0 (Ω)
is not dense in WAsym(Ω). Therefore, even if we assume that we have two weak
solutions y1(A, f), y2(A, f) ∈WAsym(Ω) such that y1(A, f) ̸= y2(A, f),

ˆ
Ω

(
∇yk, Askew∇yk

)
RN dx = 0, k = 1, 2

(this is always true for Askew ∈ L∞(Ω; SNskew
)
), and each of these solutions satis�es

the corresponding energy equality
ˆ
Ω

(
∇yk, Asym∇yk

)
RN dx+

ˆ
Ω
y2k dx =

ˆ
Ω

(f,∇yk)RN dx, k = 1, 2, (4.17)

then the element y = (y1(A, f) + y2(A, f)) /2 is a weak solution to (4.1)�(3.2)
too, but it does not satisfy (4.17) in general. Thus, the degenerate boundary
value problem (4.1)�(4.2) can admit weak solutions which do not satisfy energy
equality. For more details and other types of solutions to degenerate equations we
refer to [20,21].

On the other hand, as it follows from the de�nition of the bilinear form [y, φ]A,
the value [y, y]A may not of constant sign for all y ∈ D(WAsym). Hence, even if the
relation HAsym(Ω) = WAsym(Ω) is valid, the energy equality (4.16) does not allow
us to derive a reasonable a priory estimate in ∥ · ∥A-norm for the weak solutions.
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Thus, the mapping A 7→ y(A, f) can be multivalued, in general (see [7] for the
details).

Taking these observations into account, we restrict of our analysis to the
following set of admissible solutions for the original optimal control problem.
Namely, we indicate the set

Ξ =
{

(A, y)
∣∣ A ∈ Aad, y ∈WAsym(Ω), (A, y) are related by (4.15)

}
. (4.18)

The characteristic feature of this set is the fact that for di�erent admissible
controls A ∈ Aad the 'corresponding' weak solutions y belong to di�erent weighted
spaces. Moreover, we adopt the following hypothesis, which is mainly motivated
by the previous reasonings.

Hypothesis A. The set of admissible solutions Ξ is nonempty.

We say that a pair (A0, y0) ∈ L1(Ω;MN ) × WA0
sym

(Ω) is a weak optimal
solution to the problem (4.3)�(4.4) on the set Ξ, if

(A0, y0) ∈ Ξ and I(A0, y0) = inf
(A,y)∈Ξ

I(A, y). (4.19)

Our next observation deals with some speci�cation of the set of admissible
controls Aad. With that in mind we give a few auxiliary results.

Lemma 4.1. Let
{
Ak = Asymk +Askewk

}
k∈N ⊂ Aad and {yk ∈ WAsym

k
}k∈N be

sequences such that

Ak := Asymk +Askewk → Asym0 +Askew0 =: A0 in L1(Ω;MN ), (4.20)

yk ⇀ y in L2(Ω), ∇yk ⇀ v in L2(Ω, Asymk dx)N . (4.21)

Then A0 ∈ Aad, y ∈WAsym
0

(Ω), and ∇y = v.

Proof. In view of Proposition 4.1, it is enough to prove the equality ∇y = v.
Taking into account the estimates
ˆ
Ω
|∇yk|RN dx =

ˆ
Ω
|
(
Asymk

)−1/2 (
Asymk

)1/2∇yk|RN dx

≤
(ˆ

Ω
∥
(
Asymk

)−1/2 ∥2L(RN ,RN ) dx

)1/2(ˆ
Ω

(
∇yk, Asymk ∇yk

)
RN dx

)1/2

by (4.21)2 and (2.9)
≤ C

(ˆ
Ω
ζ−1
ad dx

)1/2

≤ C|Ω|
p

p+1 ∥ζ−1
ad ∥

1
2

L2q(Ω)
< +∞,

ˆ
Ω
|∇v|RN dx ≤ ∥v∥L2(Ω,Asym

0 dx)N |Ω|
p

p+1 ∥ζ−1
ad ∥

1
2

L2q(Ω)
< +∞,

we conclude that ∇yk,v ∈ L1(Ω)N for all k ∈ N.
Further, we make use of Lemma 3.1. Following this result, for each test function

φ ∈ C∞
0 (Ω), we have

(
Asymk

)−1∇φ → (Asym0 )
−1∇φ strongly in variable space
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L2(Ω, Asymk dx)N . Then, the de�nition of the strong convergence in variable spaces
implies ∀φ ∈ C∞

0 (Ω)

lim
k→∞

ˆ
Ω

(∇φ,∇yk)RN dx = lim
k→∞

ˆ
Ω

((
Asymk

)−1∇φ,Asymk ∇yk
)
RN

dx

by (4.21)2, (3.4)
=

ˆ
Ω

(
(Asym0 )

−1∇φ,Asym0 ∇yk
)
RN

dx =

ˆ
Ω

(∇φ,v)RN dx.

Combining this fact with relation

lim
k→∞

ˆ
Ω
ykφdx =

ˆ
Ω
yφ dx, ∀φ ∈ C∞

0 (Ω),

we �nally conclude: yk ⇀ y in L1(Ω), ∇yk ⇀ v in L1(Ω)N , and therefore, ∇y = v
and y ∈W 1,1

0 (Ω) by completeness of the Sobolev spaceW 1,1
0 (Ω). To end the proof,

it remains to observe that y ∈ L2(Ω) and ∇y ∈ L2(Ω, Asym0 dx)N .

For our further analysis we temporary assume that the functions β and ζad
are extended to the whole space of RN , i.e.

β, ζad ∈ L1
loc(RN ), 0 ≤ ζad(x) ≤ β(x) a.e. in Ω, and ζ−1

ad ∈ L1
loc(RN ),

and there exists a constant C > 0 such that

sup
B∈RN

(
1

|B|

ˆ
B
β dx

)(
1

|B|

ˆ
B
ζ−1
ad dx

)
≤ C, (4.22)

where B is a ball in RN .

Theorem 4.1 ( [20]). Assume the condition (4.22) holds true for some constant
C > 0. Then for each admissible control A = Asym + Askew ∈ Aad, we have
HAsym(Ω) = WAsym(Ω) and, hence, every weak solution to the boundary value
problem (3.1)�(3.2) satis�es the energy equality (4.16).

We are now in a position to establish the main result of this section.

Theorem 4.2. Assume that, for given threshold matrices A∗, A∗∗ ∈ L2p(Ω; SNskew),
Hypothesis A is valid. Then the optimal control problem (4.3)�(4.4) admits at least
one solution for all distributions f ∈ L4p/(p+1)(Ω;RN ) and yd ∈ L2(Ω).

Proof. Since the original problem is regular and the cost functional for the given
problem is bounded below on Ξ, it follows that there exists a minimizing sequence
{(Ak, yk)}k∈N ⊂ Ξ such that I(Ak, yk) −−−→

k→∞
Imin ≡ inf(A,y)∈Ξ I(A, y) ≥ 0.

Hence, supk∈N I(Ak, yk) ≤ C, where the constant C is independent of k. Since

sup
k∈N

∥yk∥2Asym
k

=

ˆ
Ω

(
y2k +

(
∇yk, Asymk (x)∇yk

)
RN

)
dx

≤ 2 sup
k∈N

I(Ak, yk) + 2∥yd∥2L2(Ω) ≤ 2
(
C + ∥yd∥2L2(Ω)

)
,
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in view of Propositions 3.1, 4.1, and Lemma 3.1, it follows that passing to a
subsequence if necessary, we may assume the existence of a pair (A0, y0) ∈ Aad ×
WAsym

0
(Ω) such that

Ak := Asymk +Askewk → Asym0 +Askew0 =: A0 in L1(Ω;MN ), (4.23)

Asymk → Asym0 in L1(Ω;SNsym), (4.24)

Askewk → Askew0 in L2p(Ω; SNskew), (4.25)

yk ⇀ y0 in L2(Ω), (4.26)

∇yk ⇀ ∇y0 in L2(Ω, Asymk dx)N , (4.27)

I(A0, y0) < +∞. (4.28)

Since (Ak, yk) ∈ Ξ for every k ∈ N, it follows that the integral identity

ˆ
Ω

[(
∇φ,Asymk ∇yk

)
RN + a0φyk

]
dx+

ˆ
Ω

(
∇φ,Askewk ∇yk

)
RN dx

=

ˆ
Ω

(f,∇φ)RN dx (4.29)

holds true for all φ ∈ C∞
0 (Ω). In order to pass to the limit in (4.29), we note that

ˆ
Ω

(
∇φ,Askewk ∇yk

)
dx = −

ˆ
Ω

( (
Asymk

)− 1
2 (Askewk −Askew0 )∇φ,

(
Asymk

) 1
2 ∇yk

)
dx

−
ˆ
Ω

( (
Asymk

)− 1
2 Askew0 ∇φ,

(
Asymk

) 1
2 ∇yk

)
dx = I1,k + I2,k

by the skew-symmetry property of Askewk and Askew0 . Since

lim
k→∞

|I1,k| ≤ lim
k→∞

ˆ
Ω

∣∣∣(Askewk −Askew0

) (
Asymk

)− 1
2 ∇φ

∣∣∣ | (Asymk

) 1
2 ∇yk| dx

≤ lim
k→∞

(ˆ
Ω
∥Askewk −Askew0 ∥2∥

(
Asymk

)− 1
2 ∥2|∇φ|2 dx

) 1
2

× lim
k→∞

(ˆ
Ω
|
(
Asymk

) 1
2 ∇yk|2 dx

) 1
2

≤ ∥φ∥C1(Ω) sup
k∈N

∥yk∥Asym
k

× lim
k→∞

(ˆ
Ω
∥Askewk −Askew0 ∥2p dx

) 1
2p
(ˆ

Ω
ζ−qad dx

) 1
2q

by (4)
≤
√

2
(
C + ∥yd∥2L2(Ω)

)
∥φ∥C1(Ω)|Ω|

1
4q ∥ζ−1

ad ∥
1
2

L2q(Ω)

× lim
k→∞

∥Askewk −Askew0 ∥L2p(Ω;SNskew)

by (4.25)
= 0, (4.30)
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and

lim
k→∞

I2,k = − lim
k→∞

ˆ
Ω

( (
Asymk

)−1
Askew0 ∇φ,Asymk ∇yk

)
RN dx

= −
ˆ
Ω

(
(Asym0 )

−1
Askew0 ∇φ,Asym0 ∇y0

)
RN dx =

ˆ
Ω

(
∇φ,Askew0 ∇y0

)
RN dx

(4.31)

by (4.27), Lemma 3.1, and de�nition of the strong convergence in variable spaces,
it follows thatˆ

Ω

(
∇φ,Askewk ∇yk

)
RN dx −→

ˆ
Ω

(
∇φ,Askew0 ∇y0

)
RN dx as k → ∞.

Taking this fact and property (4.28) into account, we can pass to the limit in
(4.29). As a result, we obtain
ˆ
Ω

[(
∇φ,Asym0 ∇y0

)
+ a0φy0

]
dx+

ˆ
Ω

(
∇φ,Askew0 ∇y0

)
dx =

ˆ
Ω

(f,∇φ) dx.

that is, a function y0 = y(A0, f) is a weak solution to the boundary value problem
(4.1)�(4.2) for admissible control A = Asym0 +Askew0 ∈ Aad. Hence, y0 ∈ D(WAsym

0
)

by Proposition 4.2, and, therefore, (A0, y0) is an admissible pair to problem (4.3)�
(4.4).

In remains to show that (A0, y0) is an optimal pair. Using conditions (4.26)�
(4.28) and the property of lower semicontinuity of the norms ∥ · ∥L2(Ω,A dx)N and
∥ · ∥L2(Ω) with respect to the the weak topologies of L2(Ω, A dx)N and L2(Ω),
respectively (see Proposition 3.2 ), we get

lim inf
k→∞

∥yk − yd∥2L2(Ω) ≥ ∥y0 − yd∥2L2(Ω) ,

lim inf
k→∞

ˆ
Ω

(
∇yk, Asymk ∇yk

)
RN dx ≥

ˆ
Ω

(∇y0, Asym0 ∇y0)RN dx.

Thus,

I(A0, y0) ≥ inf
(A,y)∈Ξ

I(A, y) = lim
k→∞

I(Ak, yk) ≥ lim inf
k→∞

I(Ak, yk)

≥ ∥y0 − yd∥2L2(Ω) +

ˆ
Ω

(∇y0, Asym0 ∇y0)RN dx = I(A0, y0),

and hence, the pair (A0, y0) is optimal for problem (4.3)�(4.4). The proof is
complete.
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5. On variational solutions to OCP (4.3)�(4.4) and their
approximation

The question we are going to discuss in this section is about some pathological
properties that can be inherited by optimal pair to the problem (4.3)�(4.4) and
other unexpected surprises concerning the approximation of the original OCP and
its solutions.

To begin with, we show that the main assumption on the regularity property
of OCP (4.3)�(4.4) in Theorem 4.2 (see Hypothesis A) can be eliminated due to
the approximation approach. For instance, the conditions ζad ∈ L1(Ω) and ζ−1

ad ∈
L2q(Ω) ensure the existence of a sequence of scalar positive functions {ζk}k∈N
such that ζk ∈ L∞(Ω) for all k ∈ N, and

ζk → ζad strongly in L1(Ω), L∞(Ω) ∋ ζ−1
k → ζ−1

ad strongly in L2q(Ω). (5.1)

By analogy we can approximate the rest components A∗, A∗∗ ∈ L2p(Ω; SNskew)
and β ∈ L1(Ω). The simplest way to construct such sequences is to apply the
procedure of direct smoothing (5.2)�(5.3), i.e. we can set ζk := (ζad)k, where

(ζad)k = kN
ˆ
RN

K (k(x− z)) ζ̂ad(z) dz, (5.2)

and K is a positive compactly supported smooth function such that

K ∈ C∞
0 (RN ),

ˆ
RN

K(x) dx = 1, and K(x) = K(−x). (5.3)

Here, ̂ is a non-zero extension operator such that
ζ̂ad = ζad in Ω, ζ̂ad ∈ L1

loc(RN ), ζ̂ad
−1

∈ L2q
loc(R

N ). (5.4)

As a result, the property (5.1)1 is the direct consequence of the classical
properties of smoothing. In order to prove the property (5.1)2, we note that

(ζad)k (x) ≤ C

ˆ
Q
ζ̂ad(x+ k−1z) dz, a.e. in RN , ∀ k ∈ N,

where Q is the support of the smoothing kernel K and K(x) ≤ C by (5.3). Hence,
(ζad)k ∈ L1

loc(RN ) for all k ∈ N. Using the Cauchy inequality

1 =

(ˆ
RN

K(z) dz

)2

=

(ˆ
RN

[
K(z)ζ̂ad(x+

z

k
)
] 1

2
[
K(z)ζ̂ad

−1
(x+

z

k
)
] 1

2
dz

)2

≤
(ˆ

RN

K(z)ζ̂ad(x+
z

k
) dz

)(ˆ
RN

K(z)ζ̂ad
−1

(x+
z

k
) dz

)
= (ζad)k

(
ζ−1
ad

)
k
,

we see that
(ζad)

−1
k ≤

(
ζ−1
ad

)
k

(5.5)
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and, therefore,

(ζad)
−2q
k ≤

(
ζ−1
ad

)2q
k

=

(ˆ
RN

K(z)ζ̂ad
−1

(x+
z

k
) dz

)2q

=

(ˆ
RN

K
2q−1
2q (z)K

1
2q (z)ζ̂ad

−1
(x+

z

k
) dz

)2q

≤
(ˆ

RN

K(z) dz

)2q−1(ˆ
RN

K(z)ζ̂ad
−2q

(x+
z

k
) dz

)
=

ˆ
RN

K(z)ζ̂ad
−2q

(x+
z

k
) dz =

(
ζ−2q
ad

)
k
≤ C

ˆ
Q
ζ̂ad

−2q
(x+

z

k
) dz. (5.6)

Hence, (5.4)3 implies that (ζad)
−1
k ∈ L2q

loc(R
N ) for all k ∈ N.

Since (ζad)k → ζad in L1(Ω) as k → ∞ by the classical properties of smoothing,
we can suppose that (ζad)

−2q
k (x) → ζ−2q

ad (x) almost everywhere in Ω. In the

meantime the inequality (5.6) guarantees the equi-integrability of
{

(ζad)
−2q
k

}
k∈N

because the sequence
{(
ζ−2q
ad

)
k

}
k∈N

, converging to ζ−2q
ad strongly in L1(Ω), posse-

sses this property. As a result, Lebesgue's Theorem implies that (ζad)
−2q
k → ζ−2q

ad

in L1(Ω) as k → ∞, and so the proof of property (5.1)2 is complete.
Before proceeding further, we give a few auxiliary results.

Lemma 5.1. Let f ∈ L2p(Ω) and {fn}n∈N ⊂ L2p(Ω) be such that fn → f in
L2p(Ω) as n→ ∞. Then, for each positive integer k ∈ N, we have

(fn)k → (f)k in L2p(Ω) as n→ ∞, (5.7)

where

(fn)k := kN
ˆ
RN

K (k(x− y)) f̃n(y) dy = kN
ˆ
Ω
K (k(x− y)) fn(y) dy, ∀n ∈ N.

Proof. Taking into account the properties (5.3) of the kernel K, we get

∥ (fn)k − (f)k ∥
2p
L2p(Ω)

:=

ˆ
Ω

(
kN
ˆ
RN

K (k(x− y))
(
f̃n(y) − f̃(y)

)
dy

)2p

dx

=

ˆ
Ω

(ˆ
RN

K
2p−1
2p (z)K

1
2p (z)

(
f̃n(x+

z

k
) − f̃(x+

z

k
)
)
dz

)2p

dx

≤
ˆ
RN

(ˆ
RN

K(z) dz

)2p−1 ˆ
RN

K(z)
(
f̃n(x+

z

k
) − f̃(x+

z

k
)
)2p

dz dx

=

ˆ
RN

kN
ˆ
RN

K (k(x− y))
(
f̃n(y) − f̃(y)

)2p
dy dx

=

ˆ
RN

(
kN
ˆ
RN

K (k(x− y)) dx

)(
f̃n(y) − f̃(y)

)2p
dy

=

ˆ
RN

(
f̃n(y) − f̃(y)

)2p
dy = ∥fn − f∥2p

L2p(Ω)
→ 0.
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Lemma 5.2. Let f ∈ L2p(Ω) and {fn}n∈N ⊂ L2p(Ω) be such that fn → f in
L2p(Ω) as n → ∞. Let {kn}n∈N be a sequence of positive integers converging to
+∞ as n→ ∞. Then

(fn)kn → f in L2p(Ω) as n→ ∞. (5.8)

Proof. We de�ne a doubly indexed family {an,k}n∈N
k∈N

in R as follows

an,k = ∥(fn)k − f∥2p
L2p(Ω)

:=

ˆ
Ω

∣∣∣∣f(x) − kN
ˆ
RN

K (k(x− y)) f̃n(y) dy

∣∣∣∣2p dx.
Since

(g)k → g in L2p(Ω) as f → ∞, ∀ g ∈ L2p(Ω), (5.9)

by the classical properties of smoothing, and

lim
k→∞

lim
n→∞

an,k
by Lemma 5.1

= lim
k→∞

∥(f)k − f∥2p
L2p(Ω)

by (5.9)
= 0,

lim
n→∞

lim
k→∞

an,k
by (5.9)

= lim
n→∞

∥fn − f∥2p
L2p(Ω)

by the initial assumptions
= 0,

it follows that lim
k→∞

(
lim
n→∞

an,k

)
= lim

n→∞
an,kn = lim

n→∞

(
lim
k→∞

an,k

)
.

Following the similar arguments, Lemma 5.2 can be speci�ed to the following
particular case.

Lemma 5.3. Let f ∈ L1(Ω) and {fn}n∈N ⊂ L1(Ω) be such that fn → f in L1(Ω)
as n → ∞. Let {kn}n∈N be a sequence of positive integers converging to +∞ as
n→ ∞. Then

(fn)kn → f in L1(Ω) as n→ ∞. (5.10)

Taking these results into account, we bring into consideration the following
sequence of constrained minimization problems associated with the Steklov smoo-
thing operator (·)k: { ⟨

inf
(A,y)∈Ξk

Ik(A, y)

⟩
, k → ∞

}
. (5.11)

Here,

Ik(A, y) := I(A, y) ∀ (A, y) ∈ L1(Ω;MN ) ×WAsym(Ω), ∀ k ∈ N, (5.12)

Ξk =


(A, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−div
(
Asym∇y +Askew∇y

)
= −div f in Ω,

y = 0 on ∂Ω, y ∈WAsym(Ω),

A = Asym +Askew ∈ Akad = Akad,1 ⊕ Akad,2,

Asym ∈ Akad,1 i� ∃Csym ∈ Aad,1 s.t. Asym = (Csym)k ,

Askew ∈ Akad,2 i� ∃Cskew ∈ Aad,2 s.t. Askew =
(
Cskew

)
k
.


(5.13)
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Before we will provide an accurate analysis of the optimal control problems
(5.11), we describe in more details some topological properties of the sets Akad,1
and Akad,2. We begin with the following observation.

Remark 5.1. In view of de�nition of the sets Akad,1 and Akad,2, the condition A ∈
Aad,1 = Akad,1 ⊕Akad,2 implies the existence of a certain matrix C(x) = Csym(x) +

Cskew(x) (the so-called 'prototype' of A) such that Csym ∈ Aad,1, Cskew ∈ Aad,2,
and A = (Csym)k +

(
Cskew

)
k
whatever matrix A was chosen.

Lemma 5.4. For every k ∈ N there exist positive constants αk and γk such that
γk > αk and

αk∥ξ∥2RN ≤ (Asym(x)ξ, ξ)RN ≤ γk∥ξ∥2RN a. e. in Ω, ∀ ξ ∈ RN , (5.14)

TV
(
asymij

)
≤ c, 1 ≤ i ≤ j ≤ N, (5.15)ˆ

RN

Asym(x) dx = M (5.16)

for each Asym ∈ Akad,1.

Proof. Let Csym be an arbitrary element of the set Aad,1. Since, Aad,1 ⊂ Mβ
ζad

(Ω),

it follows that ζad∥ξ∥2RN ≤ (Csym(x)ξ, ξ)RN ≤ β∥ξ∥2RN a. e. in Ω, ∀ ξ ∈ RN . Hence,
for any k ∈ N, we have

(ζad)k∥ξ∥2RN ≤ ((Csym)kξ, ξ)RN ≤ (β)k∥ξ∥2RN a. e. in Ω, ∀ ξ ∈ RN ,

and, therefore, the constants αk and γk in (5.14) can be de�ned as follows

αk = inf
x∈Ω

(ζad)k(x), γk = sup
x∈Ω

(β)k(x).

In view of the initial assumptions (2.7)�(2.9) and de�nition of the Steklov smoothing
operator (·)k, we have (β)k ∈ L∞(Ω) and (ζad)

−1
k ∈ L∞(Ω) (see (5.5)). Hence, αk

is a positive constant, and γk < +∞.
As for the estimate (5.15), for an arbitrary φ = (φ1, . . . , φN ) ∈ C1

0 (Ω;RN )
such that |φ(x)| ≤ 1 in Ω, and arbitrary matrix Asym = [asymij ]Ni,j=1 ∈ Akad,1, we
have

TV (asymij ) = sup
|φ|≤1

{ˆ
RN

asymij (x)(∇, φ)RN dx

}
= sup

|φ|≤1

{ˆ
RN

(
csymij

)
k

(x)(∇, φ)RN dx

}
= sup

|φ|≤1

{ˆ
RN

ˆ
RN

K (z) c̃symij (x+ k−1z) dz(∇, φ)RN dx

}
≤
ˆ
RN

K (z) sup
|φ|≤1

{ˆ
RN

c̃symij (x+ k−1z)(∇, φ)RN dx

}
dz

=

ˆ
RN

K (z)TV (c̃symij )(x+ k−1z) dz ≤ c

ˆ
RN

K (z) dz = c
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Having applied the similar arguments, namely,
ˆ
RN

Asym(x) dx =

ˆ
RN

(Csym)k (x) dx =

ˆ
RN

ˆ
RN

K (z) C̃sym(x+ k−1z) dz dx

= kN
ˆ
RN

ˆ
RN

K (k(x− y)) C̃sym(y) dy dx

=

ˆ
RN

(
kN
ˆ
RN

K (k(x− y))

)
dx C̃sym(y) dy =

ˆ
Ω
C̃sym(y) dy = M,

we arrive at the control constraint (5.16).

Lemma 5.5. Akad,1 is a convex and sequentially compact set with respect to the

strong topology of L1(Ω; SNsym) for each k ∈ N.

Proof. Since the convexity of Akad,1 immediately follows from the linearity of the
smoothing operator (·)k, we concentrate on the compactness property of this
set. Let {Asymn }n∈N be an arbitrary sequence in Akad,1, and let {Csymn }n∈N ⊂
Aad,1 be a sequence of its prototypes, that is, Asymn (x) = (Csymn )k (x) for all
n ∈ N. By Proposition 4.1, there exists a matrix Csym0 ∈ Aad,1 such that, within
a subsequence, Csymn → Csym0 in L1(Ω; SNsym). As a result, Lemma 5.3 implies the
strong convergence Asymn → Asym0 in L1(Ω; SNsym), where Asym0 = (Csym0 )k for a
given k ∈ N.

We recall here that a sequence
{
Akad,1

}
k∈N

of the subsets of L1(Ω; SNsym) is

said to be convergent to a closed set S in the sense of Kuratowski with respect to
the strong topology of L1(Ω; SNsym), if the following two properties hold:

(K1) for every A ∈ S, there exists a sequence of matrices
{
Ak ∈ Akad,1

}
k∈N

such

that Ak → A in L1(Ω; SNsym) as k → ∞;

(K2) if {kn}n∈N is a sequence of indices converging to +∞, {An}n∈N is a sequence
of symmetric matrices such that An ∈ Aknad,1 for each n ∈ N, and {An}n∈N
strongly converges in L1(Ω; SNsym) to some matrix A, then A ∈ S.

For the details we refer to [12]. As a result, we have the following result concerning

asymptotic behaviour of the sequence
{
Akad,1

}
k∈N

.

Lemma 5.6. The sequence of sets
{
Akad,1

}
k∈N

converges to Aad,1 as k → ∞ in

the sense of Kuratowski with respect to the strong topology of L1(Ω;SNsym).

Proof. In order to show that S = Aad,1, we begin with the veri�cation of (K2)-
item. Let {kn}n∈N be a given sequence of indices such that kn → ∞, and let{
An ∈ Aknad,1

}
n∈N

be a sequence satisfying the property An → A in L1(Ω; SNsym) as

n→ ∞. By de�nition of the sets Akad,1 and Proposition 4.1, there exists a sequence
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of prototypes {Csymn }n∈N ⊂ Aad,1 and matrix Csym0 ∈ Aad,1 such that An =
(Csymn )kn for all n ∈ N and, within a subsequence, Csymn → Csym0 in L1(Ω; SNsym).
Then Lemma 5.3 guarantees the strong convergence An → Csym0 in L1(Ω; SNsym).
As a result, we have A = Csym0 and, therefore, A ∈ Aad,1. Since this assertion is
valid for each L1-converging subsequence of {Csymn }n∈N ⊂ Aad,1, we �nally get:
the symmetric matrix A is L1-limit for the entire sequence {Csymn }n∈N ⊂ Aad,1.

It remains to verify the (K1)-item. To this end, we �x an arbitrary symmetric

matrix A ∈ Aad,1 and construct the sequence
{
Ak ∈ Akad,1

}
k∈N

as follows: Ak =

(A)k for all k ∈ N. Then Ak → A in L1(Ω; SNsym) as k → ∞ by main properties of
the smoothing operator, and inclusions Ak ∈ Akad,1, for each k ∈ N, hold true by

de�nition of the sets Akad,1.

Our next intention is to study topological and asymptotic properties of the
sets Akad,2.

Lemma 5.7. For every k ∈ N each of the sets Akad,2 is convex, sequentially

compact with respect to the strong topology of L2p(Ω; SNsym), and such that

(A∗)k (x) ≼ A(x) ≼ (A∗∗)k (x) in Ω, ∀A ∈ Akad,2. (5.17)

Proof. The convexity of Akad,2 is a direct consequence of de�nition of the set
Aad,2 and the rule (5.13)6. To prove the compactness property of this set let us
consider an arbitrary sequence {An}n∈N in Akad,2. Let

{
Cskewn

}
n∈N ⊂ Aad,2 be their

prototypes, that is, An(x) =
(
Cskewn

)
k

(x) for all n ∈ N. Since
{
Cskewn

}
n∈N ⊂ Q,

where Q is a nonempty convex compact subset of L2p(Ω; SNskew), it follows that
there exists a skew-symmetric matrix Cskew0 ∈ Q such that, up to a subsequence,
Cskewn → Cskew0 in L2p(Ω; SNskew). Then Lemma 5.1 implies the strong convergence
An → A0 :=

(
Cskew0

)
k
in L2p(Ω; SNskew) for every k ∈ N. It remains to note that in

view of the de�nition of binary relation ≼ (see (2.2)), for every A = [aij ] ∈ Aad,2,
i ∈ {1, . . . , N}, j ∈ {i+ 1, . . . , N}, and x ∈ RN , we have

(aij)k(x) := kN
ˆ
RN

K (k(x− y)) ãij(y) dy

≤ kN
ˆ
RN

K (k(x− y)) ã∗∗ij (y) dy = (a∗∗ij )k(x), ∀ k ∈ N.

By analogy it can be shown that (a∗ij)k(x) ≤ (aij)k(x) in Ω. Hence, the restriction
(5.17) holds true for each k ∈ N and A ∈ Akad,2. The proof is complete.

Lemma 5.8. The sequence of sets
{
Akad,2

}
k∈N

converges to Aad,2 as k → ∞ in

the sense of Kuratowski with respect to the strong topology of L2p(Ω; SNskew).

Proof. We begin with the veri�cation of (K2)-property of the set Aad,2 in the
framework of de�nition of Kuratowski limit set with respect to the strong topology
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of L2p(Ω; SNskew). Let {kn}n∈N be an arbitrary sequence of indices such that kn →
∞, and let

{
Bn ∈ Aknad,2

}
n∈N

be a sequence satisfying the property Bn → B in

L2p(Ω; SNskew) and, hence, up to a subsequence, Bn(x) → B(x) almost everywhere
in Ω as n→ ∞. By Lemma 5.7, we have

(A∗)kn (x) ≼ Bn(x) ≼ (A∗∗)kn (x) a.e. in Ω, (5.18)

where (A∗)k → A∗ and (A∗∗)k → A∗∗ strongly in L2p(Ω; SNskew). Taking into
account the fact that the binary relation ≼ is a partial order, we can pass to
the limit in relation (5.18) as n → ∞ (in the sense of almost everywhere) and
get A∗(x) ≼ B(x) ≼ A∗∗(x) almost everywhere in Ω. In the meantime, closely
following the arguments of the proof of Lemma 5.6 (see also Lemma 5.2), it can be
shown that the matrix B is L2p-limit of the corresponding sequence of prototypes{
Cskewn

}
n∈N ⊂ Q ⊂ Aad,2, where Bn =

(
Cskewn

)
kn

for all n ∈ N. Since, Q is a
compact set, it follows that B ∈ Q, and, therefore, B ∈ Aad,2.

To verify the (K1)-property, we �x an arbitrary skew-symmetric matrix B ∈
Aad,2 and construct the sequence

{
Bk ∈ Akad,2

}
k∈N

as follows: Bk = (B)k for all

k ∈ N. Then Bk → B in L2p(Ω;SNskew) as k → ∞ by main properties of the
smoothing operator, and inclusions Bk ∈ Akad,2, for each k ∈ N, hold true by

de�nition of the sets Akad,2 and Lemma 5.17. The proof is complete.

In what follows, we make use the following concept.

De�nition 5.1. We say that a sequence of pairs{
(Ak, yk) = (Asymk +Askewk , yk) ∈ L1(Ω; ;MN ) ×WAsym

k
(Ω)
}
k∈N

τ -converges to a pair (A, y) = (Asym +Askew, y) ∈ L1(Ω; ;MN ) ×WAsym(Ω) if

Asymk → Asym in L1(Ω; SNsym), Askewk → Askew in L2p(Ω; SNskew),

yk ⇀ y in L2(Ω), ∇yk ⇀ ∇y in variable space L2(Ω, Asymk dx)N .

We are now in a position to study the optimal control problems (5.11).

Theorem 5.1. Let f ∈ L4p/(p+1)(Ω;RN ) and yd ∈ L2(Ω) be given distributions.
Assume that the original OCP (4.3)�(4.4) has a nonempty set of admissible controls.
Then OCPs (5.11) are regular for each k ∈ N) (i.e. the corresponding sets of
admissible solutions Ξk are nonempty), and for every k ∈ N there exists a minimizer
(A0

k, y
0
k) ∈ Ξk to the corresponding minimization problems (5.11) such that the

sequence of pairs
{

(A0
k, y

0
k) ∈ Ξk

}
k∈N is relatively compact with respect to the τ -

convergence and each of its τ -cluster pairs (Â, ŷ) possesses the properties:

(Â, ŷ) ∈ Ξ, (5.19)ˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx+

ˆ
Ω
a0(ŷ )2 dx ≤

ˆ
Ω

(f,∇ŷ)RN dx. (5.20)
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Proof. Since Aad ̸= ∅, it follows that Akad ̸= ∅ for every k ∈ N, and Akad ⊂
L∞(Ω;MN ). Hence, for any admissible control Ak = Asymk + Askewk ∈ Akad, we
can claim that Askewk ∈ L∞(Ω; SNskew), Asymk ∈ L∞(Ω; SNsym), and, therefore, the
corresponding bilinear form

[y, φ]Ak
=

ˆ
Ω

(
∇φ,Askewk ∇y

)
RN dx

=

ˆ
Ω

( (
Asymk

)1/2∇φ, [(Asymk

)−1/2
Askewk

(
Asymk

)−1/2
]

︸ ︷︷ ︸
Ck

(
Asymk

)1/2∇y)RN dx

≤ ∥Ck∥L∞(Ω;SNskew)∥y∥Asym
k

∥φ∥Asym
k

is bounded on WAsym
k

(Ω)

and satis�es the identity
´
Ω

(
∇φ,Askewk ∇y

)
RN dx = −

´
Ω

(
∇y,Askewk ∇φ

)
RN dx.

Therefore, ˆ
Ω

(
∇v,Askewk (x)∇v

)
RN dx = 0 ∀ v ∈WAsym

k
(Ω) (5.21)

and, hence, boundary value problem (5.13) has a unique solution yk ∈WAsym
k

(Ω)

for each Ak ∈ Akad ⊂ L∞(Ω;MN ) by the Lax-Milgram lemma. Thus, Ξk ̸= ∅
for every k ∈ N. It is worth to note that in view of the de�nition of the class
of admissible controls Akad (see Lemma 5.4), the norms ∥ · ∥H1

0 (Ω
and ∥ · ∥Asym

k

are equivalent, therefore, we can identify H1
0 (Ω with the weighted Sobolev space

WAsym
k

(Ω).
As obvious consequence of this observation and the property of τ -lower semicon-

tinuity of the cost functional Ik, we conclude that the corresponding minimization
problem (5.11) admits at least one solution (A0

k, y
0
k) ∈ Ξk [15]. Moreover, having

�xed a control Ak ∈ Akad, condition (5.21) implies the ful�lment of the following
identities for every k ∈ N
ˆ
Ω

[(
∇φ,Ak∇yk

)
RN + a0φyk

]
dx =

ˆ
Ω

(f,∇φ)RN dx, ∀φ ∈ C∞
0 (Ω), (5.22)

ˆ
Ω

(
∇yk, Asymk ∇yk

)
RN dx+

ˆ
Ω
a0y

2
k dx =

ˆ
Ω

(f,∇yk)RN dx, (5.23)

where yk = yk(Ak, f) ∈WAsym
k

(Ω) are the corresponding solutions to the boundary
value problems (5.13). Taking into account estimate (4.14), the equality (5.23)
implies that

∥yk∥2Asym
k

:=

ˆ
Ω

[(
∇yk, Asymk ∇yk

)
RN + y2k

]
dx

≤ 1

min
{

1, ∥a0∥L∞(Ω)

} ˆ
Ω

[(
∇yk, Asymk ∇yk

)
RN + a0y

2
k

]
dx

≤

√
∥ζ−1
k ∥L2q(Ω)

min
{

1, ∥a0∥L∞(Ω)

}∥f∥L4p/(p+1)(Ω;R)N ∥yk∥Asym
k

.
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Hence,

sup
k∈N

∥yk∥Asym
k

≤

√
∥ζ−1
k ∥L2q(Ω)

min
{

1, ∥a0∥L∞(Ω)

}∥f∥L4p/p+1(Ω;R)N = C1∥f∥L4p/p+1(Ω;R)N

(5.24)
and, therefore, the sequence {yk}k∈N is bounded in variable space WAsym

k
(Ω). As

a result, we arrive at the relation

Ik(A
0
k, y

0
k) = inf

(A,y)∈Ξk

Ik(A, y) ≤ Ik(Ak, yk) ≤ 2∥yd∥2L2(Ω) + 2∥yk∥2Asym
k

≤ 2∥yd∥2L2(Ω) + C2
1∥f∥2L4p/p+1(Ω;RN )

≤ C ∀ k ∈ N. (5.25)

Thus, the sequence of minimal values for the problems (5.11) is uniformly bounded,

sup
k∈N

inf
(u,y)∈Ξk

Ik(u, y) ≤ C for some C > 0. (5.26)

Hence, supk∈N ∥y0k∥2A0,sym
k

< +∞.

In the meantime, due to the de�nition of the sets Akad, it is easy to see that
the corresponding sequence of optimal controls

{
A0
k

}
k∈N belongs to Akad,1⊕Akad,2.

Hence, by Lemmas 5.5 and 5.7, we get: there exists a matrix Â ∈ Akad such that

A0
k := A0,sym

k +A0,skew
k → Âsym + Âskew =: Â in L1(Ω;MN ), (5.27)

A0,sym
k → Âsym in L1(Ω; SNsym), (5.28)

A0,skew
k → Âskew in L2p(Ω; SNskew). (5.29)

Therefore, taking into account Lemmas 5.6 and 5.8, we conclude: Â ∈ Aad.
Since supk∈N ∥y0k∥2A0,sym

k

< +∞, it follows by Lemma 4.1 that there exists an

element ŷ ∈W
Âsym(Ω) such that, up to a subsequence, we have

y0k ⇀ ŷ in L2(Ω), ∇y0k ⇀ ∇ŷ in L2(Ω, A0,sym
k dx)N . (5.30)

As a result, summing up the above properties of the sequences
{
y0k
}
k∈N and{

A0
k

}
k∈N, we obtain (A0

k, y
0
k)

τ→ (Â, ŷ ).

The next step is to show that (Â, ŷ ) ∈ Ξ. With that in mind, we pass to the
limit in (5.22) with A = A0

k and y = y0k as k → ∞ using the properties (5.27)�
(5.30). Having �xed a test function φ ∈ C∞

0 (Ω), we get (see de�nition of the weak
convergence in variable spaces)
ˆ
Ω

(f,∇φ)RN dx = lim
k→∞

ˆ
Ω

[(
∇φ,A0

k∇y0k
)
RN + a0φy

0
k

]
dx =

(
by (5.28),(5.30)

)
= lim

k→∞

ˆ
Ω

(
∇φ,A0,skew

k ∇y0k
)
RN dx+

ˆ
Ω

(
∇φ, Âsym∇ŷ

)
RN dx+

ˆ
Ω
a0φŷ dx.
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Since lim
k→∞

ˆ
Ω

(
∇φ,A0,skew

k ∇y0k
)
RN dx = lim

k→∞
I1,k + lim

k→∞
I2,k, where

I1,k = −
ˆ
Ω

( (
A0,sym
k

)− 1
2

(A0,skew
k − Âskew)∇φ,

(
A0,sym
k

) 1
2 ∇y0k

)
RN dx,

I2,k = −
ˆ
Ω

( (
A0,sym
k

)−1
Âskew∇φ,A0,sym

k ∇y0k
)
RN dx,

it follows from (4.30)�(4.31) that lim
k→∞

I2,k =
´
Ω

(
∇φ, Âskew∇ŷ

)
RN dx and

lim
k→∞

I1,k = 0. Thus, the τ -limit pair (Â, ŷ ) is related by integral identity

ˆ
Ω

[(
∇φ, Â∇ŷ

)
RN + a0φŷ

]
dx =

ˆ
Ω

(f,∇φ)RN dx, ∀φ ∈ C∞
0 (Ω),

and, hence, ŷ is a weak solution to the boundary value problem (4.1)�(4.2) under
A = Â. Thus, ŷ ∈ D(Â) and, therefore, this pair is admissible for the original
OCP (4.3)�(4.4), i.e. (Â, ŷ ) ∈ Ξ.

It remains to prove the energy inequality (5.20). To this end, we pass to the
limit in the energy equality (5.23) using the lower semicontinuity of the norms
∥ · ∥L2(Ω) and ∥ · ∥

L2(Ω;A0,sym
k dx)N

with respect to the weak convergence (5.30). As

a result, we have

ˆ
Ω

(f,∇ŷ)RN dx = lim
k→∞

ˆ
Ω

(
f,∇y0k

)
RN dx = lim

k→∞

ˆ
Ω

(
∇y0k, A

0,sym
k ∇y0k

)
RN

dx

+ lim
k→∞

ˆ
Ω
a0(y

0
k)

2 dx
by Proposition 3.2

≥
ˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx+

ˆ
Ω
a0ŷ

2 dx

(5.31)

The proof is complete.

Remark 5.2. As energy inequality (5.20) indicates, if (Â, ŷ ) ∈ Ξ is a τ -cluster pair
of the sequence

{
(A0

k, y
0
k) ∈ Ξk

}
k∈N and ŷ ∈ H

Âsym
(Ω), then the direct comparison

of (5.20) and (4.16) implies that [ŷ, ŷ ]
Â
≥ 0.

As immediately follows from this theorem, Hypothesis A can be eliminated
from Theorem 4.2. Namely, we have the following result.

Corollary 5.1. If Aad ̸= ∅, then the set of admissible solutions Ξ to OCP (4.3)�
(4.4) is nonempty for every f ∈ L4p/(p+1)(Ω;RN ) and yd ∈ L2(Ω).

Remark 5.3. As follows from Theorem 5.1, for any positive compactly supported
smooth functionK satisfying conditions (5.3), optimal solutions to the regularized
OCPs (5.11) always lead in the limit to some admissible (but not optimal in
general) solution (Â, ŷ ) of the original OCP (4.3)�(4.4). Moreover, in general,
this limit pair depends on the choice of smoothing kernel K. It is reasonably to
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call such pair attainable. However, up to now the structure of the entire set of all
attainable pairs remains unclear. For instance, it is unknown whether this set is
convex and closed in Ξ. It is also unknown whether all optimal solutions to OCP
(4.3)�(4.4) can be attainable in such way.

Taking these observations into account, we make use of the following notion.

De�nition 5.2. We say that a pair (Â, ŷ ) ∈ L1(Ω;MN )×W
Âsym

(Ω) is a variational

solution to OCP (4.3)�(4.4) if

I(Â, ŷ ) = inf
(A,y)∈Ξ

I(A, y), (Â, ŷ ) ∈ Ξ, (5.32)

and (Â, ŷ ) is related by energy equalityˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx+

ˆ
Ω
a0(ŷ )2 dx =

ˆ
Ω

(f,∇ŷ)RN dx. (5.33)

As a consequence of Theorem 5.1 and properties of the variational limits
of constrained minimization problems (see Theorem 2.1), we have the following
result.

Proposition 5.1. Let K be a smoothing kernel with properties (5.3). Assume
that the sequence of minimization problems de�ned by the rules (5.12)�(5.13) is
such that⟨

inf
(A,y)∈Ξk

Ik(A, y)

⟩
Var(τ)−−−→
k→∞

⟨
inf

(A,y)∈Ξ
I(A, y)

⟩
(see De�nition 2.3). (5.34)

Let
{

(A0
k, y

0
k) ∈ Ξk

}
k∈N be a sequence of optimal solutions to the corresponding

regularized OCPs. Then this sequence is relatively compact with respect to the
τ -convergence and each its τ -cluster pair (Â, ŷ ) ∈ L1(Ω;MN ) ×W

Âsym
(Ω) is a

variational solution to OCP (4.3)�(4.4) in the sense of De�nition 5.2. Moreover,
up to a subsequence, we have

y0k → ŷ in L2(Ω) and ∇y0k → ∇ŷ in L2(Ω, A0,sym
k dx)N as k → ∞. (5.35)

Proof. Indeed, the τ -compactness of the sequence
{

(A0
k, y

0
k) ∈ Ξk

}
k∈N is a direct

consequence of a priori estimate (5.24), Lemma 4.1, and properties (5.27)�(5.29).
In order to prove the the strong convergence (5.35), we make use of the main
properties of the variational convergence. Following Theorems 2.1, 5.1, and 4.2
(see also Corollary 5.1), we can claim that OCP (4.3)�(4.4) is solvable and there
exists an optimal pair (A0, y0) ∈ Ξ to this problem such that

inf
(A,y)∈Ξ

I(A, y) =I
(
A0, y0

)
:=
∥∥y0 − yd

∥∥2
L2(Ω)

+

ˆ
Ω

(
∇y0, A0,sym∇y0

)
RN dx

= lim
k→∞

inf
(Ak,yk)∈Ξk

Ik(Ak, yk) = lim
k→∞

Ik(A
0
k, y

0
k)

= lim
k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

ˆ
Ω

(
∇y0k, A

0,sym
k ∇y0k

)
RN

dx

]
. (5.36)
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However, because of the lower semicontinuity of ∥ · ∥L2(Ω) and ∥ · ∥
L2(Ω,A0,sym

k dx)N

with respect to the weak convergence, the convergence (A0
k, y

0
k)

τ→ (A0, y0) implies
that

inf
(A,y)∈Ξ

I(A, y)
by (5.36)

= lim
k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

ˆ
Ω

(
∇y0k, A

0,sym
k ∇y0k

)
RN

dx

]
≥ ∥ŷ − yd∥2L2(Ω) +

ˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx.

Since the pair (Â, ŷ ) is admissible for the problem (4.3)�(4.4) (see Theorem 5.1),
it follows that (Â, ŷ ) is an optimal pair. Therefore, in view of (5.36), it gives

inf
(A,y)∈Ξ

I(A, y) =I
(
Â, ŷ

)
:= ∥ŷ − yd∥2L2(Ω) +

ˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx

= lim
k→∞

inf
(Ak,yk)∈Ξk

Ik(Ak, yk) = lim
k→∞

Ik(A
0
k, y

0
k)

= lim
k→∞

[∥∥y0k − yd
∥∥2
L2(Ω)

+

ˆ
Ω

(
∇y0k, A

0,sym
k ∇y0k

)
RN

dx

]
. (5.37)

Hence, the validity of (5.35) is a direct consequence of properties (5.36)�(5.37)
and Proposition 3.3. It remains to prove the energy equality (5.33). To this end,
it is enough to note that each of the pair (A0

k, y
0
k) is related by energy equality

(5.23). As a result, passing to the limit in (5.23) as k → ∞, we �nally have

0
by (5.21)

= lim
k→∞

[y0k, y
0
k]A0

k

by (5.23)
= − lim

k→∞

ˆ
Ω

(
∇y0k, A

0,sym
k ∇y0k

)
RN

dx

− lim
k→∞

ˆ
Ω
a0(y

0
k)

2 dx+ lim
k→∞

ˆ
Ω

(
f,∇y0k

)
RN dx

by (5.35) and (5.37)
= −

ˆ
Ω

(
∇ŷ, Âsym∇ŷ

)
RN

dx−
ˆ
Ω
a0(ŷ)2 dx+

ˆ
Ω

(f,∇ŷ)RN dx.

Remark 5.4. As follows from Proposition 5.1 and Theorem 5.1, even if the OCP
(4.3)�(4.4) has a unique solution (A0, y0), it does not ensure that this pair is
the variational solution to the above problem. The matter is that the existence at
least one the smoothing kernel K such that the approximated OCPs (5.11)�(5.13)
would lead to the pair (A0, y0) in the sense of conditions (2.25)�(2.26) is an open
problem. In other words, the existence of (Γ, δ)-realizing sequence for the pair
(A0, y0) ∈ Ξ (see De�nition 2.3) is not established.

We are now in a position to discuss the existence of variational solutions to
the OCP (4.3)�(4.4).

Theorem 5.2. Assume that

• the function ζad in de�nition of the set Mβ
ζad

(Ω) satis�es conditions ζ−1
ad ∈

L2q(Ω) with q = p/(p− 1), where p is de�ned by (2.15);
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• condition (4.22) holds true for some constant C > 0;

• for every admissible control A ∈ Aad ⊂ L1
(
Ω;MN

)
, we have

[y, y]A = 0 ∀ y ∈ D(HAsym). (5.38)

Then the OCP (4.3)�(4.4) has variational solutions for every f ∈ L4p/(p+1)(Ω;RN )
and yd ∈ L2(Ω).

Proof. To begin with, we note that as follows from Theorem 4.1, condition (4.22)
guarantees the ful�lment of equality HAsym(Ω) = WAsym(Ω) for every admissible
control A = Asym+Askew ∈ Aad. Moreover, in this case, every weak solution to the
boundary value problem (4.1)�(4.2) satis�es the energy equality (4.16). Let K be
aa arbitrary positive compactly supported smooth function satisfying conditions
(5.3). We associate with this function the sequence of constrained minimization
problems (5.11), where the cost functional Ik and the set Ξk are de�ned by (5.12)�
(5.13).

Let {(Ak, yk)}k∈N be a sequence in L1(Ω;MN )×WAsym
k

(Ω) with the following
properties:

(a) (Ak, yk) ∈ Ξnk
for every k ∈ N, where {nk}k∈N is a subsequence converging

to ∞ as k tends to ∞;

(aa) (Ak, yk)
τ→ (A, y) in the sense of De�nition 5.1.

Then proceeding as in the proof of Theorem 5.1, it can be shown that the limit
pair (A, y) is admissible to the original OCP (4.3)�(4.4). Hence, this problem is
regular and, therefore, it is solvable by Theorem 4.2. Our aim is to show that this
problem can be interpreted as the variational limit of the sequence of constrained
minimization problems (5.11). To do so, we have to verify the ful�lment of all
conditions of De�nition 2.3.

As for the property (d), it immediately follows from the following relation

lim inf
k→∞

Ik(Ak, yk) = lim inf
k→∞

[
∥yk − yd∥2L2(Ω) +

ˆ
Ω

(
∇yk, Asymk ∇yk

)
RN dx

]
by (3.5)
≥ ∥y − yd∥2L2(Ω) +

ˆ
Ω

(∇y,Asym∇y)RN dx = I(A, y),

which holds true for any sequence
{

(Ak, yk) ∈ Aad ×WAsym
k

(Ω)
}
k∈N

with properties

(a)�(aa).
We focus now on the veri�cation of condition (dd) of De�nition 2.3. Let (A♯, y♯)

be an arbitrary admissible pair to the original problem. Since A♯ ∈ Aad, it follows
from Lemmas 5.6 and 5.8 that the sequence of smoothed matrices{

A♯k := (Asharp)k :=

ˆ
RN

K (z) Ã♯(x+ k−1z) dz

}
k∈N
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such that A♯k ∈ Akad for all k ∈ N, and A♯k → A♯ as k → ∞ in the sense of
De�nition 5.1, i.e.

A♯k := A♯,symk +A♯,skewk → A♯,sym +A♯,skew =: A♯ in L1(Ω;MN ), (5.39)

A♯,symk → A♯,sym in L1(Ω; SNsym), (5.40)

A♯,skewk → A♯,skew in L2p(Ω; SNskew). (5.41)

Let
{
yk = y(A♯k, f)

}
k∈N

be the corresponding solutions to the regularized boundary

value problems (5.11). Then having applied the arguments of the proof of Theorem
5.1, it can be shown that the sequence {yk}k∈N is uniformly bounded in variable
Sobolev space W

A♯,sym
k

(Ω) and there exists an element ŷ ∈ WA♯,sym(Ω) such that

ŷ ∈ D(WA♯,sym), (A♯, ŷ) ∈ Ξ, and, up to a subsequence,

yk ⇀ ŷ in L2(Ω), ∇yk ⇀ ∇ŷ in L2(Ω, A♯,symk dx)N . (5.42)

Our aim is to show that ŷ = y♯ and the following identity

I(A♯, y♯) = lim sup
k→∞

Ik(A
♯
k, yk) (5.43)

holds true.
Indeed, since (A♯, y♯) ∈ Ξ and (A♯, ŷ) ∈ Ξ, it follows that y = y♯ − ŷ is a

solution of the homogeneous problem

−div
(
A∇y

)
+ a0y = 0 in Ω, y = 0 on ∂Ω. (5.44)

Following the initial assumptions, we haveWAsym(Ω) = HAsym(Ω) and [y, y]A = 0
∀ y ∈ D(WAsym) and for each matrix A ∈ Aad. Hence,

0
by (5.38)

= −[y, y]A♯

by (4.16)
=

ˆ
Ω

[(
∇y,A♯,sym∇y

)
RN + a0y

2
]
dx

and, therefore, problem (5.44) has the trivial solution only. Thus, y♯ = ŷ.
To prove the equality (5.43), we use of the idea of D.Cioranescu and F.Murat

(see [2]). In view of the initial assumptions and Remark 2.1, the embedding
HA♯,sym(Ω) ↪→ L2(Ω) is compact. Taking into account this fact, the property
(5.39), and the energy equalities (5.23) and (4.16), we get

lim
k→∞

Ik(A
♯
k, yk) = lim

k→∞

[
∥yk − yd∥2L2(Ω) +

ˆ
Ω

(
∇yk, A♯,symk ∇yk

)
RN

dx

]
=
∥∥∥y♯ − yd

∥∥∥2
L2(Ω)

+ lim
k→∞

ˆ
Ω

(
∇yk, A♯,symk ∇yk

)
RN

dx

by (5.23)
=

∥∥∥y♯ − yd

∥∥∥2
L2(Ω)

+ lim
k→∞

[
−
ˆ
Ω
a0y

2
k dx+

ˆ
Ω

(f,∇yk)RN dx

]
by (5.42)

=
∥∥∥y♯ − yd

∥∥∥2
L2(Ω)

+

ˆ
Ω

(
f,∇y♯

)
RN

dx− [y♯, y♯]A♯

by (4.16)
=

∥∥∥y♯ − yd

∥∥∥2
L2(Ω)

+

ˆ
Ω

(
∇y♯, A♯,sym∇y♯

)
RN

dx = I(A♯, y♯).

This concludes the proof.
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Our next observation shows that variational solutions do not exhaust the entire
set of all possible solutions to the original OCP (4.3)�(4.4). With that in mind,
we adopt the following concept.

De�nition 5.3. We say that a pair (A0, y0) ∈ Ξ is a non-variational solution to
OCP (4.3)�(4.4) if

I(A0, y0) = inf
(A,y)∈Ξ

I(A, y), (A0, y0) ∈ Ξ, and (5.45)
ˆ
Ω

(∇y0, Asym0 ∇y0)RN dx+

ˆ
Ω
a0y

2
0 dx ̸=

ˆ
Ω

(f,∇y0)RN dx. (5.46)

Lemma 5.9. Assume that there exists a matrix A0 ∈ Aad and an element v ∈
D(HAsym

0
) ⊂ HAsym

0
(Ω) with property [v, v]A0 ̸= 0. Then there are distributions

f ∈ D′(Ω;RN ) and yd ∈ L2(Ω) such that the optimal control problem

Minimize I(A, y) = ∥y − yd∥2L2(Ω) +

ˆ
Ω

(∇y −∇yd, Asym(∇y −∇yd))RN dx

(5.47)

subject to the constraints (4.1)�(4.2) and A ∈ Aad ⊂ L1(Ω;MN ) (5.48)

has a non-variational solution in the sense of De�nition 5.3.

Proof. We consider the OCP (5.47)�(5.48) with

yd = v and f = −A0∇v. (5.49)

Since v ∈ D(HAsym
0

), it follows that yd ∈ L2(Ω), ∇v ∈ L2(Ω, Asym0 dx)N , and,

therefore, (Asym0 )
−1/2

f ∈ L2(Ω)N . Indeed, as follows from (5.49)2, we have

(Asym0 )
−1/2

f = f1 + f2, where f1 = (Asym0 )
1/2∇v and f2 = (Asym0 )

−1/2
Askew0 ∇v.

Then

ˆ
Ω
|f1|2 dx =

ˆ
Ω

(∇v,Asym0 ∇v)RN dx
v∈H

A
sym
0

(Ω)

< +∞,

ˆ
Ω
|f2|2 dx =

ˆ
Ω
| (Asym0 )

−1/2
Askew0 (Asym0 )

−1/2︸ ︷︷ ︸
C(x)

(Asym0 )
1/2∇v| dx

≤ ∥C∥L2(Ω;SNskew) ∥v∥L2(Ω,Asym
0 dx)N

by (2.17)
< +∞.

Hence, (Asym0 )
−1/2

f ∈ L2(Ω)N and by Corollary 4.1 we conclude that yd is a
weak solution to the boundary value problem (4.1)�(4.2) under A = A0. Since
v ∈ D(HAsym

0
) ⊂ HAsym

0
(Ω), it follows that (see Remark 4.2) the distribution yd

satis�es the energy equality
ˆ
Ω

(
∇yd, Asym0 ∇yd

)
RN dx+

ˆ
Ω
a0y

2
d dx+ [yd, yd]A0 =

ˆ
Ω

(f,∇yd)RN dx. (5.50)
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Moreover, using the fact that I(A0, yd) = 0, we �nally conclude: (A0, yd) is the
unique optimal pair to the above OCP.

Our aim is to show that (A0, yd) is a non-variational solution to this problem.
To this end, we assume, for a moment, that (A0, yd) is a variational solution. Then
Proposition 5.1 guarantees the validity of the related

ˆ
Ω

(
∇yd, Asym0 ∇yd

)
RN dx+

ˆ
Ω
a0y

2
d dx =

ˆ
Ω

(f,∇yd)RN dx.

On the other hand, since [yd, yd]A0 := [v, v]A0 ̸= 0, energy equality (5.49) leads to
the strict inequality

ˆ
Ω

(
∇yd, Asym0 ∇yd

)
RN dx+

ˆ
Ω
a0y

2
d dx ̸=

ˆ
Ω

(f,∇yd)RN dx

and, hence, we arrive at the contradiction with the previous assertion. Thus,
(A0, yd) is a non-variational solution to the above problem. The proof is complete.

Remark 5.5. As follows from Theorem5.1, if (A0, y0) ∈ Aad × HAsym
0

(Ω) is a
non-variational solution such that [y0, y0]A0 < 0, then this solutions can not
be attainable through the limit of optimal solutions to the regularized problems
(5.11)�(5.13).
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