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ON UNBOUNDED OPTIMAL CONTROLS IN
COEFFICIENTS FOR ILL-POSED ELLIPTIC DIRICHLET
BOUNDARY VALUE PROBLEMS

T. Horsin*, P. I. Kogut™**

* Conservatoire National des Arts et Métiers, M2N, IMATH, Case 2D 5000, 292 rue
Saint-Martin, 75003 Paris, France (thierry.horsin@cnam.fr)
** ninponemposcorutl Hauionarvrut ynisepcumem im. Oaecs Tonuapa,
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We consider an optimal control problem associated to Dirichlet boundary value
problem for linear elliptic equations on a bounded domain 2. We take the matrix-
valued coefficients A(x) of such system as a control in L'(Q;RY x RY). One of the
important features of the admissible controls is the fact that the coefficient matrices
A(z) are non-symmetric, unbounded on 2, and eigenvalues of the symmetric part
A®™ = (A + A")/2 may vanish in .

Key words: degenerate elliptic equations, control in coefficients, weighted Sobolev spaces,

variational convergence.
1. Introduction

The aim of this paper is to study the following optimal control problem (OCP)
for a linear elliptic equation with unbounded coefficients in the main part of the
elliptic operator

Minimize I(A,y) = |ly - yal22(0) + / (Vy, A" Ty)en da
Q
subject to the constraints (1.1)
—div (A(z)Vy) + ap(z)y = —div f in €,
y=0 on 09,

where the matrix A = A%™ 4 Askew ¢ LY Q; ST ) & L?(Q;S),,,,) is adopted
as a control, f € D'(;RY) and yq € L2(Q) are given distributions, p > 1, and
ap € L>*(9) is such that ap(x) > a > 0 almost everywhere in Q. We define a
class of admissible controls 2,4 as a nonempty compact subset of L' (€2; Sé\;m) &)
L?(Q; SN ) such that for every A € A,q we have

skew
A (z) = A% () < A™(2) a.e. in Q,
Cad(x)I < A%W™(2) < B(x)] a. e in €, / A%V () dx = M,
Q

© T. Horsin, P. I. Kogut, 2014



4 T. HORSIN, P. 1. KOGUT

where M € Sé\;m and A*, A** € L?P(Q;SY,_,) are given nonzero matrices, 3 €

LY(9), B> Cag, and (€ L2(Q) for ¢ = p/(p — 1),

This kind of problems naturally appears in the optimal design theory for
linearized elliptic boundary value problems. Their characteristic feature of the
problem (1.1) is the fact that the existence, uniqueness, and variational properties
of the weak solution to (1.1) are drastically different from the corresponding
properties of solutions to the elliptic equations with coercive L°°-matrices in
coefficients. Typically, in such cases, the boundary value problem (1.1) with
unbounded matrices A € A,y may admit many or even infinitely many weak
solutions [21,22].

Optimal control in coefficients for partial differential equations is a classical
subject initiated by Lurie [17|, Lions [16], and Pironneau [19]. Since the range of
such optimal control problems is very wide, including as well optimal shape design
problems, some problems originating in mechanics and others, this topic has been
widely studied by many authors. However, most of these results and methods rely
on linear PDEs with bounded coefficients in the main part of elliptic operators,
while only a few articles deal with with unbounded and degenerate coefficients,
see [1,3,7-11,13,14].

The principal feature of OCP (1.1) is that the corresponding boundary value
problem (1.1)2—(1.1)3 is ill-possed and the class of admissible controls A € Ayq
belongs to L'(€; MV). We note that these assumptions on the class of admissible
controls together with L?P-properties of the skew-symmetric parts are essentially
weaker than they usually are in the literature. In Sections 2 and 3, we discuss
some auxiliary results that are closely related with the correctness of the notion of
weak solutions to the above boundary value problem and describe a mathematical
background for convergence formalism in variable Sobolev spaces.

We give the precise definition of the class of admissible controls in Section 4
and, using the direct method in the Calculus of variations, we show that a set
of optimal pairs to the above problem is nonempty provided the so-called non-
triviality condition on the set of admissible solutions. Since this condition is
closely related with the existence of weak solutions to the boundary value problem
(1.1)2—(1.1)3, we show in Section 5 that this question can be solved due to the
approximation approach.

2. Notation and Preliminaries

Let Q be a bounded open connected subset of RV (N > 2) with Lipschitz
boundary 9€). Let xg be the characteristic function of a subset £ C , i.e.
xeg(x)=1ifz € E, and xyp(zr)=0ifx ¢ E.

Let M be the set of all N x N real matrices. We denote by Sgﬁew the set of all

skew-symmetric matrices C' = [cij]fvjzl, i.e., C is a square matrix whose transpose
9.

N
skew

is also its opposite. Thus, if C' € S then ¢;; = —cj; and, hence, ¢;; = 0.
N(N-1)

Therefore, the set SN can be identified with the Euclidean space R 2z . Let

skew
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Sé\;m be the set of all NV x N symmetric matrices, which are obviously determined

by N(N +1)/2 scalars. For each matrix B € MV, we have a unique representation
B = Bsym + Bskewa (21)

where Bgyy, = %(B—FB'“L) e SN

sym

and Bgpew = 3 (B— B') € SY_,,. In the
sequel, we will always identify each matrix B € M with its decomposition in the
form (2.1).

Let p,q € [1,00] be given real numbers such that %+% =1.Let L (Q; Sé\gew)
be the normed space of measurable 2p-integrable functions whose values are skew-
symmetric matrices.

Let A(z) and B(x) be given matrices such that A, B € L?(; SN _ ). We say

that these matrices are related by the binary relation < on the set L?P(; S?,Qew)
(in symbols, A(z) < B(z) a.e. in ), if

LN (Ufil U;y:iﬂ {x € ai(z) > bz](x)}) =0. (2.2)

Here, LY (E) denotes the N-dimensional Lebesgue measure of £ C RY defined
on the completed borelian o-algebra.

Let a € R be a fixed positive value. Let (,q and 3 be given L!(Q)-functions
satisfying the properties

B>Cua>0 aein Q () eLl?Q) for q=p/(p—1), p=1, (2.3)
B, Caa s 2 — ]R}F are smooth functions along the boundary 0f2,
Cad=PF=a on ON. (2.5)

—
no
H~

By Qﬁ’?ad(Q) we denote the set of all matrices A = [a;;(-)] € LY(Q; Sé\gf/m) such
that

Cadl < A(z) < B(z)] a.e. in Q (2.6)
Here, I is the identity matrix in R¥*¥ and (2.6) should be considered in the

sense of quadratic forms defined by (AE,&)pn for € € RY. Therefore, condition
(2.6) implies the following inequalities:

it Aem? (Q), then [Alposy,) < I8l < +oo,  (27)
Caa @) €12 < (A@)E,Ogw  ae.in Q, VE€RY (2.8)
A7 2@ < G @)lIEw ae.in 9, VEERY, (2.9)

and, therefore,

A2 e ph(ss,) and ATy, <\ IG s (210)
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To each matrix A € imfa Q) C Ll(Q;Sé\Lm) we will associate two weighted

Sobolev spaces: Wa(Q2) = W(Q; Adx) and Ha(Q) = H(Q2; Adx), where W4(£2)
is the set of functions y € VVO1 1(Q) for which the norm

ol = [ 07+ (9. 40)P)an ) ds) 2.11)

is finite, and H4 () is the closure of C§°(2) in W4 (Q)-norm. It is well-known
that due to the inequality (2.8) the space W4(Q2) is complete with respect to the
norm | - |4 (see [11]). It is clear that HA(2) C Wa(£2), and W4(Q2), Ha(Q2) are
Hilbert spaces.

For our further analysis, we make use of the following observation.

Remark 2.1. If N > 2 and there exists a value v € (%,%—oo) such that uv™¥ €
LY(€2), then the expressions (for more details see [4, pp.46]):

1/2
ol = | [ ulvoPas]  and (2.12)
Q
) ) 1/2
Iyl = ([ (7 +ulVyP) dz) (2.13)
can be considered as equivalent norms on H, := clj|, , CG5°(€2). Moreover, in

this case the embedding H,, < L?(2) is compact. Taking this fact and definition
of the class Qﬁid(Q) into account, we deduce that the norm || -] 4, given by (2.11),
is equivalent to the following one

lohoa = ( [ (9 A T)an ds) 2.14)

on H () provided A € im?ad(Q), ¢.; € L¥(Q) with ¢ = p/(p — 1), where

N
pe[l,0) if Ne€{2,3}, and 1§p§N 1 it N>4. (2.15)
Indeed, since the conditions (2.15) implies the fulfilment of inequality ¢ = p/(p —
1) > N/4, it follows that v := 2q € (%,—1—00) and (7 € L'(Q).

Let A = Agym + Askew € Lt (Q;MN) be a given matrix matrix such that
Agpew € LQP(Q; S?,Zew). In what follows, we associate with A the bilinear skew-

symmetric form
O(y,v)a = / (Vv,Askew(x)Vy)RN dr, Yy,veWa,, (Q),
Q

and introduce the matrix C(z) € S¥_  following the rule

C(z) = AZM2(2) Agpew () AZY2(2)  ae. in Q. (2.16)

sym sym
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It is easy to see that C € L? (Q S ) Indeed, by the Cauchy-Bunyakowsky

' Pskew
inequality and estimate (2.10), we have

1
—2 |14
€1y, < | IAswenlBa oy Aol gy do

9 1/p _1 1/q
<(/ uAskewuggRNRN)dx) ([ 143 s vy )

2
- ”AS]C@UJHL%D(Q;SN ”Asym||L4q (4SY,,)

< HCa_dlH%2q(9)HASkewHLQP(Q;ngw) < +00. (2.17)

Hence, the form ®(y,v)4 is unbounded on Wy, (£2), in general.
However, if we temporary assume that C € L®°(€;SY ), then the bilinear

' Pskew
form ®(-,-) 4 is obviously bounded on Wy, (€2). In this case we have

sym (

2
‘/ Vo, sksewa)RN ‘/ syvapv |:AsymAskewAsym:| Asymvy)RN dx

<Nl sy / ALy Vol da / ALy V2 da

< NCllpee sy

skew

In order to deal with the case C' ¢ L>®(€2;SY ), we notice that the value

' Pskew
O (y,v)a is always finite provided y € Wy, (2) and ¢ € C§°(2). Indeed,

sym (

2
< ||90||01 (/ |Askewvy|RN d:E)

< 1ol | Aswen A e g @0 | |A8m 09 da

2 _
<10l e | MAskenl e G 2 [ (T Ary V)

) ) ) 1/p B 1/q
< H‘PHCl(ﬁ)HyHA </ ||Askew||£pRN7RN) dx) (/Q <aaiq dx)

<l W12 ¢ 2oy I Askewl Zanagny_y < +00.

|D(y, v) ‘/ Vo, Sk‘e’wa)RN dl‘

Hence, if C € L? (Q S ) then the integral / (V@,Askew(:c)Vy)RN dx is

' Mskew
Q
well defined for every y € Wy, () and ¢ € C3°(2). Taking this fact into

account, we set

sym

[y, 0la = /Q (Veo, Asenw(2)VY) pn da = / (AY2 Ve, C(x) A2 VY) gr dz,

VyeWa, (), Ve Q)

sym

where the matrix C' is defined by (2.16), and introduce of the following notion.
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Let Va,,,.(€2) be some intermediate space with Hy,,, (2) € Va,,.(Q) C

Definition 2.1. Let A = Ayyp + Askew € Lt (Q;MN) be a given matrix such
that Agren € L?P (Q; Sé\,fww). We say that an element y € V4 Q) belongs to the
set D(Va,,,,) if

sym (

1/2
< o(y, A) ( [ F st [(Vo A Tiolan dz)

with some constant ¢ depending on y and A.

‘/g; (VQD, Askewvy)RN dx

As a result, if y € D(Vy
all p € Hy

+ym) then the mapping ¢ — [y, p]4 can be defined for
) using (2.18) and the standard rule

sym (

[y, p]a = lim [y, @], (2.19)
e—0

where {p:}.oo C C°(Q) and ¢. — ¢ strongly in Hay,,,, (2) (it is the case where
we essentially use the fact that C§°(€2) is dense in Hy,,,, (€2)). In particular, if
y € D(Ha,,,), then we can define the value [y,y]a and this one is finite for
every y € D(Ha,,,,), although the "integrand" (Vy,Askewa)RN needs not be
integrable on €2, in general.

Let f:Q — R be a function of L'(£2). We define

1v(s) = [ 1Dl =sup{ [ F (V.o do

©=(¢1,---,¢N) € C&(Q;]RN), lp(z)| <1 forz e Q},

where (V, )pv = 3,1, 522,

According to the Radon-Nikodym theorem, if TV (f) < +o0 then the distribu-
tion Df is a measure and there exist a vector-valued function Vf € [L1(€2)]" and
a measure D,f, singular with respect to the IN-dimensional Lebesgue measure
LN Q restricted to , such that Df = VLN [Q + D, f.

Definition 2.2. A function f € L'(f2) is said to have a bounded variation in €
if TV (f) < +oco. By BV () we denote the space of all functions in L'(2) with
bounded variation, i.e. BV(Q) = {f € L'(Q) : TV(f) < o0} .

Under the norm || f{| gy (o) = | fllL1@) + TV (f), BV(Q) is a Banach space. For
our further analysis, we need the following properties of BV -functions (see [5]):

Proposition 2.1. Let {f;}3°; be a sequence in BV () strongly converging to
some f in L'(2) and satisfying condition supen TV (fi) < +00. Then

fEBV(Q) and TV(f) < lminf TV(f)

and for every bounded sequence {f}3;2, C BV(f2) there exists a subsequence,
still denoted by fy, and a function f € BV (Q) such that fr — f in L1(€).
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Let I;, : Uy x Y — R be a cost functional, Y, be a space of states, and Uy,
be a space of controls. Let min {Ix(u,y) : (u,y) € Ex} be a parameterized OCP,
where

=k C {(uk,yk) €U x Y : ug € Ug, Ik(uk,yk) < +OO}

is a set of all admissible pairs linked by some state equation. Hereinafter we always
associate to such OCP the corresponding constrained minimization problem:

(CMPy) < inf Ik(u,y)> . (2.20)
(u,y)€ Eg

Since the sequence of constrained minimization problems (2.20) lives in variable
spaces Ui X Yg, we assume that there exists a Banach space U x Y with respect
to which a convergence in the scale of spaces {Ug x Yy}, is well defined (for
the details, we refer to [12,20]). In the sequel, we use the following notation for
this convergence (ug, y) LN (u,y) in Ug x Yg. Moreover, we assume that every
bounded sequence in variable space Ui x Y}, is sequentially compact with respect
to the p-convergence.

In order to study the asymptotic behavior of a family of (CMPy), the passage
to the limit in (2.20) as the parameter k£ tends to +oo has to be realized. The
expression “passing to the limit”means that we have to find a kind of “limit cost
functional” I and “limit set of constraints” = with a clearly defined structure such
that the limit object <inf(u7y)65 I(u,y)) may be interpreted as some OCP.

Following the scheme of the direct variational convergence [12], we adopt
the following definition for the convergence of minimization problems in variable
spaces.

Definition 2.3. A problem <inf(u7y)€5 I(u,y)) is the variational p-limit of the
sequence (2.20) as k — oo, if and only if the following conditions are satisfied:

(d) If sequences {kn},cn and {(un,yn)}, ey are such that k, — 0 as n — oo,
(Un,Yn) € g, ¥Yn €N, and (tn, yn) = (u,y) in Uy, x Y, , then

(u,y) € 25  I(u,y) <liminf I, (un,yn); (2.21)
n—oo

(dd) For every (u,y) € = C U x Y, there are an integer k° > 0 and a sequence
{(ur, yr) }pen (called a I-realizing sequence) such that

(uk,yr) € Exy YE >0 (up,yr) —= (@,7) in Up x Yi,  (2.22)
I(u, y) = limsup I, (ug, yi).- (2.23)
k—o00

Then the following result takes place [12].

Theorem 2.1. Assume that the constrained minimization problem

<( inf  Io(u, y)> (2.24)

u,y)EEo
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is the variational p-limit of sequence (2.20) in the sense of Definition 2.3 and this
problem has a nonempty set of solutions

= = {(uo,yo) €Zo ¢ Io(u’y’) = W Io(u,y)}-
) =0

For every k € N, let (ug,yg) € Zr be a minimizer of I, on the corresponding
set Ey. If the sequence {(ul,y)}ken is relatively compact with respect to the -
convergence in variable spaces Uy, x Y}, then there exists a pair (u®,y°) € Egpt

such that
(ug,up) = (@0,9°) in Ug x Yy, (2.25)
inf  Ip(u,y) =1Ip (uo,yo) = klim I(ul, y?) = lim inf Iy (uk, yk)-
—00

(2.26)

3. Weak Convergence in Variable L?-Spaces Associated with

Shm-Valued Radon Measures

By a nonnegative Radon measure on {2 we mean a nonnegative Borel measure
which is finite on every compact subset of 2. The space of all nonnegative Radon
measures on {2 will be denoted by M, (). According to the Riesz theory, each
Radon measure p € M4 (£2) can be interpreted as an element of the dual of the

space Cp(£2) of all continuous functions with compact support. Let M (£2; Sé\;m)
denote the space of all S?Lm—valued Borel measures. Then p = [u;;] € M(§; Sé\;m)

< Mij € C(/)(Q), i,7=1,...,N.
Let p and the sequence {p}; oy be matrix-valued Radon measures. We say
that {sk}pey Weakly-+ converges to p in M(Q;SL,,) if

lim /so-dukz/so-du Vi € Co(;S5,,,)-
k—o0 Q Q

A typical example of such measures is

dug, = Ag(z)dzx, dp= A(x)dz, (3.1)
where A, A € Ll(Q;Sg/m) and Ay — A in L'(Q; Si\;m) (3.2)

Hereinafter we suppose that the measures p and {p},cy are defined by (3.1)-
(3.2). Then py — p in M(Q;SY ). Further, we will use L?(Q, Adz)" to denote

sym
the Hilbert space of measurable vector-valued functions f € RY on Q such that

1/2
s aans = ([ (£ A@ s do) ™ < 4.

We say that a sequence {vk € L%(Q, Ay, d:E)N}keN in is bounded if

limsup/ (vg, Ag(x)vg)gn dox < 4o00.
Q

k—00
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Definition 3.1. A bounded sequence {vk € L%(Q, Ay, d;v)N}keN is weakly con-
vergent to a function v € L2(Q, Adx)" in variable space L?(, Ay dz)V if

k—o00

lim [ (¢, Ak(x)vg)py dz :/ (¢, A(z)v)gn dz Vo € CF(Q)N. (3.3)
Q Q

Definition 3.2. A sequence {vk € L%(Q, Ay, dm)N}keN is said to be strongly
convergent to a function v € L(Q, Adx)" if

klingo ) (br, Ag(2)vg)gn dx = /Q (b, A(x)v)gn dx (3.4)

whenever by, — b in L?(Q, Ay, dz)N as k — oo.

Remark 3.1. Note that in the case Ay = A, Definitions 3.1-3.2 leads to the usual
notion of convergence in weighted Hilbert space L?(Q2, A dx)"N.

The main properties of the weak and strong convergences in LP(2, du.) can
be expressed as follows (see [11] for the details):

Proposition 3.1. If a sequence {vj, € L*(Q, Ay da:)N}keN is bounded and the

condition (3.2) holds true, then it contains a weakly convergent subsequence in
Lz(Q, Ak dx)N.

Proposition 3.2. If the sequence {vk € L%(Q, Ay d:c)N}keN converges weakly to
v € L*(Q, Adx)N and the condition (3.2) holds true, then

liminf/ﬂ(vk,Ak(x)vk)RN dx > / (v, A(z)v)gn dx. (3.5)

k—o0 Q

Proposition 3.3. Assume the condition (3.2) holds true. Then the weak conver-
gence of a sequence {v € L*(Q, Ay, dm)N}keN to v € L?(Q, Adz)" and

kli)ngo ) (g, A (z)vg) gy dx = /Q (v, A(z)v)pn dx (3.6)

are equivalent to the strong convergence of {vj}, oy in L2(Q, Apdz)N to v €
L(Q, Adx)N.

In what follows, we make use of the following result.
Lemma 3.1. Let A%*v € L2P(Q; SN ) be a given matriz, and let {Azym}keN C
?Jﬁ?ad(Q) be a sequence such that

AT AT i LN SD ). (3.7)

y PDsym
Let ¢ € C§°(Q2) be an arbitrary test function. Then
= (Azym)f1 Vo — (Af)ym)f1 Vo =:vy and
Wy = (Azym)_1 Askewy o — (Af)ym)_1 Ak = wy

strongly in variable space L*(Q, A}¥™ dz)N as k — oo.
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Proof. Let ¢ € C5°(2) be an arbitrary test function. Since

sym sym\ —1
HVk||%2(Q7Azymdx)N = /Q (Vk,Aky vk)RN dx :/Q<V<p, (Ak:y ) VSO)RN dx

2 -1 2 2P a1
< o IVlpn (g dr < H‘PHcl(Q)’Q\”+ 1€ad HL?q(Q) < 00,

skew sym\—1 jskew
- /Q (Ao, () atevy) da
< [ Glatervel do < ol ol oo l4™ gy, <+
and, for each ¢ € C§°(92),

/Q (T, A"Vi) o d = | (Voo AP (A7) V) de

RN

(Vi) V) do = / (V4h, AV o) da,
Q

I
S~ S—5—

/ (Vb AP W) o = [ (T, A0 (A™) 7 AFUTp) e
Q

RN
_/ (Vw,ASkengD) d:):—/ (Vip, A" wo)gn da,
Q RN Q

(3.8)

it follows that the sequences {vi},cy and {wp},cy are bounded and weakly
convergent in variable space L?(, A} dz)" to vector-valued functions vy €
L2(Q, A" dx)N and wy € L2(Q, A" dz)N, respectively.

In order to show that the sequence {vy},y is strongly convergent to vo :=
(Agym)_1 Vi, we make use of Proposition 3.3. Following this assertion, it is enough
to prove the equality

lim (Vk,Azymvk)RN dr = lim
k—oo J k—oo J

_ /Q (Ve (45™) 7 Vo) dx = /Q (vo, A™vo)on dz. (3.9)

(Vgp, (Azym)_l V(p) dx

RN

In view of estimate (ch, (Azym)_1 Vga) < ||90H?;1(Q)C;dl < 400, VEkeN,the

RN
sequence {(ch, (Azym)_1 VQD)RN}’C ie equi-integrable. On the other hand,
€N
property (3.7) implies that, within a subsequence, we have the pointwise conver-

gence (Azym)f1 — (A(S)ym)_1 almost everywhere in 2. Hence, up to a subsequence,

(Vgp, (Aiym)_l V@)RN — (V(p, (Af)ymf1 V@)RN a.e.in Q.
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Thus, the equality (3.9) is a direct consequence of Lebesgue Dominated Theorem,
and hence,

(A™) 7'V = (AF™) ' Vg strongly in L2, A" d2)N Ve € Q).

Following the same arguments, it can be shown that

lim [ (Wi, A" W) do = = Tim | (Vi A%k (4307) T AR da
Q

k—oo Jq k—o0 RN

_ /Q (Vi abew (azm) ™ askeryg) de = /Q (Wo, A" wo)g d.
Combining this fact with relation (3.8), by Proposition 3.3 we have:
A ThAskewg o (AP T AU strongly in LA(, AP dz)N
(k ) (P_>(0 ) @ strongly in (Q, k )

Vo € C§°(£2). The proof is complete. O

4. Setting of the Optimal Control Problem

Let p > 1 be a given exponent and let f : @ — R be a vector-valued function
such that f € L*®/+D(Q:RN). Let M € Sé\;m be a constant matrix satisfying
the condition

(ME,&)gn > m||&]|zn for some m > 0.

The optimal control problem we consider in this paper is to minimize the discre-
pancy (tracking error) between a given distribution yq € L?(Q2) and a solution y
of the Dirichlet boundary value problem for the linear elliptic equation

—div (A(z)Vy) + ao(z)y = —div f in Q, (4.1)
y=0 on 0. (4.2)

by choosing an appropriate matrix-valued control A(z) = Agym(x) + Askew ().
Here, ap € L™°(Q2) is a given function such that ag(x) > o > 0 almost everywhere
in €.

More precisely, we are concerned with the following OCP

Minimize 1(A,y) = |y — yal 720 + /Q (VY, AsymVy)pn dz (4.3)

subject to the constraints (4.1)-(4.2) with A € Aq € L (GMY). (4.4)

In order to define the class of admissible controls 2,4, we begin with some

preliminaries. Let A*, A** € L?P(;SN_ ) be given nonzero matrices such that

A* < A" a.e. in ), let ¢ be a given positive constant, and let () be a nonempty
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convex compact subset of L2P(Q;S¥ ) such that the null matrix A = [0] belongs
to Q. Further we make use of the following sets

Ust ={A=lai;] € L(D85,,) | TV(a;) <, 1<i<j< N}, (4.5)
Up1 = {A = [ai;] € L'(;8Y,,) [Aem] (@ / Az) do = } (4.6)
Unz = { A = [ai;] e L(Q;SN ) | A*(z) < A(z) = A™(z) ae.in Q},

Ub72 = {A ] € LQP(Qvgskew) ‘ A€ Q} :

Remark 4.1. Hereinafter we assume that
Aggy =Uag NUp1 # 0 and  Aggo := Uy NUpo # 0,

and, hence, the set ™Ayq 1= Agq1 D Ayq2 is nonempty. Moreover, it is easy to see
that for a given A*, A** € sz(Q, Sﬁcew) we can always guarantee the fulfilment

of condition 2,g # 0 by an appropriate choice of functions (,q € L'(2) and
B e LY(Q), a matrix M € Sé\;m, and a compact subset Q.

Definition 4.1. We say that a matrix A = Ay, + Agkew is an admissible control
to the Dirichlet boundary value problem (4.1)—(4.2) (it is written as A € ,q) if
Asym € Q[ad,l and Agpew € Qlad,2-

For our further analysis, we use of the following results.

Proposition 4.1. The set 2,4 is convex and sequentially compact with respect
to the strong topology of L'(Q;MY).

Proof. Let {A/z€ =A™ + Azke“’} peny © Uaa be an arbitrary sequence of admissible
controls. Since
Q[aai = Q[adl @mad 2, Q[adl - BV(Q7Sé\;m)

Aua2 C Upa, and Uz is a compact in L2P(Q,Sskew)

it follows by the compactness of BV-functions (see Proposition 2.1) that there
exist matrices Ay’™ € BV (Q;SY ) and AgFew € Uy, C L#(Q;SY ) such that

s Msym ' Mskew
within a subsequence

AT AT i LNQSY ), (4.9)
AFew — AgFYin LPP(Q;SN.,,), (4.10)
and Ay, — Ag := A" + AFY almost everywhere in Q. (4.11)

Combining these facts with definition of the binary relation < (see (2.4)), we
arrive at the conclusion: Agkew € Uy,po, Agke“’ € Upz, and Agym € U,,1. Hence, it
remains to show the condition Ag”™ € Up;. With that in mind we make use of
the following observation.
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By the initial suppositions, we have A;*" € fméd(Q) for all £ € N. Hence, in

view of L'-convergence A;¥™ — A;¥™, we may assume that, up to a subsequence,
APV — AGY™ almost everywhere in Q. Since Ag(z) > (ual a. e. in €, it follows
that

M= lim [ A¥"(x) dx:/ASym(x) dz,
k—oo J Q

A" (z) = klim AV (x) < B(z)] a.e.in Q,
—00

Cad(2)] < klim AP () = A" (x) a.e.in Q.
— 00

Thus, Ay € Up1. As a result, we have
A = AV Agkew 5 AT ASFer = Ay in LH(Q;MY).

and Ag € 2Ayq. Since the convexity of 2,4 is obviously valid, this concludes the
proof. O

Definition 4.2. We say that a function y = y(A4, f) is a weak solution to the
boundary value problem (4.1)-(4.2) for a fixed admissible control A = Agyp, +
Agkew € Uaq and given distribution f € L4p/(p+1)(Q;]RN) if y e Wy, () and
the integral identity

sym

/Q [(VQD, Asymvy)RN + GOZUSD] dr + /Q (V(p, Askewvy)RN dr = /Q (f) VQD)]RN dx
(4.12)
holds for each ¢ € C§°(£2).

We note that by the initial assumptions and Hélder’s inequality, this definition
makes a sense because (AspewVy) € L1(Q;RYN) for each y € Wa, . (Q). Indeed,

sym(
/ ‘AskewahRN dx < / HAskew sym ||£ RN RN) |Asymvy|RN dx

1/2
< (] Mol o A By ) ([ (90 Ay Ve )

1/2p 1/2q
o e T R A = N R T

< |24 Agren | ooy 1Az I zsaasy ) 191 Auym-

1/2

On the other hand, Definition 4.2 gives another motivation to introduce the
set D(W4

sym)'

Proposition 4.2. Let A = Ay + Askew € UAgq and f € L4p/(p+1)(Q;IR{N)
be given distributions. Let y € Vi, (€2) be a weak solution to the boundary
value problem (4.1)—(4.2) for some intermediate space Vy, () with Hyq, () C
Va Q) C Wy Q). Then y € D(V4

sym sym

sym ( sym ( sym ) °
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Proof. In order to prove this assertion it is enough to rewrite the integral identity
(4.12) in the form

[y, 0la = —/Q (AsymVy, Vo) pn dz — /anyso dm+/g(f, Vo)gy dv (4.13)
and apply Holder’s inequality to the right-hand side of (3.4). As a result, we have

1/2 1/2
[ Q¥ 90) e o] < ([ 12500 ar) ([ 1442 Vel o)
Q

‘/anwdm‘ < [laoll oo (o) 1yl 2 () <||<P||%2(Q) +/Q|A§§7271V80|§N d$>

S ”a()HLoo(Q) HyHAsym HSOHAsyWU

‘/(fkuwdx

1/2 1/2

([ 1aaerieas) ([ 12wy i)
2
( G dx) (
1/4q (p+1)/4p
< (14t ) ([ 1 ae)
1/2

(/ (Vo, Asym Vo)rN dx)

16z 1z2a@y 1 Lavmss @m0l Anym: (4.14)

1/2
(V, AgymVo)rn daz)

and, hence,
[y, lal < ((1 +llaoll zoe @) 1911y + 1/ 165 | 2a() 11| apron QRN)>

1/2
x ( [ (70 AVl dx) < e, Dllplla,.. Ve e CRQ).

O]

As estimate (4.14) obviously indicates, Proposition 4.2 can be specified as
follows.

Corollary 4.1. Let A = Agym + Agkew € Aaa be an arbitrary admissible control,
and let f be a distribution such that As_yln/ff € LA RY). Let y € Va,,,, (Q) be a
).
sym

weak solution to the boundary value problem (4.1)—(4.2). Then y € D(V4
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Remark 4.2. Due to Proposition 4.2, Definition 4.2 can be reformulated as follows:
y is a weak solution to the problem (4.1)—(4.2) for a given control A = Ay, +
Askew € Uag, if and only if y € D(Wy and

sym)

/ﬂ (Ve Aym V) v + aopg] d + [y, 04 = /Q (/. Vo)an dx Vo € C(Q).

(4.15)
Moreover, as follows from (2.19), (4.15), and (4.14), if a weak solution to the
problem (3.1)-(3.2) belongs to the space Ha,,,, (2) then it satisfies the energy
equality

/Q(Vy,AsymVy)RN dx +/

aoy? dz + [y, yla = / (f, Vy)pn dz. (4.16)
Q Q

It is worth to notice that the original boundary value problem (4.1)—(4.2) is
ill-possed and, in general. Moreover, in view of definition of the set SITI?M(Q),
the existence of a weak solution to (4.1)—(4.2) for fixed A € A,y and f €
L*/(+D)(Q: RN) seems to be an open question. This means that there are no
reasons to expect that for every admissible given data f € L*/ (p+1)(Q;RN ) and
A € Ayq, this problem admits at least one weak solution y € Wa,,,,(€2) in the
sense of Definition 4.2. At the same time, even if a weak solution to the above
problem exists, the question about its uniqueness remains open. Indeed, because
of the properties of function (.4, we face with the problem of density of smooth
functions C§°(Q2) in Wa,,,, (). As was indicated in [21], there exists a diagonal
matrix-valued function A(x) = p(z)I with p > (4q such that the subspace C§°(£2)
is not dense in Wy, (€2). Therefore, even if we assume that we have two weak
solutions y1 (A7 f)a yZ(A7 f) € WAsym (Q) such that (A7 f) 7& y2(A7 f):

/Q (Vyka Askewvyk)RN dr = 0, k= 1, 2

(this is always true for Aggey € L™ (Q; Sé\;ﬂew)), and each of these solutions satisfies
the corresponding energy equality

/Q (Vs Ay Vi) o it + /Q v de = /Q (F, Vp)an dz, k=12, (4.17)

then the element y = (y1(A, f) + y2(A4, f)) /2 is a weak solution to (4.1)-(3.2)
too, but it does not satisfy (4.17) in general. Thus, the degenerate boundary
value problem (4.1)-(4.2) can admit weak solutions which do not satisfy energy
equality. For more details and other types of solutions to degenerate equations we
refer to [20,21].

On the other hand, as it follows from the definition of the bilinear form [y, ¢] 4,
the value [y, y] 4 may not of constant sign for all y € D(Wa,,,,). Hence, even if the
relation Hy,,,, () = Wa,,,, (Q) is valid, the energy equality (4.16) does not allow
us to derive a reasonable a priory estimate in || - || 4-norm for the weak solutions.

sym
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Thus, the mapping A — y(A4, f) can be multivalued, in general (see [7] for the
details).

Taking these observations into account, we restrict of our analysis to the
following set of admissible solutions for the original optimal control problem.
Namely, we indicate the set

E={(4y) | AcUaq, y € Wa,,,.(Q), (A,y) are related by (4.15) } . (4.18)

The characteristic feature of this set is the fact that for different admissible
controls A € 2,4 the 'corresponding’ weak solutions y belong to different weighted
spaces. Moreover, we adopt the following hypothesis, which is mainly motivated
by the previous reasonings.

Hypothesis A. The set of admissible solutions Z is nonempty.

We say that a pair (A4%,94°) € LY(Q;MY) x WAgym(Q) is a weak optimal
solution to the problem (4.3)—(4.4) on the set =, if

(A% ") € 2 and 1(A°4°) = 1;1)fE I(A,y). (4.19)

Our next observation deals with some specification of the set of admissible
controls 2,4. With that in mind we give a few auxiliary results.

Lemma 4.1. Let {Ak :Azym-i—AZkew}keN C Upa and {yx € WAZym}keN be
sequences such that

A i= AV Agkew o 4B Askew = Ay i LM (MY, (4.20)
yp =y in L3(Q), Vy,—v in L*(Q, A" dr)". (4.21)

Then Ay € Apq, y € WAgym(Q), and Vy =v.

Proof. In view of Proposition 4.1, it is enough to prove the equality Vy = v.
Taking into account the estimates

/Q|Vyk|RN dz = /Q\ (A T2 (A 2 gy e da

12 1/2 1/2
< (L By o) ([ (T A7) )

by (4.21)2 and (2.9)

1/2
e ([ atir) < 0PI g < 4o,
[ 19¥is do < IVl agm a9 16 ) < 90,

we conclude that Vg, v € L'(Q)" for all k € N.
Further, we make use of Lemma 3.1 Followmg this result, for each test function
p € Cf° (Q), we have (Asym) Vo — (Asym) Vi strongly in variable space
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L2(Q, 4™ dz)N. Then, the definition of the strong convergence in variable spaces
implies V¢ € C§°(Q)

lim | (Ve,Vye)gy dv = lim ((A;ym)‘lw,A;ymvyk)R d

k—oo J k—oo J N

by (4212, (34) / (™™ Vo, AP V) | de = / (Vo,V)gw d.
Q R Q

Combining this fact with relation
lim /ykgodznz / ypdr, Vo e CP((Q),
k—oo J Q

we finally conclude: gz — vy in L'(Q), Vyi — v in L1(Q)", and therefore, Vy = v
and y € Wol’l(Q) by completeness of the Sobolev space Wol’l(Q). To end the proof,
it remains to observe that y € L?(Q) and Vy € L2(Q, AgY™ dx)™. O

For our further analysis we temporary assume that the functions 8 and (uq
are extended to the whole space of RV i.e.

B, Cad € Libe(RY), 0 < (ua(z) < B(x) ae. in Q, and () € L, (RY),

and there exists a constant C' > 0 such that

1 1 [
b, (1 [, ) (g [ i o) < (422)

where B is a ball in RY.

Theorem 4.1 ( [20]). Assume the condition (4.22) holds true for some constant
C > 0. Then for each admissible control A = Agym + Askew € Uad, we have
Ha,,, () = Wa,,,(Q) and, hence, every weak solution to the boundary value
problem (3.1)—(3.2) satisfies the energy equality (4.16).

We are now in a position to establish the main result of this section.

Theorem 4.2. Assume that, for given threshold matrices A*, A** € L*"(; SN ),

skew

Hypothesis A is valid. Then the optimal control problem (4.3)—(4.4) admits at least
one solution for all distributions f € L**/(®*D(Q:RN) and yq € L*().

Proof. Since the original problem is regular and the cost functional for the given
problem is bounded below on =, it follows that there exists a minimizing sequence
{(Ak, yk) bren C E such that I(Ay,yk) o fwin = infaye=1(A,y) > 0.

Hence, suppey L (Ak, yr) < C, where the constant C' is independent of k. Since
sup [yl Zerm = / (W2 + (Vs AV™(2) Vi) gy )
keN k Q

< 25p 1(Ap, i) + 2vallfaey <2 (€ + Il
S
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in view of Propositions 3.1, 4.1, and Lemma 3.1, it follows that passing to a
subsequence if necessary, we may assume the existence of a pair (Ao, yo) € Agq X
WASym(Q) such that

Aj = AT AT o AP+ A = Ap in LN MY), (4.23)
AP — A in LY(SY,), (4.24)

AFew — AR in LPP(Q5SK,), (4.25)

Y — Yo in LQ(Q), (4.26)

Vy, — Vyo in L*(Q, AP dx)V, (4.27)

I(Ap,yo) < +o0. (4.28)

Since (A, yk) € Z for every k € N, it follows that the integral identity

/Q (Vo A™) s + aopys] de + / (Vo A Ty)  di

Z/ (f,VgO)RN dx (4.29)
Q

holds true for all ¢ € C§°(£2). In order to pass to the limit in (4.29), we note that

_1 1
[ (Fe Aoy do = = [ (42)7F (40— ag) Vo, (47 V) da

_1 1
_/ ( (Azym) 2 AgkengO, (Azym) 2 Vyk) dr = Il,k 4 I2,k
Q
by the skew-symmetry property of Azke“’ and AgFe?. Since

_1 1
i sl < i [ - ag) (a9 (4 O
1

1 2
< lm ( [ nagier — gy (agm) HQ\W!Qdﬂ«)
[9]

1 2
x lim (/ | (Azym) 2 Vyk2d$> < H(/OHC’l(Q) sup HkaAzym
Q keN

1 1

2p 2q

% lim (/ HAzkew _AgkewHQp da:> P </ C;dq dx> q
k—o0 Q (¢}

by (4) BT
<2 (€ + Il Iellonen Q051G e

x lim A = A5 ey D, (4.30)

skew

—~
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and

lim Ipy, = — lim [ ((AP™) 7 AUV, AVVy) oy da

k—o00 k—oo J

= _/Q ((Agym)—l AgkevaO’Agymvyo)RN dr = /Q (VSD?ASkewvyO)RN dx
(4.31)

by (4.27), Lemma 3.1, and definition of the strong convergence in variable spaces,
it follows that

/(V@,Azkewak)RN dx%/ (V@,Aékewao)RN dr as k — oo.
Q Q

Taking this fact and property (4.28) into account, we can pass to the limit in
(4.29). As a result, we obtain

/Q [(Vio, A0 + aopyo] da + /Q (Vo A"V o) da = /Q (. V) de.

that is, a function yo = y(Ao, f) is a weak solution to the boundary value problem
(4.1)-(4.2) for admissible control A = A"+ Agke® € 4. Hence, yo € D(W ysvm)
by Proposition 4.2, and, therefore, (Ag, yo) is an admissible pair to problem (4.3)—
(4.4).

In remains to show that (Ao, yp) is an optimal pair. Using conditions (4.26)—
(4.28) and the property of lower semicontinuity of the norms || - || 2( 4 gz)~ and

| - llz2() with respect to the the weak topologies of L2(Q, Adz)N and L2(9),
respectively (see Proposition 3.2 ), we get

o 2 2
liminf |lyx — yallz2(0) 2 lIyo = vallz2(e) »

liminf/ (Vyk,AZymVyk)RN dx > / (Vyo,AgymVyo)RN dx.
Q Q

k—oo

Thus,

I(Ag,y0) > inf I(A,y)= lim I(Ag,yx) > liminf I(Ayg,yx)
(Ay)EE k—oc0 k—s00

> |lyo — vall 720y + /Q (Vyo, Ag”"Vyo)gn dz = I(Ag, yo),

and hence, the pair (Ao, yo) is optimal for problem (4.3)—(4.4). The proof is
complete. 0
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5. On variational solutions to OCP (4.3)—(4.4) and their
approximation

The question we are going to discuss in this section is about some pathological
properties that can be inherited by optimal pair to the problem (4.3)—(4.4) and
other unexpected surprises concerning the approximation of the original OCP and
its solutions.

To begin with, we show that the main assumption on the regularity property
of OCP (4.3)-(4.4) in Theorem 4.2 (see Hypothesis A) can be eliminated due to
the approximation approach. For instance, the conditions (,q € L'(2) and ga‘dl €
L?1(0)) ensure the existence of a sequence of scalar positive functions {Cy}yey
such that ¢ € L*°(Q) for all k£ € N, and

Ck — Caa strongly in LY(Q), L®(Q) 3 (' — ¢} strongly in L*(Q). (5.1)

By analogy we can approximate the rest components A* A** € LQP(Q;S?,QEW)

and B € L'(Q). The simplest way to construct such sequences is to apply the
procedure of direct smoothing (5.2)-(5.3), i.e. we can set ( := ((uq)k, where

(Gaahe = B | K (b = 2)) Gaal2) d (5.2)
and K is a positive compactly supported smooth function such that
K € C(RY), K(x)dr =1, and K(z)= K(—z). (5.3)
RN

Here, ~ is a non-zero extension operator such that

— —~ —~—1
Cad=Caa in Q, Coa€ L (RY), Coa €L (RM). (5.4)

loc

As a result, the property (5.1); is the direct consequence of the classical
properties of smoothing. In order to prove the property (5.1)2, we note that

(Cad) () < C/ Cad(+k712)dz, ae. in RN, VEkeN,
Q

where @ is the support of the smoothing kernel K and K (z) < C by (5.3). Hence,
(Caa)y, € LE (RY) for all k € N. Using the Cauchy inequality

loc
1= ( [ KG) dz>2 - (/RN [K(z)c/a\d(m + Z)F [K(z)@‘l(x + Z)F dz>2
< ( [ K@+ 3) dz> ( [ K& ) dz) = (Ca)s ()

we see that

(G < (G, (5.5)
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and, therefore,

2q

2q
G < (D2 = ([ K6 w+ D)

21 1~ z 24
~ ([ K5 oG D)
RN

2q—1 —_2g P
< < K(z) dz) < K(2)Ca (z+ 7) dz>
RN RN k
— —2q z _92 — —2q z
= . K(2)Ca (x4 %) dz = (Cad q>k < C/QCad (x + %) dz. (5.6)

Hence, (5.4)3 implies that (Cua), ' € Li% (RYN) for all k € N.
Since (Caq)s, — Caa in L1(£2) as k — oo by the classical properties of smoothing,
we can suppose that (Cad),?q () — ;dzq(az) almost everywhere in Q. In the

meantime the inequality (5.6) guarantees the equi-integrability of {(Cad)];Qq}k N

€
because the sequence { (C;fq) k} , converging to C;fq strongly in L(£), posse-
keN

sses this property. As a result, Lebesgue’s Theorem implies that (Qad),:2q —C a_d2q
in L'(Q) as k — oo, and so the proof of property (5.1)2 is complete.
Before proceeding further, we give a few auxiliary results.

Lemma 5.1. Let f € L*(Q) and {fn},cy C L*P(Q) be such that f, — [ in
L?P(Q) as n — oo. Then, for each positive integer k € N, we have

(fa)y = (fl in LQP(Q) as m — 0o, (5.7)

where
U= [ Ko=) Folo) dy =K [ K (6o =) ) dy. Ve
RN Q

Proof. Taking into account the properties (5.3) of the kernel K, we get
2 rs t 2
Il = D Py = [ (Y [ K e =9) (Falw) = Fw)) dy ) da
@ a RN

- /Q < . K%(z)Kﬁ(z) (}”Z(m—i— %) — flz+ %)) dz)zp dx

< /RN ( [ KG) dz) v /RN K(2) (?;(x v %) ~Fa+ %))% dz dx

- / KK (k=) (};(y) - f(y))2p dy dx

RN RN
= /RN <k;N - K (k(z —y)) d:zc) (}‘;(y) - f(y))Qp dy
= [ (o)~ 7)) dy =10~ 11y 0.

R
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Lemma 5.2. Let f € L?(Q) and {fn},eny C L*(Q) be such that f, — f in
L?(Q) as n — oo. Let {kn}nen be a sequence of positive integers converging to
400 as n — oo. Then

(fu)r, = f in L*?(Q) as n — oo. (5.8)
Proof. We define a doubly indexed family {a, ;}en in R as follows
keN

2p

i = G)e = Fey = [ |7 =1 [ K e =) )| ao

Since
(9), =g in L*(Q) as f— o0, VYge L*(Q), (5.9)
by the classical properties of smoothing, and
. . by Lemma 5.1 .. _ 2p by (_59)
Jm lim gy =000 Im [Pk = fllang) = 0
. . by (5.9) .. 2 by the initial assumptions
i B ane ==l = ) = 0,
it follows that lim (lim an,k) = lim ayy, = lim <lim an7k>. ]
k—oo \n—0o0 n—00 n—oo \ k—oo

Following the similar arguments, Lemma 5.2 can be specified to the following
particular case.

Lemma 5.3. Let f € L'(Q) and {fn}, ey C L) be such that fr, — f in L' (Q)
as n — o0o. Let {kn}neN be a sequence of positive integers converging to +00 as
n — co. Then

(fu)r, = f in LY(Q) as n — oo. (5.10)

Taking these results into account, we bring into consideration the following
sequence of constrained minimization problems associated with the Steklov smoo-
thing operator (-),:

{ <(A2)1£zk I’“(A’y)>° k= OO}- (5.11)

Here,
L(Ay) = I(Ay) YV(Ay) € LNQMY) x Wasum (), VEkEN, (5.12)

—div (AsymVy + ASkewa) = —divf in Q,
y=00n 09, ye&Wysm(Q),
(A,y) A= Asvm 4 Askew g b = Ql];d,l & Ql];d,w
ASYm ¢ Ql’;d’l iff 30V € g1 st AV = (CV™),,
Ask:ew c QUZd,Z iff Hcskew c Qlad,Q st Askew — (Cskew)

[1]
>
Il

k-
(5.13)
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Before we will provide an accurate analysis of the optimal control problems
(5.11), we describe in more details some topological properties of the sets Qll;dg

and 52[2(172. We begin with the following observation.

Remark 5.1. In view of definition of the sets Q(’;d’l and Ql’;dg, the condition A €
Agd1 = Qll;d’l ® Qll;d’z implies the existence of a certain matrix C(z) = C*Y™(z) +
Cskew () (the so-called "prototype’ of A) such that C¥™ € Apq1, CFY € Ay o,
and A = (C*¥™), + (CSke“’)k whatever matrix A was chosen.

Lemma 5.4. For every k € N there exist positive constants oy, and 7y such that
Y > ap and

apllélBy < (AY™(2)€, pn < lélay  a- e in Q, VEERY, (5.14)
TV (@?‘5/’") <e¢ 1<i<j<N, (5.15)
A (x)dx = M (5.16)

RN

for each ASY™ € Ql];dJ.

Proof. Let C*Y™ be an arbitrary element of the set ,q,1. Since, Agq.1 C Sﬁ?ad(fl),

it follows that Coql|¢ |2 < (C¥™(2)€,)pn < BlI€|2n a.e.in Q, VE € RY. Hence,
for any k£ € N, we have

(Cad)kll€]2n < ((C™)iE, )pn < (B)x|€llZn  a.e.in Q, VE RN,

and, therefore, the constants o and 7, in (5.14) can be defined as follows
o = inf (Cua)k(®), % = sup(B)k(z).

In view of the initial assumptions (2.7)-(2.9) and definition of the Steklov smoothing
operator (+)g, we have (8); € L=(Q) and ((uq); ' € L>() (see (5.5)). Hence, ay,
is a positive constant, and vy < —+00.

As for the estimate (5.15), for an arbitrary ¢ = (¢1,...,¢n) € CA(Q;RY)
such that |p(z)] < 1in Q, and arbitrary matrix A%Y™ = [af]ym]f?fj:l € Ql’;d,p we
have

TV (a;]™) = sup {/ az!" (x)(V, o)y dm}
lpl<1 LJRN

" ol {/RN (3 m>k (@)(V, )ry d:c}

= sup {/ K (2) cf]ym(:n +k712) d2(V, p)pw dx}
i<t Ury Jrw

< K (z) sup {/ cg’?n(:n—i— E72)(V, o)pw dm} dz
RN lel<1 L/RN

= K (2) TV (c;{™)(x + k~l2)dz < c K(z)dz=c
RN RN
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Having applied the similar arguments, namely,

A (2) dz = /

RN

Sy / K (k(z — ) ™ (y) dy da
RN JRN

ey @de= [ [ K@M hdsds
RN RN JRN

[ (¥ [ K ke wloman = [ @iy an =

we arrive at the control constraint (5.16). O

Lemma 5.5. Q[Zd,l 15 a conver and sequentially compact set with respect to the
strong topology of L' (SN ) for each k € N.

sym

Proof. Since the convexity of Q[];d 1 immediately follows from the linearity of the
smoothing operator (-)x, we concentrate on the compactness property of this
set. Let {A7™}, cy be an arbitrary sequence in A, ,, and let {C7¥™}, oy C
2,41 be a sequence of its prototypes, that is, A7Y"(z) = (CRY™), (z) for all
n € N. By Proposition 4.1, there exists a matrix Cp”"" € 441 such that, within
a subsequence, Cp"™ — Csym in L'(Q; S?Lm) As a result, Lemma 5.3 implies the
strong convergence Ay — A" in L'(Q;SY ), where AZY™ = (C3¥™), for a
given k € N. O

We recall here that a sequence {mgd’l}ke of the subsets of L!(Q; Sﬁ,\;m)
said to be convergent to a closed set S in the sense of Kuratowski with respect to
the strong topology of L'(€;SY ), if the following two properties hold:

sym

(K1) for every A € S, there exists a sequence of matrices {Ak € Qlkd 1} such
62 ) keN
that Ay — Ain LY(Q;SY ) as k — oo;

sym
(K32) if {kn},,cn is a sequence of indices converging to +00, {An}, oy is a sequence

of symmetric matrices such that A, € leg , for each n € N, and {4,}
strongly converges in L'(Q;SY ) to some matrix A, then A € S.

sym

neN

For the details we refer to [12]. As a result, we have the following result concerning

asymptotic behaviour of the sequence {Qlad 1}k v
€

Lemma 5.6. The sequence of sets {ﬂadl} o converges to Aqq1 as k — oo in

the sense of Kuratowski with respect to the strong topology of L*($; Sé\ém)

Proof. In order to show that S = .41, we begin with the verification of (K>)-

item. Let {kn}, oy be a given sequence of indices such that k, — oo, and let
{A € Qlad 1} be a sequence satisfying the property 4, — Ain L'(; SN ) as
neN

sym

n — o0o. By definition of the sets A* ad1 and Proposition 4.1, there exists a sequence
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of prototypes {Cﬁym}neN C Agqq and matrix Cp¥" € Agqq such that A, =
(CR'™),,, for all n € N and, within a subsequence, Cp'™ — C3"™ in L*(Q;S{,,).
Then Lemma 5.3 guarantees the strong convergence A, — Cg¥™ in L'(; S, ).
As a result, we have A = C¥™ and, therefore, A € ,q1. Since this assertion is
valid for each L'-converging subsequence of {C""} en C Yada, we finally get:
the symmetric matrix A is L'-limit for the entire sequence {C3""'}, oy C ad,1-

It remains to verify the (K7)-item. To this end, we fix an arbitrary symmetric

matrix A € 2,41 and construct the sequence {Ak € Ql’;d l}k . as follows: A, =
) ke
(A), for all k € N. Then A — A in L1(;SY ) as k — oo by main properties of

sym

the smoothing operator, and inclusions Ay € Ql];di, for each k € N, hold true by
definition of the sets Qllgdl. O

Our next intention is to study topological and asymptotic properties of the
sets Qllgd 9-

Lemma 5.7. For every k € N each of the sets Qll;dQ s conver, sequentially
compact with respect to the strong topology of L*P(;SY ), and such that

(A%), () 2 A(z) 2 (A™), () in Q, VAW, (5.17)

Proof. The convexity of Ql’;d’2 is a direct consequence of definition of the set
Aqq2 and the rule (5.13)g. To prove the compactness property of this set let us
consider an arbitrary sequence {A,}, .y in A 4.2 Let {Cghew }n ey € 2ad 2 be their

prototypes, that is, A, (z) = (C’Zke“’)k (x) for all n € N. Since {Cﬁkew}neN CQ,

where @ is a nonempty convex compact subset of L?P(Q; SN _ 1, it follows that
there exists a skew-symmetric matrix C’Skew € @ such that, up to a subsequence,
Cskew — Cgkew in L2P(Q; SN ). Then Lemma 5.1 implies the strong convergence

Ay, — Ay = (C’gke’“’)lC in L2P(;SNY_ ) for every k € N. It remains to note that in

view of the definition of binary relation < (see (2.2)), for every A = [a;;] € Uqq,2,
ic{l,...,N},j€{i+1,...,N}, and 2 € RV, we have

(aij)k(x) = kN ox K (k(x —y)) aij(y) dy

<k | K (k@ —y)af@)dy = @), Yk eN.
By analogy it can be shown that (a;;)k(z) < (ai;)k(z) in Q. Hence, the restriction
(5.17) holds true for each k € N and A € Ql’afdg. The proof is complete. O

Lemma 5.8. The sequence of sets {Qll;dQ}k y converges to Agq2 as k — oo in
) ke

N
sk:ew) :

the sense of Kuratowski with respect to the strong topology of L?P(£2;S

Proof. We begin with the verification of (Ks)-property of the set Agq2 in the
framework of definition of Kuratowski limit set with respect to the strong topology
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of L% (Q; SN

skew

). Let {k,},cn be an arbitrary sequence of indices such that k, —
0o, and let {Bn € legz} N be a sequence satisfying the property B, — B in
bl ne

L?(Q; SN ) and, hence, up to a subsequence, By, (z) — B(z) almost everywhere

in 2 as n — 00. By Lemma 5.7, we have
(A%)g, (x) 2 Bu(z) 2 (A™),, () ae. in (5.18)

where (A*), — A* and (4*), — A* strongly in L?P(€%;S0Y_,). Taking into
account the fact that the binary relation =< is a partial order, we can pass to
the limit in relation (5.18) as n — oo (in the sense of almost everywhere) and
get A*(z) % B(z) X A*(z) almost everywhere in €. In the meantime, closely
following the arguments of the proof of Lemma 5.6 (see also Lemma 5.2), it can be
shown that the matrix B is L?P-limit of the corresponding sequence of prototypes
{CSke“’} C @ C Ugq2, where B, = (C'Ske“’)k for all n € N. Since, @Q is a
compact set it follows that B € @, and, therefore, B € A,q4.2.

To Verlfy the (K1)-property, we fix an arbitrary skew-symmetric matrix B €

2qq2 and construct the sequence {Bk € Ql];dz}k y 38 follows: By, = (B), for all
“J ke
k € N. Then By — B in L?(Q;SY ) as k — oo by main properties of the

' Pskew

smoothing operator, and inclusions By € Ql’;dz, for each k£ € N, hold true by
definition of the sets QI 42 and Lemma 5.17. The proof is complete. O

In what follows, we make use the following concept.

Definition 5.1. We say that a sequence of pairs

{(Ak ) = (A" + A7 ) € L@ M) X Wgom () }
keN

T-converges to a pair (A,y) = (A%Y™ 4+ Askew y) € L1 (Q;; MY) x Wasym () if
AV — AV i LHQSY),  ApFer — Askew in L2P(Q; SN,

» Psym

Y — Y in L*(Q), Vyr — Vy in variable space L*(Q, A" dx)™
We are now in a position to study the optimal control problems (5.11).

Theorem 5.1. Let f € L®/®tD(Q;RY) and yq € L*(Q) be given distributions.
Assume that the original OCP (4.3)—(4.4) has a nonempty set of admissible controls.
Then OCPs (5.11) are regular for each k € N) (i.e. the corresponding sets of
admissible solutions Zy, are nonempty), and for every k € N there exists a minimizer
(AY,49) € Ex to the corresponding minimization problems (5.11) such that the
sequence of pairs {(A%,y,g) € Ek}keN 1s relatively compact with respect to the 7-

convergence and each of its T-cluster pairs (;1\, y) possesses the properties:
(4,7) € (5.19)
/ (Vy,AsymVy) dz + / 2 4o < / (f, Vi)gn da. (5.20)
Q Q
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Proof. Since Auq # 0, it follows that A, £ () for every k € N, and A¥, C
Loo(; MY). Hence, for any admissible control Ay = AY™ + Ajkew e ok, we

can claim that AfFew € L°(Q;SN_ ) APY™ € L°°(Q;SY,,), and, therefore, the

' Mskew » Msym
corresponding bilinear form

[y, ¢la, = /Q (Vgp,Azkewa)RN dx

= a2, [(am) 2 A (agm) ] () ) e

C

< Cul @iz 91l g is bounded on Wy ()

and satisfies the identity [, (V(p,AZkewa)RN de = — [, (Vy,AZkengo)RN dzx.
Therefore,

/Q (Vo, A0 (2)V0) g dz = 0 v € Waem (9) (5.21)

and, hence, boundary value problem (5.13) has a unique solution y; € WAzym(Q)
for each A, € AF, C L®(Q;MY) by the Lax-Milgram lemma. Thus, =) # ()
for every k € N. It is worth to note that in view of the definition of the class
of admissible controls A*, (see Lemma 5.4), the norms || - HH(%(Q and || - HAZW
are equivalent, therefore, we can identify H} (2 with the weighted Sobolev space
WAzym(Q).

As obvious consequence of this observation and the property of 7-lower semicon-
tinuity of the cost functional I, we conclude that the corresponding minimization
problem (5.11) admits at least one solution (A, y9) € Zj [15]. Moreover, having
fixed a control Ay € A*, condition (5.21) implies the fulfilment of the following
identities for every k € N

/Q[(Vgo,AkVyk)RN + appyy| dx :/Q(f, Vo)pn dz, Vo € C5°(R), (5.22)
/Q(Vyk,AZymVyk)RN dac—i—/gaoy,%dx:/g(f, Vyi)gn dz, (5.23)

where yr = yr(Ag, f) € W gzm () are the corresponding solutions to the boundary
value problems (5.13). Taking into account estimate (4.14), the equality (5.23)
implies that

ol = [ [Tk A2 90) o +3] da
1

~ min {1, [Jag|| (o) }

VI  p2a(e)

~ min {1, Hao”Loo(Q)

/Q (Y, A" Vi) gn + a0y da

} HfHL‘lp/(erl)(Q;R)N HkaAzym-
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Hence,

\/ 16l 200

min {1, ||a0HLoo(Q)

Sup [[gell.am < }||f||L4p/p+1(Q;R)N = Cillfll pavsoer @y
S

(5.24)
and, therefore, the sequence {y},cy is bounded in variable space WAzym(Q). As
a result, we arrive at the relation

(AR oR) :(Aiyl)lg_ Ii(A,y) < Te(Ar i) < 2llyallZ2 ) + 2llyel5
’ Zk

< 2yallZaqgy + O gy SC YEEN. (5.2
Thus, the sequence of minimal values for the problems (5.11) is uniformly bounded,

sup inf Ip(u,y) < C for some C > 0. (5.26)
keN (u,y)€E
Hence, supycn . < 400

In the meantime, due to the definition of the sets Ql’;d, it is easy to see that
the corresponding sequence of optimal controls {Ag} keN belongs to 22(’;‘ dn GBQ[’; 4.2

Hence, by Lemmas 5.5 and 5.7, we get: there exists a matrix A € Ql’;d such that

A% — Az,sym_’_A%skew —)Xsym—i-A\Skew —. A\ in Ll(Q;MN), (5.27)
AP A DN ;SY,), (5.28)
AR 5 Askew iy L2P(QS,,). (5.29)

Therefore, taking into account Lemmas 5.6 and 5.8, we conclude: Ae A
Since supgey Hy2||1240,sym < 400, it follows by Lemma 4.1 that there exists an
k

element y € Wy,,,, () such that, up to a subsequence, we have
yo =7 in L*(Q), Vyi — Vg in L3(Q, AV dz)V. (5.30)

As a result, summing up the above properties of the sequences {yg}k N and
{Ag}keN, we obtain (Ag,y,g) N (A,y).

The next step is to show that (A,y) € Z. With that in mind, we pass to the
limit in (5.22) with A = A9 and y = 2 as k — oo using the properties (5.27)—
(5.30). Having fixed a test function ¢ € C§°(2), we get (see definition of the weak
convergence in variable spaces)

/Q (£, Ve)gx do = lim /Q [(Ve, ARVYR) g + aopyp] da = (by (5.28),(5.30))

= lim (V%A%Skewag)RN dm—i—/ (w,ﬁsymvg)w d:c+/ appy dx.
k—oco JO (o) Q
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. . 0,5k 0 1 :
Since klggo ; (Vp, A ewak)RN dr = klg]go I+ kli)r{.lo I j;, where

1 N 1
Il,k _ _/Q ( (A%sym) 2 (Ag,skew - ASkew)VQO, (A% Y )2 vyg)RN d:L’,

-1 <
== [ () v )

it follows from (4.30)-(4.31) that lim I, = o (Ve, Akewyg) . dr and
—00

klim I, = 0. Thus, the 7-limit pair (;1\, y) is related by integral identity
—00

A[(vwagv§)RN +CL()Q0§/\:| dx _A(f7 VQO)RN dz, VSD € CSO(Q)a

and, hence, ¥ is a weak solution to the boundary value problem (4.1)-(4.2) under
A = A. Thus, y € D(A) and, therefore, this pair is admissible for the original
OCP (4.3)—(44), ie. (A,y) € E.

It remains to prove the energy inequality (5.20). To this end, we pass to the
limit in the energy equality (5.23) using the lower semicontinuity of the norms
|- llz2(q) and || - HLZ(Q;A%SW dz)Nv With respect to the weak convergence (5.30). As

a result, we have

~ . . 0,sym
/Q (f: Vi)px dr = lim /Q (. Vi) gn do = lim /Q (vyg,Ak v vyg)w da

02 by Proposition 3.2 o~ R 9
+ lim [ ao(yp)” dz > / (Vy,ASymVy) dx—i—/aoy dx
k—oo J 0 RN Q
(5.31)
The proof is complete. O

Remark 5.2. As energy inequality (5.20) indicates, if (ﬁ, y) € Eis a T-cluster pair
0 0 o ~ = . .

of the sequence { (A}, y}) € _k}kel\iaild S HASW (Q), then the direct comparison

of (5.20) and (4.16) implies that [y,7]5 > 0.

As immediately follows from this theorem, Hypothesis A can be eliminated
from Theorem 4.2. Namely, we have the following result.

Corollary 5.1. If 2,4 # 0, then the set of admissible solutions = to OCP (4.3)—
(4.4) is nonempty for every f € L**/®TD(Q;RN) and yq € L*(Q).

Remark 5.3. As follows from Theorem 5.1, for any positive compactly supported
smooth function K satisfying conditions (5.3), optimal solutions to the regularized
OCPs (5.11) always lead in the limit to some admissible (but not optimal in
general) solution (A,7) of the original OCP (4.3)—(4.4). Moreover, in general,
this limit pair depends on the choice of smoothing kernel K. It is reasonably to
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call such pair attainable. However, up to now the structure of the entire set of all
attainable pairs remains unclear. For instance, it is unknown whether this set is
convex and closed in =. It is also unknown whether all optimal solutions to OCP
(4.3)—(4.4) can be attainable in such way.

Taking these observations into account, we make use of the following notion.

Definition 5.2. We say that a pair (A\, 7)€ LY(;MN) ngSym () is a variational
solution to OCP (4.3)—(4.4) if

I(A,7)= inf I(Ay), (A7)eE, (5.32)

and (;1\, y) is related by energy equality

~ Tsymygyr ~\2 o ~
/Q(Vy,A Vy)RN dx—l—/ﬂao(y) dw/Q(f,Vy)RN dx. (5.33)

As a consequence of Theorem 5.1 and properties of the variational limits
of constrained minimization problems (see Theorem 2.1), we have the following
result.

Proposition 5.1. Let K be a smoothing kernel with properties (5.3). Assume
that the sequence of minimization problems defined by the rules (5.12)—(5.13) is
such that

< inf (A, y)> Yar(r) < inf  I(A, y)> (see Definition 2.3).  (5.34)
(Ay)EES k—oo  \(Ay)eE

Let {(A,(z, y,g) € Ek}keN be a sequence of optimal solutions to the corresponding
regularized OCPs. Then this sequence is relatively compact with respect to the
-convergence and each its 7-cluster pair (4,7) € L'(QMY) x Wiim (Q) is a
variational solution to OCP (4.3)—(4.4) in the sense of Definition 5.2. Moreover,
up to a subsequence, we have

Y2 =7 in L2(Q) and Vy) — V7 in L2(Q, AV dz)N as k — co. (5.35)

Proof. Indeed, the T-compactness of the sequence {(Ag, y,g) € Ek}keN is a direct
consequence of a priori estimate (5.24), Lemma 4.1, and properties (5.27)—(5.29).
In order to prove the the strong convergence (5.35), we make use of the main
properties of the variational convergence. Following Theorems 2.1, 5.1, and 4.2
(see also Corollary 5.1), we can claim that OCP (4.3)—(4.4) is solvable and there
exists an optimal pair (A%, y") € Z to this problem such that

. 2 sym
(A?z?)fesl(Aay) =1(A%y°) = |ly" = yal (0 + /Q (Vy°, A% vy0) L da

koroo (A )€ S k(Ak, yi) = Hm To(Ay, i)

— L 0_ 2 0 A0symy, 0
= lim | [y deLQ(Q)—I—/Q(Vyk,Ak vyk)w da:] (5.36)
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However, because of the lower semicontinuity of | - || 2oy and || - ||L2(Q,Az,sym )N

with respect to the weak convergence, the convergence (Ag, yg) 5 (A% %) implies
that

. by (5.36) .. 0 2 0 40,sym 0
100 [l ()

> 17— val? vy, AVVY)  da.
>y yd”L2(Q)+/Q< Y, y)RN T

Since the pair (fz, y) is admissible for the problem (4.3)—(4.4) (see Theorem 5.1),
it follows that (A,y) is an optimal pair. Therefore, in view of (5.36), it gives

. - T s 2 ~ Tsymyo >
(Agl)feEI(A,y) =I (A,y) =7 — vl 220 +/Q (Vy,A Vy)RN dx

= li inf Tu(Ap ) = lim Tu(A2, 40
Eovoo (A )€ S k(Ak, yi) = lim To(Ay, )

. 2 sym
= lim [Hyi—deLQ(Qﬁ/ﬂ(Vy;?,AZ’y Vy;?)RN dw}- (5.37)

Hence, the validity of (5.35) is a direct consequence of properties (5.36)—(5.37)
and Proposition 3.3. It remains to prove the energy equality (5.33). To this end,
it is enough to note that each of the pair (Ag, yg) is related by energy equality
(5.23). As a result, passing to the limit in (5.23) as k — oo, we finally have

by (5.21) . 0 0 by (5.23) . 0 40,sym, 0
0 & lim o shlag & - i [ (Vi ALV
— lim an(y;?)gdx + ,}Lﬂ;@/ﬁ (f. Vi) g dz
b . nd (5.37 —~ N ~ o~
y (3:35) and (5.87) —/ (Vy,ASymVy> dm—/ao(y)Qde‘Jr/ (f, Vi) da.
0 RY Q Q

O]

Remark 5.4. As follows from Proposition 5.1 and Theorem 5.1, even if the OCP
(4.3)—(4.4) has a unique solution (A% y%), it does not ensure that this pair is
the variational solution to the above problem. The matter is that the existence at
least one the smoothing kernel K such that the approximated OCPs (5.11)—(5.13)
would lead to the pair (A% 4°) in the sense of conditions (2.25)-(2.26) is an open
problem. In other words, the existence of (I',d)-realizing sequence for the pair
(A% %) € Z (see Definition 2.3) is not established.

We are now in a position to discuss the existence of variational solutions to

the OCP (4.3)-(4.4).
Theorem 5.2. Assume that

o the function (4q in definition of the set mt?ad(ﬁ) satisfies conditions C;jl €
L?9(Q) with ¢ = p/(p — 1), where p is defined by (2.15);
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o condition (4.22) holds true for some constant C > 0;

o for every admissible control A € Auq C L' (Q;MN), we have

[y, yJa=0 Vye D(Ha (5.38)

sym)'
Then the OCP (4.3)—(4.4) has variational solutions for every f € L*/®+D(Q; RN)
and yg € L*(Q).

Proof. To begin with, we note that as follows from Theorem 4.1, condition (4.22)
guarantees the fulfilment of equality Ha,,,, (2) = Wa,,,, () for every admissible
control A = Agym+Askew € Aaq. Moreover, in this case, every weak solution to the
boundary value problem (4.1)-(4.2) satisfies the energy equality (4.16). Let K be
aa arbitrary positive compactly supported smooth function satisfying conditions
(5.3). We associate with this function the sequence of constrained minimization
problems (5.11), where the cost functional I and the set =, are defined by (5.12)—
(5.13).

Let {(Ag, yk)}en be a sequence in L' (Q; MY) x WAzym(Q) with the following
properties:

sym (

(a) (Ag,yk) € Ep, for every k € N, where {ny }ren is a subsequence converging
to oo as k tends to oo;

(aa) (Ag,yx) — (A, y) in the sense of Definition 5.1.

Then proceeding as in the proof of Theorem 5.1, it can be shown that the limit
pair (4,y) is admissible to the original OCP (4.3)—(4.4). Hence, this problem is
regular and, therefore, it is solvable by Theorem 4.2. Our aim is to show that this
problem can be interpreted as the variational limit of the sequence of constrained
minimization problems (5.11). To do so, we have to verify the fulfilment of all
conditions of Definition 2.3.

As for the property (d), it immediately follows from the following relation

. . . . 2 sym
lim inf 7y, (Ag, yx) = lim inf [Ilyk—ydlle(g) +/Q(Vyk,A,§’ Vk) dw]

by (3.5)
= =l + [ (V9 AT V) dz = T(A),

which holds true for any sequence {(Ak, Yi) € Agg X W gzum (Q) }k N with properties
€
(a)—(aa).
We focus now on the verification of condition (dd) of Definition 2.3. Let (A%, y¥)
be an arbitrary admissible pair to the original problem. Since A* € 2,4, it follows
from Lemmas 5.6 and 5.8 that the sequence of smoothed matrices

{Ai = (Asharpy, = K (2) Az 4+ k™ '2) dz}

RN keN
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such that Alji € led for all k¥ € N, and AlﬁC — A% as k — oo in the sense of
Definition 5.1, i.e.

Al = ARy g plskew _y pbsym oy pghskew —Af iy LMY, (5.39)

Aﬁk,sym Absym Ll(Q,Sé\;m) (5.40)
A%skew Athskew in LQP(QaSskew) (5.4.1)

Let {yk = y(A?C, f) }k N be the corresponding solutions to the regularized boundary
€

value problems (5.11). Then having applied the arguments of the proof of Theorem

5.1, it can be shown that the sequence {y},cy is uniformly bounded in variable

Sobolev space WAu,Sym(Q) and there exists an element § € W 43,54m () such that
k

7€ D(W pz.59m), (A%, 7)) € E, and, up to a subsequence,

gy =7 in L3(Q), Vy,— Vg in L2(Q, ALY dg)N. (5.42)
Our aim is to show that § = y* and the following identity
I(Aﬁ, yﬁ) = lim sup Ik(AlﬁC, Yk) (5.43)
k—o00

holds true.
Indeed, since (A%, 7)) € Z and (A%, %) € Z, it follows that y = 3* — 7 is a
solution of the homogeneous problem
—div (AVy) +ay=0 in Q, y=0on 0. (5.44)

Following the initial assumptions, we have Wsym (2) = H gsym () and [y, y]a =0
Vy € D(Wsym) and for each matrix A € 2,4. Hence,
by (5.38 by (4.16
0™ E gyl ™ & [ (09 A5y + a?] o

and, therefore, problem (5.44) has the trivial solution only. Thus, y* = 7.

To prove the equality (5.43), we use of the idea of D.Cioranescu and F.Murat
(see [2]). In view of the initial assumptions and Remark 2.1, the embedding
H p5.ym (Q) — L2(Q) is compact. Taking into account this fact, the property
(5.39), and the energy equalities (5.23) and (4.16), we get

hm Ik(Ak,yk) = klggo |:Hyk - de%2(Q) +/Q <vyk7Ai’5ymvyk>RN dm]

2

_ Hyﬁ _ yd’ + lim Vyk,Aﬁk’symVyk>RN dz

L2(Q) k—oo

L2 k—)oo|: /anyk dﬂ?'f‘/Q(f, Vyk)RN dx:|
— [yt ot
L2 +/Q<f’v RN dx [yay]Aﬁ

LQ(Q +/Q Vi, Aﬁsymw) dz = T(AF,4f).

This concludes the proof. O

by (5.23 ‘

‘y _yd‘

by 542

H ﬁ—yd

byé

-
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Our next observation shows that variational solutions do not exhaust the entire
set of all possible solutions to the original OCP (4.3)—(4.4). With that in mind,
we adopt the following concept.

Definition 5.3. We say that a pair (Ap,yo) € E is a non-variational solution to
OCP (4.3)-(4.4) if

I(Ao,y0) = inf I(A,y), (Ao,y0) €E, and (5.45)
(Ay)EE

/Q(VZ/O,ASymVyo)RN d:UJr/anyg dw#/g(ﬁ Vyo)pn dx. (5.46)

Lemma 5.9. Assume that there exists a matriz Ay € U,q and an element v €
D(H ysvm) C H ysum(2) with property [v,v]a, # 0. Then there are distributions
f €D (RN and yg € L*(Q) such that the optimal control problem

Minimize 1(A,y) = [ly - yall72() + /Q (Vy = Vyg, A" (Vy — Vya))pn dx
(5.47)
subject to the constraints (4.1)-(4.2) and A € Aoq C L (Q; M) (5.48)

has a non-variational solution in the sense of Definition 5.3.

Proof. We consider the OCP (5.47)—(5.48) with
ya=v and f=—AyVo. (5.49)

Since v € D(H gsvm), it follows that yq € L), Vo € L3(Q, Ay™ dx)™N, and,
therefore, (Agym)_l/2 f € L2(Q)N. Indeed, as follows from (5.49)2, we have
(AZ™) V2 f = £ 4 fo, where fi = (AZ™) 2 Vo and fo = (AZ™) 72 Agkewvy,
Then

’UEHAsym(Q)
/|f1\2d:v:/ (Vu, A" V)pn dz < +00,
Q Q

/Q |f2‘2 dr = /Q | (Aéym)—l/2 Agkew (Agym)—l/Q (A(s)ym)l/Q V’U| d

C(x)

~<
A
e
2
J

< Cl L2y y I10llz2i,a50m dayw Fo0.

Hence, (Agym)_l/zf € L?(Q)N and by Corollary 4.1 we conclude that yg is a
weak solution to the boundary value problem (4.1)—(4.2) under A = Ap. Since
v € D(H ysvm) C Hysom (€2), it follows that (see Remark 4.2) the distribution yq
satisfies the energy equality

/Q (Vias AV yg) o i+ /Q a0 dz + [y, yal ao = /Q (f, Vi) dr. (5.50)
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Moreover, using the fact that I(Ap,yq) = 0, we finally conclude: (Ag,yq) is the
unique optimal pair to the above OCP.

Our aim is to show that (Ag,yq) is a non-variational solution to this problem.
To this end, we assume, for a moment, that (Ao, yg) is a variational solution. Then
Proposition 5.1 guarantees the validity of the related

/Q(Vyd,ASymVyd)RN d:n+/§2a0y?ldm:/ﬂ(f,Vyd)RN dx.

On the other hand, since [y, ya] 4, := [v,v]4, # 0, energy equality (5.49) leads to
the strict inequality

/Q (Vs AV ya) . i + /Q aoy? da # /Q (. Vy)gn dz

and, hence, we arrive at the contradiction with the previous assertion. Thus,
(Ag,yq) is a non-variational solution to the above problem. The proof is complete.
O

Remark 5.5. As follows from Theorem5.1, if (Ao,y0) € Aaqg X Hysvm () is a
non-variational solution such that [yo,yo]la, < 0, then this solutions can not

be attainable through the limit of optimal solutions to the regularized problems
(5.11)—(5.13).
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