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Abstract 

Understanding the nonlinearity of the thermal behavior of buildings is important for 

their design and energy analysis. This paper presents a method for the study of 

nonlinearity building thermal behavior based on a metamodel for cooling energy needs. 

Four measures were introduced to assess nonlinearities using the metamodel 

coefficients. We studied the nonlinearity of the thermal behavior of an office. A higher 

accuracy was generally obtained for hot climates, high internal heat gains and 

lightweight thermal mass. Conversely, the nonlinearity of thermal behavior was 

accentuated in cold climates and with low internal heat gains. The nonlinearity 

measures were strongly associated to the mean outdoor air temperature in fifteen typical 

European climates using power laws using power laws with R2 ranging from 0.75 to 

0.96. In addition, they were strongly associated to internal heat gains (R2 > 0.96) in the 

coldest climate and were low and almost stable in the hottest climate. Moreover, the 

interactions between the building components were more influential on cooling energy 

needs than quadratic behavior. A metamodel giving energy needs as a function of the 
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physical and geometric parameters was derived. Its extrapolation with various window-

wall ratios generally gave an acceptable accuracy, with quadratic variation of the errors. 

We propose a classification of thermal behavior into three regimes: highly nonlinear 

when the energy needs are close to zero; intermediate with decreasing nonlinearities 

that can be expressed by power functions; and finally, a quasi-linear regime with 

almost-steady nonlinearities.  

Keywords: building thermal behavior; cooling energy needs; metamodel; nonlinearity; 

interactions 

1. Introduction 

Dynamic models describe the thermal behavior of a building with relatively high 

fidelity and can be used to explore design alternatives. However, despite their great 

potential, extensive studies such as those for building optimization, may require 

excessive computation times. In addition, their capacity to provide insight into thermal 

behavior is limited by the implicit nature of the heat transfer equations. Furthermore, 

their use during early design stages is constrained by the large amount of data required. 

Metamodels have been developed to approximate simulation models [1], with a 

resulting improvement in computation efficiency and a better understanding of the 

original model. The simulations are simplified by the low computational expense of the 

metamodels. In addition, metamodels generally have explicit forms which provide 

insight into the nature of the simulation response as a function of the influential 

parameters. Moreover, they only require small amounts of data, which makes them 

suitable for early design stages. 

The most common metamodeling strategy is to construct polynomial approximations 
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[2-4]. They are the simplest, require the lowest computational effort and give useful 

insight into the behavior of the model. Their coefficients are easy to interpret, 

highlighting the effects of the input parameters. The number of runs needed to fit them 

can be drastically reduced with the use of the Design of Experiments [5]. The choice of 

an experimental design determines the number of runs and the value of the design 

parameters in each run. 

Several alternative metamodeling techniques can be used to approximate a model, 

notably artificial neural networks, radial basis functions, kriging, Multivariate Adaptive 

Regression Splines (MARS), support vector machines and Gaussian processes [2-4]. 

Generally, these techniques provide better fits than polynomials. However, they can be 

computationally intensive and provide less insight. 

Hence, metamodels can improve the computation efficiency of building energy 

performance. They can also provide an interpretation of the dynamic model, especially 

when using polynomials. This allows a better understanding of the relationship between 

building design, environmental parameters and energy performance indicators.  

Consequently, the development of metamodels to investigate building energy 

performance has become an active area of research. Polynomial regressions are the most 

widely used metamodels. They have been used to study the energy needs for cooling 

and heating [6-9], energy consumption [9-13] and CO2 emissions [9]. Moreover, 

polynomial regressions have been developed to assess the impact of building energy 

consumption with climate change [14-16] and to estimate the energy consumption of 

the residential stock of the city of Rotterdam [17].  

Furthermore, polynomial approximations have been used to study the free-running 

indoor temperature in buildings. They have also been developed to assess the indoor air 
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temperature in an urban area [18], the daily mean indoor temperature and relative 

humidity [19], the discomfort degree-hours [13] and overheating in future climates [20]. 

Polynomial approximations have also been used to formulate optimization problems. 

They have been developed for energy needs and indoor temperature in order to optimize 

building design that takes into account uncertainties [21] and to minimize heating and 

cooling loads using a non-sorting genetic algorithm [8]. In addition, the standardized 

regression coefficients of linear metamodels have been used to quantify the sensitivity 

of heating and cooling energy consumption to building design parameters [22]. 

Artificial neural networks have also been widely used for metamodeling heating and 

cooling loads [23] and energy consumption [24-27], indoor air temperature [26], 

percentage of annual discomfort hours [27] and comfort evaluated through the predicted 

percentage of dissatisfied (PPD) index [26]. In addition, several studies have 

highlighted the higher accuracy of neural networks as compared to linear regression, for 

example in assessing energy consumption and discomfort degree-hours [13], predicting 

energy needs, energy consumption and CO2 emissions [9] as well as daily mean indoor 

temperature and relative humidity [19]. Moreover, artificial neural networks were found 

to perform better than radial basis functions when studying overheating and air 

pollution [28]. 

Various metamodeling techniques have been investigated for the study of building 

energy performance e.g. support vector machines to predict building energy 

consumption as a function of weather parameters [29]. A support vector machine was 

compared to three artificial neural networks for the prediction of hourly cooling load 

[30]. All the techniques were found to be effective, but the support vector machine was 

more accurate. Gaussian process metamodels were used to assess building energy 
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consumption for heating and cooling and were found to capture nonlinear behavior [31]. 

The MARS method improved the accuracy of linear regression metamodels when 

predicting illuminance level, air change rate and comfort time versus passive design 

parameters [32]. It has been demonstrated that the MARS method is more accurate than 

polynomial regressions when predicting energy demand and indoor temperature [21].  

Some studies have compared several metamodeling methods in studying building 

energy performance. Polynomial regression, MARS, kriging, radial basis function 

networks and neural networks were compared when predicting energy needs for heating 

and overheating [33]. The computation efficiency of all the metamodels was highlighted 

and the MARS method was recommended because of its simplicity, although kriging 

and neural networks provide greater accuracy. Multiple linear regression, MARS, 

support vector machines, Gaussian process, random forests and artificial neural network 

metamodeling techniques have been compared in a study of cooling energy needs [34]. 

The artificial neural networks were recommended for building labelling in Brazil due to 

their higher accuracy. However, linear metamodels were found to have comparable 

accuracy to those of decision trees and artificial neural networks when predicting 

building energy consumption, although the last two performed slightly better [35]. 

Metamodels have been also used to study envelop components e.g. to calculate the U-

values of lightweight hollow concrete bricks [36] and the linear thermal transmittance 

of thermal bridges [37], to study phase change material walls [38], to assess the thermal 

and economic performance of radiant barriers [39], to investigate the energy 

performance of double-glazed windows [40] and to improve the ventilation efficiency 

of window openings [41].  

Building energy systems have also been investigated using metamodels, for instance to 
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optimize a solar cooling system [42], predict the sensible and latent cooling capacities 

of an earth to air heat exchanger [43], optimize an energy recovery ventilator [44], 

predict the energy production of photovoltaic systems [45] and for the adaptive and 

predictive control of thermo-active building systems [46]. 

Finally, metamodels have recently been introduced in Brazilian energy regulations to 

assess the energy performance of air-conditioned and naturally ventilated buildings 

[13], and they have been recommended for future Chilean energy standards [9]. 

The thermal behavior of a building is affected by nonlinearities. Heat transfer through 

walls is nonlinear in a transient regime. Heat transfer by convection and radiation is 

inherently nonlinear, although it is often linearized. The thermal behavior of the energy 

systems of a building is generally nonlinear. There are also interactions between heat 

transfers because the effect of one heat transfer on energy needs can depend on the level 

of another. For instance, the effect of a ventilation heat transfer in reducing the energy 

needs for cooling is greater when the solar and internal gains are high.  

Consequently, developing methods for assessing the nonlinearities in the thermal 

behavior of a building is an interesting subject for research. These methods could be 

useful for evaluating the relevance of a building energy performance model, for 

choosing of a sensitivity analysis method and for improving optimization efficiency.  

Nonlinearity has been investigated by simply changing one variable at time, such as in 

studying the impact of passive design measures on the building energy consumption for 

heating and cooling [47], the impact of uncertainties in building parameters on energy 

and economic performance [48] and energy consumption as a function of the U-values 

of walls [49]. Nonlinearity has also been highlighted in sensitivity analysis studies using 

the Morris method, for instance in the sensitivity analysis of the heating energy needs 
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with respect to building parameters [50] and of the heating energy demand and 

overheating hours with respect to weather variables [51]. 

Comparative studies have been conducted to confront linear and nonlinear regression 

metamodels. For instance, they have been developed to predict energy consumption as a 

function of the building and HVAC system parameters [52] and heating energy demand 

as a function of building envelope parameters [53]. These studies highlighted the higher 

accuracy of the nonlinear metamodels. However, the literature shows that there is a 

need for a general method to assess the nonlinearities of thermal behavior.  

Thus, extensive work has been carried out on metamodels for the study of the energy 

performance of a building and its energy systems. These studies highlighted the 

accuracy and computational efficiency of metamodels, but their capability to provide 

insight into thermal behavior has not been sufficiently investigated. In particular, there 

is a lack of methods that use metamodels to study nonlinearities in thermal behavior. 

Our aim is to fill this gap by developing a general and simple method to assess these 

nonlinearities. Several criteria should be considered when developing such methods, 

notably the accuracy of the metamodel, its approximate cost and its ability to provide 

insight. The major steps are the choice of the metamodel form and the measures used to 

study nonlinearities, the choice of the experimental design, metamodel fitting and 

validation, and the analysis of nonlinearity measures. 

Recently, we presented a general metamodel that can be used as a common framework 

for metamodeling building energy performance [54]. The metamodel was developed 

with the assumption that heat transfer was in a quasi-steady state regime, which enabled 

us to incorporate some knowledge of heat transfer. The metamodel is flexible and can 

be adapted to different building characteristics and different energy performance 
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aspects. In addition, its polynomial based form is adapted to provide insight into thermal 

behavior. 

Here we present a method for the study of nonlinearities in the thermal behavior of a 

building based on a metamodel for the cooling energy needs derived from the general 

metamodel [54]. In order to assess these nonlinearities, we introduced four measures 

based on the metamodel coefficients. The metamodel was fitted from dynamic 

simulation using a Box-Behnken experimental design. The nonlinearities in the thermal 

behavior on an office were analyzed for fifteen typical European climates after 

metamodel validation. Moreover, the method was applied to the cold climate of 

Helsinki and the hot climate of Athens with various levels of internal heat gains. 

2. Methods  

2.1. Metamodeling 

This study presents a method to study the nonlinearities in the thermal behavior of a 

building based on a metamodel for cooling energy needs. The metamodel was derived 

from the general metamodel for building energy performance that we presented 

previously [54]. The derivation was achieved by considering the cooling energy needs 

Qc as a performance indicator. Hence, the energy needs are a second-order polynomial 

of the individual energy needs for cooling Q = (Q1, Q2,…, Qn) the building components, 

which is expressed as follows: 

�� = �� + � ����
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 (1)  

where Qi and Qj are two individual energy needs equal to two heat transfers (kWh year-

1), a0 is the metamodel constant, ai, aii, and aij are the linear, quadratic and interaction 
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effects, respectively and � is the residual. 

The metamodel coefficients a0, ai, aii, and aij are assumed to depend on climate, the 

thermal mass of the building, its use and the type of energy system. They incorporate 

the effect of the thermal mass since they are obtained from dynamic simulation. When 

all the individual energy needs of all the building components vary, a0 is equal to zero. 

In the opposite case, the metamodel coefficients are dependent on the individual energy 

needs that are assumed to be constant. 

A transmission energy need for a wall is calculated in a quasi-steady-state assumption 

as 

��� = � ������ − ����Δ� (2)  

where U and A are the U-value (W m-2 K-1) and the area of the wall (m2), respectively, 

θis is the indoor set-point temperature (°C), θoe is the equivalent outdoor temperature to 

which the wall is exposed (°C) and ∆t is the time step (h). 

The energy need of an air change is given by 

��� = � �� !�"#,������ − ����Δ� (3)  

where "#,�� is the airflow rate (m3 s-1), ρa and cpa are the air density (kg m-3) and specific 

heat capacity (J kg-1 K-1), respectively, and θoa is the outdoor air temperature (°C). 

The individual energy need with a solar heat gain through a window can be expressed as 

��� = � %��&%��&'()*+,�+�+Δ� (4)  

where SHGCw and Aw are the solar heat gain coefficient and the area of the window 
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(m2), respectively, Isw is the solar irradiance in the direction of the window (W m-2) and 

Fish and Fesh are the reduction factors of the internal and external shading devices, 

respectively. 

2.2. Nonlinearity measures  

The nonlinearities in thermal behavior were analyzed based on the interpretation of the 

metamodel coefficients. To this end, we introduced the following measures, which 

quantify the importance of the quadratic and interaction effects. 

The ratio of the mean absolute value of quadratic to linear effects is given by  

�-./ = ∑ |���|	�
�∑ |��|	�
�  (5)  

where ai is the effect of a linear term, aii is the effect of a quadratic term and n is the 

number of linear terms equal to the number of quadratic terms. 

The ratio of the mean absolute value of interaction to linear effects is calculated from 

,-./ = 2� ∑ ∑ 3��
3	

���	���
�2�
 ∑ |��|	�
�  (6)  

where aij is the effect of an interaction term and 2�
 =  2��2� − 1�/2 is the number of 

interaction terms. 

The ratio of the root mean square of quadratic to linear effects is calculated from 

�-8.9 = :∑ ����	�
�:∑ ���	�
�
 (7)  

Finally, the ratio of the root mean square of interaction to linear effects is given by 
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,-8.9 = ;2� ∑ ∑ ��
�	

���	���
�
;2�
 ∑ ���	�
�

 (8)  

The ratios using mean absolute values QLMA and ILMA give the same weight to all 

effects of a similar type (linear, quadratic and interaction). They are more appropriate 

for the physical interpretation of the nonlinearities than QLRMS and ILRMS. However, the 

latter measures emphasize strong effects by giving them relatively high weights. In 

addition, their use avoids the use of absolute values, which are undesirable in many 

mathematical calculations. 

2.3. Case study 

The metamodel for cooling energy needs was used to study the nonlinearity of the 

thermal behavior of the office shown in Fig. 1. The energy needs were assessed for the 

period from June to September. The office has a concrete structure. Two types of 

thermal mass were considered: a lightweight thermal mass with insulation from the 

inside, and a heavy thermal mass with insulation from the outside. 

The office is occupied from Monday to Friday from 8h to 18h. The ventilation air flow 

is equal to 50 m3 h-1 when the office is occupied. The cooling set-point temperature is 

26 °C when the office is occupied and 30 °C when it is unoccupied. Moreover, the basic 

value of the internal heat gains is 20 W m-2 when the office is occupied and 2 W m-2 

when it is unoccupied.  
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Fig. 1. The studied office. 

 

We studied the impact of the facade components on cooling energy needs. 

Consequently, we analyzed individual energy needs corresponding to four heat 

transfers. These are shown in Table 1, with the parameters in Eqs. (2)-(4) varied to fit 

the metamodel.  

The infiltration air flow rate is dependent on the wind speed and calculated from [55]: 

"#,�	<  = 0.224  "#,�	<,�   @+  (9)  

where "#,�	<,� is the reference infiltration rate (m3 h-1) and vw is the wind speed (m s-1). 

 Table 1.  Heat transfers, individual energy needs and the parameters varied to fit the 

metamodel. 

Table 2.   Lower and upper levels of the physical parameters. 

N°  1 2 3 4 

N° Heat transfer Individual energy need Parameter varied 

1 Transmission through the opaque wall incorporating 

the effect of the thermal bridges 
Qtr,wo (kWh year-1) Uow (W m-2 K-1) 

2 Transmission through the window Qtr,w (kWh year-1) Uw (W m-2 K-1) 

3 Solar heat gain through the window Qso,w (kWh year-1) qv,inf  (m3 h-1) 

4 Heat transfer due to infiltration Qac,inf (kWh year-1) SHGCw 
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Parameter Coded values 
Uow 

(W m-2 K-1) 

Uw 

(W m-2 K-1) 

qv,inf,r 

(m3 h-1) 

SHGCw,r 

- 

Lower level -1 0.1 0.7 8.1 0.3 

Upper level +1 0.5 2.7 32.4 0.7 

The solar heat gain coefficient SHGCw of the window is dependent on the solar angle of 

incidence αw as follows [56]: 

'()*+ = '()*+,� 0.84 ,�+,B + ,�+,C cos�/� G+,�+  (10)  

where Isw, Isw,d  and Isw,D are the total, diffuse and direct solar irradiance in the direction 

of the window (W m-2), respectively. 

Moreover, an external shading device was included. It provides a shading factor Fom = 

0.2 when the solar irradiance Isw is higher than 300 W m-2. 

The metamodel was fitted from dynamic simulations performed with TRNSYS software 

[56], which uses the response factor method proposed by Stephenson and Mitalas [57] 

to calculate heat transfer through walls. To this end, the individual energy needs were 

varied using upper and lower levels of the physical parameters, as shown in Table 2. 

The Box-Behnken experimental design was used to plan the simulations [58]. Hence, 25 

dynamic simulations were needed to fit the metamodel compared with 81 when using a 

full factorial design. In addition, the metamodel coefficients were obtained by multiple 

regression analysis.  

Next, the metamodel fit was tested by comparing the results with those of the TRNSYS 

dynamic simulations. The comparison was performed for 100 additional dynamic 

simulations with a random combination of the physical parameters of Table 2. To this 

end, the root mean square error (RMSE) of the metamodel was used, which is given by  

HI'J = K∑ ε��	L�2�  (11)  
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where εi is a residual (Eq. (1)) and nt is the number of simulations used to test the 

metamodel (nt = 100). 

Once the metamodel had been fitted and validated, the nonlinearities in thermal 

behavior were studied using the measures of Eqs (5)-(8). The values of these measures 

were calculated using coded variables of the individual energy needs ranging from -1 to 

+1. The nonlinearities were hence analyzed using individual energy needs having the 

same variation range.  

The metamodel was first applied to fifteen typical European climates, then for the cold 

climate of Helsinki and the hot climate of Athens. In the second part, the cooling energy 

needs and the nonlinearities in thermal behavior were studied in relation to internal heat 

gains pig,o  of between 5 and 40 W m-2 during occupation, at increments of 5 W m-2. In 

addition, internal heat gains when unoccupied were 10 % of pig,o. In each case, the mean 

value of cooling energy needs was considered to be equal to the mean of the 100 

dynamic simulations used to test the metamodel fit. 

3. Results and discussion 

3.1. Application to typical European climates 

As specified previously, the metamodel was applied to fifteen typical European 

climates. The mean outdoor air temperature in the corresponding locations and the mean 

cooling energy needs are presented in Fig. 2. The cooling energy needs varied between 

271.1 and 810.9 kWh year-1 for the lightweight thermal mass and between 215.3 and 

871.8 kWh year-1 for the heavy thermal mass. In addition, the results indicate that the 

thermal mass decreased the energy needs in cold climates and increased it in hot 

climates. 
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The variation of the RMSE of the metamodel versus the mean outdoor air temperature in 

the different locations for the lightweight and heavy thermal masses is presented in Fig. 

3. The RMSE generally decreased with the temperature and thermal mass. Moreover, 

the RMSE varied between 0.4 and 1.4 kWh year-1 for the lightweight thermal mass and 

between 0.9 and 3.5 kWh year-1 for the heavy thermal mass. It was, in general, very low 

compared to the energy needs, especially for the lightweight thermal mass. 

One reason for the higher accuracy with the lightweight thermal mass could be the 

quasi-steady state calculation of the individual energy needs in Eqs. (2)-(4), which may 

be more accurate with a lightweight thermal mass.  

 

Fig. 2. Mean outdoor air temperature and mean cooling energy needs for fifteen typical 

European climates. 
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Fig. 3. RMSE of the metamodel for cooling energy needs versus the mean outdoor air 

temperature for the fifteen European climates. 

An association was found between the RMSE and the outdoor air temperature following 

a power law. The corresponding coefficients of determination R2 were 0.90718 and 

0.76261 for the lightweight and heavy thermal mass, respectively, which indicates that 

almost 91% and 76%, respectively, of the variation in the RMSE was associated with 

the outdoor air temperature. 

The weaker association with the heavy thermal mass can be explained by the fact that 

with a heavy thermal mass, other climate factors have more influence on the 

nonlinearities, notably solar irradiation and the temperature difference between day and 

night. 

The nonlinearity was also calculated for each climate. The ratios of quadratic to linear 

effects QLMA and QLRMS as a function of the mean outdoor air temperature are 

illustrated in Fig. 4. Similarly, the ratios of interaction to linear effects ILMA and ILRMS 

are illustrated in Fig. 5. 
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The results indicate that nonlinearities decreased, following a similar pattern, as a 

function of the outdoor air temperature. In addition, for a given climate, when the ratio 

of quadratic to linear effects was above or below the fitted curve, the corresponding 

ratio of interaction to linear effects generally followed the same tendency.  

It is interesting to observe that, for each climate, the ratio of interaction to linear effects 

was higher than quadratic to linear effects. Thus, despite the quadratic behavior, the 

interaction between the components had a greater effect on energy needs.  
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Fig. 4.  Ratio of quadratic to linear effects versus mean outdoor air temperature for the 

fifteen European climates: (a) absolute value and (b) root mean square. 
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Fig. 5.  Ratio of interaction to linear effects versus the mean outdoor air temperature for 

the fifteen European climates: (a) absolute value and (b) root mean square. 

Table 3. Upper and lower levels of the individual cooling energy needs for Athens and 

Helsinki expressed in kWh year-1.  

Location Level  Coded value Qtr,ow  Qtr,w Qac,inf Qso,w 

Helsinki 
Lower  -1 46.5 159.0 105.0 235.2 

Upper  +1 232.6 613.1 420.0 548.8 

Athens 
Lower -1 9.4 45.6 25.9 227.6 

Upper  +1 47.2 175.8 103.6 531.1 

In addition, little variation was observed in the ratios above 19 °C, especially for the 

heavy thermal mass, indicating that the nonlinearities in thermal behavior become 

quasi-stable. 

Furthermore, there was generally a strong association between ratio and outdoor air 

temperature, which varied between 76% and 96% depending on the measure. However, 

this temperature is not the only climate factor that impacted the nonlinearities in thermal 

behavior. The influence of other parameters such as the temperature difference between 

day and night, solar irradiation and wind speed could be significant. Further studies to 

investigate these effects would be interesting.  
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In the next section, further analysis is presented for the coldest climate, Helsinki, and 

the hottest climate, Athens. 

3.2. Application to cold and hot climates  

3.2.1. Cooling energy needs 

The metamodel was used to study the nonlinearities in thermal behavior in the cold 

climate of Helsinki and the hot climate of Athens with internal heat gains during 

occupation pig,o  varying from 5 to to 40 W m-2. First, Table 3 shows the lower and 

upper levels of the individual cooling energy needs for both climates. These values were 

calculated using Eqs. (2)-(4) and obtained by varying the values of the physical 

parameters in Table 2.  

The results showed that all the individual energy needs were positive. This suggests 

that, in both climates, heat transfer by transmission and air change correspond to heat 

losses, i.e. the heat is transferred mostly from inside to outside. It should be noted that 

solar heat gain through the window Qso,w was higher in Helsinki than in Athens due to 

the shading device, which reduced the solar irradiance transmitted through the window 

by 80% when the solar irradiance was higher than 300 W m-2. 

The mean cooling energy needs as given by dynamic simulation versus internal heat 

gains are illustrated in Fig. 6 for both climates and for lightweight and heavy thermal 

masses. The variation of the energy needs as a function of pig,o fitted almost perfectly 

with quadratic and linear polynomials for Helsinki and Athens, respectively.  

It should be noticed that the heavy thermal mass reduced the cooling energy needs in 

Helsinki but increased them in Athens. The difference in energy needs was higher when 

the internal heat gains were intermediate in Helsinki and high in Athens. 



 21

The results also showed that, for Helsinki, when pig,o are equal to 5 W m-2, the energy 

needs were close to zero for both thermal masses. Hence, in this case, the solar and 

internal heat gains were almost completely compensated by heat transfer by 

transmission and air change. 

3.2.2. Metamodel coefficients 

The metamodel coefficients were obtained by multiple regression analysis. A 

metamodel fit was achieved for each level of internal heat gains pig,o. However, the 

metamodel coefficients are presented only for the case where pig,o were 20 W m-2. The 

coefficients for both climates and both thermal masses are shown in Table 4. These 

values are related to the metamodel with coded variables of the individual energy needs 

(varying from -1 to +1). 
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Fig. 6. Mean cooling energy needs as given by dynamic simulation versus internal heat 

gains: (a) Helsinki and (b) Athens. 

 

 

 

 

Table 4. Coefficients of the metamodels using coded variables for Athens and Helsinki 

with internal heat gains of 20 W m-2. 
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a23 21.4 33.3 6.3 9.9 

a24 -18.8 -27.7 -5.9 -7.8 

a34 -12.2 -19.7 -3.7 -5.3 

The coefficient a0 corresponds to the cooling energy needs when all the coded values of 

the individual energy needs are null, i.e. when they are equal to their mean level. 

Obviously, these energy needs were very high in the hot climate of Athens compared to 

the climate of Helsinki. In addition, at this level, the thermal mass reduced the energy 

needs in Helsinki and, conversely, increased them in Athens. 

The coefficients a1, a2 and a3, which correspond to the linear effects of the energy needs 

of heat transfer by transmission and air change Qtr,ow, Qtr,w and Qac,inf, were negative. 

This suggests that this heat transfer reduces the cooling energy needs in both climates. 

The values were higher in Helsinki, the main reason being that the difference between 

the upper and lower levels of heat transfer is much higher in Helsinki (Table 3). 

Moreover, these effects were also higher with a heavy thermal mass, in accordance with 

the fact that the reduction in cooling energy needs is more sensitive to heat loss with a 

heavy thermal mass. 

In addition, all of each quadratic term had a positive effect aii, suggesting that the 

cooling energy needs varied as a convex function of the individual energy needs. 

Furthermore, the effects of the interactions between the heat losses a12, a13 and a23 were 

all positive, highlighting the fact that the impact of a heat loss in reducing energy needs 

is higher when the other heat losses are low. This is because when heat loss is high, less 

of them would be needed to reduce the cooling energy needs. 

Conversely, the effects of the interactions between the heat losses and the solar heat 

gain a14, a24 and a34 had negative values, which means that a higher portion of the heat 

losses was used to reduce the cooling energy needs when the solar heat gain was higher.  
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3.2.3. Metamodel validation 

The metamodel fit was checked for each value of the internal heat gains pig,o by 

comparing the results with those of TRNSYS software. The RMSE of the fits are shown 

in Fig. 7 for both climates and both thermal masses. As expected, the metamodels were 

more accurate for the hot climate of Athens than for the cold climate of Helsinki and for 

the lightweight thermal mass. 
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Fig. 7. RMSE of the metamodel for cooling energy needs versus internal heat gains: (a) 

Helsinki and (b) Athens. 
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heavy thermal mass (R2 = 0.98092). 

For Athens, a high level of agreement was observed between the results of the 

metamodel and the dynamic simulations, with errors below 0.5 kWh year-1 for the 

lightweight thermal mass and below 1.6 kWh year-1 for the heavy thermal mass. When 

considering the cooling energy needs (Fig. 6), we can deduce that there was practically 

no difference between the results obtained with the metamodel and dynamic simulation. 

Furthermore, the RMSE for the lightweight thermal mass was almost constant. Although 

the RMSE increased linearly as a function of pig,o for the heavy thermal mass (R2 = 

0.95338), the slope was 0.0255 kWh year-1 W-1 m2, which is less than 1/1000 of the 

energy needs of 29.306 kWh year-1 W-1 m2.  

The validity of the metamodel was also checked by examining the residuals of Eq. (1) 

for internal heat gains pig,o of 5 and 40 W m-2. The residuals versus the energy needs 

predicted by the metamodel are illustrated in Figs. 8 and 9, for Helsinki and Athens, 

respectively.  

For Helsinki, when pig was equal to 5 W m-2, the energy needs were equal or close to 

zero. This was true for some results with the lightweight thermal mass and for most 

with the heavy thermal mass. For the lightweight thermal mass, a concave curve was 

obtained for the residuals of the metamodel. This suggests that the extension of the 

metamodel using third order or exponential terms, changing the experimental design or 

modifying the lower and upper levels of the parameters (Table 2) might enhance the fit. 

Moreover, the metamodel was not appropriate for the heavy thermal mass. The same 

modification could be tested but alternative metamodels might produce more accurate 

approximations. However, when the internal heat gains were 40 W m-2, the residuals 

seemed to be randomly distributed around zero, indicating that the metamodel was 



 27

appropriate.  

 

 

 

Fig. 8. Residual of the metamodel versus the cooling energy needs for Helsinki with 

internal heat gains of: (a) 5 W m-2 and (b) 40 W m-2. 
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Fig. 9. Residual of the metamodel versus the cooling energy needs for Athens with 

internal heat gains of: (a) 5 W m-2 and (b) 40 W m-2. 
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conditions, especially for energy performance close to zero, and to compare it with 

alternative metamodels. 

 

 

Fig. 10.  Ratio of quadratic to linear effects for Helsinki versus internal heat gains: (a) 

absolute value and (b) root mean square. 
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Fig. 11.  Ratio of quadratic to linear effects for Athens versus internal heat gains: (a) 

absolute value and (b) root mean square.  
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Helsinki and Athens, respectively. 

For the cold climate of Helsinki, the results showed that QLMA and QLRMS were high 

when pig,o was 5 and 10 W m-2, i.e. when the cooling energy needs were close to zero. In 

addition, they were strongly associated with pig,o using power laws, with coefficients of 

determination R2 higher than 0.96. Both showed similar patterns, but a better fit was 

again found for the lightweight thermal mass. Furthermore, when the internal gains 

were low, the quadratic behavior was more pronounced with a heavy thermal mass; 

above 20 W m-2 the difference was lower and even the behavior with a lightweight 

thermal mass was slightly more quadratic above 30 W m-2.  

For the hot climate of Athens, there was a slight linear variation of QLMA and QLRMS, 

with QLMA varying from 4.8% to 6.6% for the lightweight thermal mass and from 4.0% 

to 6.2% for the heavy thermal mass. We deduced that the nonlinearities were almost 

stable in these conditions. 

The ratios of interaction to linear effects ILMA (Eq. (6)) ILRMS (Eq. (8)) versus pig,o are 

illustrated in Figs. 12 and 13. For Helsinki, these ratios followed similar patterns to 

QLMA and QLRMS. They were also strongly associated with pig,o, with coefficients of 

determination R2 higher than 0.97. For Athens, ILMA and ILRMS were quasi-constant, 

with higher values for heavy thermal mass. 

Finally, the ratios of interaction to linear effects ILMA and ILRMS were higher than for 

quadratic to linear effects QLMA and QLRMS whatever the internal heat gains. This was 

also shown previously in relation to the mean outdoor air temperature of the climates. 

Thus, the interaction between the building components had a stronger effect than 

quadratic behavior. 
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Fig. 12.  Ratio of interaction to linear effects for Helsinki versus internal heat gains: (a) 

absolute value and (b) root mean square. 
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Fig. 13.  Ratio of interaction to linear effects for Athens versus internal heat gains: (a) 

absolute value and (b) root mean square. 
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where pi is a physical parameter, gi is a geometric parameter and b0, bi, bii, and bij are 

the metamodel coefficients obtained, without additional fitting, from the coefficients a0, 

ai, aii, and aij using Eqs. (1)-(4). 

Table 5. Coefficients of the metamodel for Helsinki and Athens with internal heat gains 

of 20 W m-2. 

Location Helsinki Athens 

Thermal mass Lightweight  Heavy Lightweight  Heavy 

a0 397.17 456.50 616.42 724.55 

a1 -27.98 -40.72 -7.75 -12.58 

a2 -32.91 -45.40 -11.10 -17.33 

a3 -8.68 -12.99 -2.19 -4.14 

a4 139.78 178.55 138.57 164.85 

a11 0.47 0.90 0.12 0.17 

a22 0.72 0.98 0.20 0.27 

a33 0.06 0.09 0.02 0.03 

a44 6.22 7.71 2.43 0.22 

a12 1.33 1.81 0.31 0.51 

a13 0.33 0.52 0.08 0.14 

a14 -4.03 -5.59 -1.25 -1.84 

a23 0.36 0.56 0.11 0.17 

a24 -3.91 -5.77 -1.23 -1.62 

a34 -1.02 -1.66 -0.31 -0.44 

As an example, b1 was obtained from the coefficient a1 using Eq. (2) according to 

M� = �� ���,�+∑���� − ����Δ� (13)  

The values of the coefficients b0, bi, bii, and bij of Eq. (11) for both climates and both 

thermal masses with heat gains of 20 W m-2 are given in Table 5. The metamodel 

variables are expressed here with their specific units. The signs of the effects are similar 

to those of the coded variables, which allows to identify the components that contribute 

to a decrease in building energy needs. 
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Once the metamodel coefficients were calculated, the cooling energy needs Qc could be 

calculated directly from the physical and geometric parameters. For instance, the 

metamodel for Athens and the heavy thermal mass is given by 

�� = 724.55 − 12.58��+ − 17.33�+�+ − 4.14"#,�	<,�
+ 164.85'()*+,��+ + 0.17��+� ��+� + 0.27�+� �+�
+ 0.03"#,�	<,�� + 0.22'()*+,�� �+� + 0.51��+�+��+�+
+ 0.14��+"#,�	<,���+ − 1.84��+'()*+,���+�+
+ 0.17�+"#,�	<,��+ − 1.62�+'()*+,��+�
− 0.44"#,�	<,�'()*+,��+ 

(14)  

Using this equation, the cooling energy needs can be obtained almost instantaneously, 

whereas a TRNSYS simulation of the office studied took several seconds to run. 

Therefore, the metamodel is particularly useful for assessing the performance of a large 

number of design configurations and for formulating the optimization problems of a 

building. Moreover, it is convenient for early design stages when many design details 

are still not available. Furthermore, it offers the benefit of studying the energy needs at 

the district level, where the use of dynamic simulation quickly becomes impractical.  

The results of the metamodels were compared with those of the dynamic simulation of 

TRNSYS for window-wall ratios ranging from 15% to 60%. For each ratio, 100 

additional dynamic simulations were performed with a random combination of the 

physical parameters.  

The mean values of the cooling energy needs of the 100 dynamic simulations versus 
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window-wall ratio are illustrated in Fig. 14 for both climates and thermal masses. In 

each case, the cooling energy needs increased with the window-wall ratio due to higher 

solar gain. In addition, the variation was almost perfectly linear.  

The cooling energy needs were again lower for the heavy thermal mass in Helsinki and 

the lightweight mass in Athens. However, the difference between the thermal masses 

increased in Helsinki and decreased in Athens with the window-wall ratio. In other 

words, a heavy thermal mass was more convenient when the solar gain was high. 

The RMSE of the metamodel versus window-wall ratio is presented in Fig. 15. As 

expected, the accuracy of the metamodel decreased the farther the window-wall ratio 

was from the fitted value of 30%. The errors were hence due to the extrapolation of the 

metamodel when the window-wall ratio varied. 

However, the RMSE were still low when the window-wall ratio was between 15% and 

45% but increased rapidly when this ratio was above 45%. Nevertheless, the levels of 

accuracy of the metamodel could be acceptable when comparing the RMSE to the 

energy needs (Fig. 14), especially for Athens. Moreover, the RMSE was again higher for 

the heavy thermal mass, with a larger difference for higher window-wall ratios for 

Helsinki and a lower difference in Athens. A better accuracy would be obtained by 

using the lower and upper levels of the geometric parameters when fitting the 

metamodels together with the physical parameters in Table 2. 

Finally, the RMSE was almost perfectly expressed by a quadratic polynomial in each 

case. It would be useful to incorporate this assumption into a correction term for the 

metamodel errors in the polynomials of Eqs. (11) and (13). 
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Fig. 14. Mean cooling energy needs as given by dynamic simulation versus window-

wall ratio: (a) Helsinki and (b) Athens.  
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Fig. 15. RMSE of the metamodel for cooling energy needs versus window-wall ratio: (a) 

Helsinki and (b) Athens. 
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energy performance and for providing insight into building thermal behavior. Four 

nonlinearity measures were introduced using the metamodel coefficients allowing to 

assess the relative importance of the quadratic and interaction effects in the metamodel. 

The method was applied to the analysis of the nonlinearities in the thermal behavior of 

an office in relation to the mean outdoor air temperature of fifteen typical European 

climates. In addition, the analysis was performed with different levels of internal heat 

gains for the coldest and hottest climates.  

It was observed that metamodel errors generally decreased with mean outdoor air 

temperature and internal heat gains, i.e. when the cooling energy needs were high. 

When the climate was hot and internal heat gains were high, there was practically no 

difference between the results of the metamodel and dynamic simulation. In addition, 

higher accuracies were obtained for the lightweight thermal mass, which may be related 

to the quasi-steady state assumption on which the metamodel is based. The metamodel 

errors could be accurately associated with mean outdoor air temperature and internal 

heat gains with power laws when the energy needs were low. However, this association 

was linear and quasi-constant in hot climates and with high internal heat gains. 

The nonlinearity of thermal behavior was accentuated when the climate was cold, with 

low internal heat gains, i.e. when energy needs were low and the metamodel errors high. 

The nonlinearity measures were accurately associated with the mean outdoor air 

temperature of the climates in accordance with decreasing power laws. Similar patterns 

were observed with internal heat gains for cold climates. However, for hot climates, the 

nonlinearities were quasi-stable, with a linear variation with respect to internal heat 

gains. It should be noticed that the interactions between the building components was 

found to be more influential on cooling energy needs than quadratic behavior. 
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It was shown that the fitted metamodels for cooling were convex functions of heat 

transfer. Moreover, the interaction effects highlight the fact that a heat loss reduces 

cooling energy needs more significantly when the other heat losses are low and the solar 

heat gain is high. Furthermore, a metamodel was derived to calculate the energy needs 

from the physical and geometric parameters of the building, which is particularly useful 

in early design stages when there is little available information on the building.  

Following the results of this study, we propose to classify building thermal behavior 

into three regimes: highly nonlinear close to zero energy needs; intermediate with 

decreasing nonlinearities that can be expressed by power functions; and, finally, a 

quasi-linear regime with low and almost-steady nonlinearities where linear assumption 

methods may be accepted.  

When the energy needs were close to zero, the thermal behavior was highly nonlinear 

with a relatively low metamodeling accuracy. The analysis of the nonlinearities in such 

conditions would require further investigation. For instance, the proposed metamodel 

can be fitted using various experimental designs and can be extended using third order 

or exponential terms. Moreover, alternative metamodels (e.g. artificial neural networks, 

radial basis functions, support vector machines, kriging) might produce more accurate 

approximations. However, some metamodels are computationally intensive and their 

coefficients would provide less insight than our metamodel that is based on a 

polynomial assumption.  

The presented method could be used for the development of simplified models for 

assessing building energy performance, in particular in future building standards. 

Moreover, it could be useful for guiding the choice of a sensitivity analysis method and 

for improving optimization efficiency. However, further work would be necessary to 
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understand the nonlinearities in thermal behavior using metamodeling. In particular, the 

study of the influence of climate factors and energy systems is an interesting subject for 

research. In addition, it would be useful to identify the conditions in which nonlinear 

terms would be necessary to ensure the accuracy of simplified methods for use in future 

building standards. It would be also interesting to investigate the effects of 

nonlinearities in the design of buildings and their HVAC systems. 

We expect that new flexible metamodels will be developed in the near future to study 

the building energy and environmental performance. Subsequently, it would be possible 

to represent buildings and energy systems with several metamodels in interactions. This 

would lead to improve their design and to provide a better understanding of their 

behavior. 

  



 42

References 

[1] Kleijnen JPC. Statistical tools for simulation practitioners. New York: Marcel 

Dekker; 1987. 

[2] Simpson TW, Poplinski JD, Koch PN, Allen JK. Metamodels for computer-based 

engineering design: survey and recommendations. Engineering with computers. 

2001;17:129-50. 

[3] Jin R, Chen W, Simpson TW. Comparative studies of metamodelling techniques 

under multiple modelling criteria. Structural and multidisciplinary optimization. 

2001;23:1-13. 

[4] Li Y-F, Ng SH, Xie M, Goh TN. A systematic comparison of metamodeling 

techniques for simulation optimization in decision support systems. Applied Soft 

Computing. 2010;10:1257-73. 

[5] Montgomery DC. Design and analysis of experiments. Hoboken, NJ: John Wiley & 

Sons; 2017. 

[6] Gratia E, De Herde A. A simple design tool for the thermal study of an office 

building. Energy and Buildings. 2002;34:279-89. 

[7] Jin J-T, Jeong J-W. Thermal characteristic prediction models for a free-form 

building in various climate zones. Energy. 2013;50:468-76. 

[8] Xu J, Kim J-H, Hong H, Koo J. A systematic approach for energy efficient building 

design factors optimization. Energy and Buildings. 2015;89:87-96. 

[9] Pino-Mejías R, Pérez-Fargallo A, Rubio-Bellido C, Pulido-Arcas J. Comparison of 

linear regression and artificial neural networks models to predict heating and 

cooling energy demand, energy consumption and CO2 emissions. Energy. 

2017;118:24-36. 

[10] Chung W, Hui YV, Lam YM. Benchmarking the energy efficiency of commercial 

buildings. Applied Energy. 2006;83:1-14. 

[11] Shiming D, Burnett J. Energy use and management in hotels in Hong Kong. 

International Journal of Hospitality Management. 2002;21:371-80. 

[12] Aranda A, Ferreira G, Mainar-Toledo MD, Scarpellini S, Llera Sastresa E. 

Multiple regression models to predict the annual energy consumption in the 

Spanish banking sector. Energy and Buildings. 2012;49:380-7. 

[13] Melo AP, Fossati M, Versage RS, Sorgato MJ, Scalco VA, Lamberts R. 

Development and analysis of a metamodel to represent the thermal behavior of 



 43

naturally ventilated and artificially air-conditioned residential buildings. Energy 

and Buildings. 2016;112:209-21. 

[14] Lam JC, Wan KKW, Lam TNT, Wong SL. An analysis of future building energy 

use in subtropical Hong Kong. Energy. 2010;35:1482-90. 

[15] Wan KKW, Li DHW, Lam JC. Assessment of climate change impact on building 

energy use and mitigation measures in subtropical climates. Energy. 

2011;36:1404-14. 

[16] Braun MR, Altan H, Beck SBM. Using regression analysis to predict the future 

energy consumption of a supermarket in the UK. Applied Energy. 

2014;130:305-13. 

[17] Mastrucci A, Baume O, Stazi F, Leopold U. Estimating energy savings for the 

residential building stock of an entire city: A GIS-based statistical downscaling 

approach applied to Rotterdam. Energy and Buildings. 2014;75:358-67. 

[18] Ashtiani A, Mirzaei PA, Haghighat F. Indoor thermal condition in urban heat 

island: Comparison of the artificial neural network and regression methods 

prediction. Energy and buildings. 2014;76:597-604. 

[19] Özbalta TG, Sezer A, Yildiz Y. Models for prediction of daily mean indoor 

temperature and relative humidity: Education building in Izmir, Turkey. Indoor 

and Built Environment. 2012;21:772-81. 

[20] Patidar S, Jenkins DP, Gibson GJ, Banfill PFG. Statistical techniques to emulate 

dynamic building simulations for overheating analyses in future probabilistic 

climates. Journal of Building Performance Simulation. 2011;4:271-84. 

[21] Van Gelder L, Janssen H, Roels S. Metamodelling in robust low-energy dwelling 

design. 2nd Central European Symposium on Building Physics. Vienna, Austria 

2013. p. 93-9. 

[22] Hygh JS, DeCarolis JF, Hill DB, Ranjithan SR. Multivariate regression as an 

energy assessment tool in early building design. Building and Environment. 

2012;57:165-75. 

[23] Karatasou S, Santamouris M, Geros V. Modeling and predicting building's energy 

use with artificial neural networks: Methods and results. Energy and buildings. 

2006;38:949-58. 

[24] Neto AH, Fiorelli FvAS. Comparison between detailed model simulation and 

artificial neural network for forecasting building energy consumption. Energy 

and buildings. 2008;40:2169-76. 



 44

[25] Deb C, Eang LS, Yang J, Santamouris M. Forecasting diurnal cooling energy load 

for institutional buildings using Artificial Neural Networks. Energy and 

Buildings. 2016;121:284-97. 

[26] Macas M, Moretti F, Fonti A, Giantomassi A, Comodi G, Annunziato M, et al. The 

role of data sample size and dimensionality in neural network based forecasting 

of building heating related variables. Energy and Buildings. 2016;111:299-310. 

[27] Ascione F, Bianco N, De Stasio C, Mauro GM, Vanoli GP. Artificial neural 

networks to predict energy performance and retrofit scenarios for any member of 

a building category: A novel approach. Energy. 2017;118:999-1017. 

[28] Symonds P, Taylor J, Chalabi Z, Davies M. Performance of Neural Networks vs. 

Radial Basis Functions When Forming a Metamodel for Residential Buildings. 

World Academy of Science, Engineering and Technology, International Journal 

Of Civil, Environmental, Structural, Construction And Architectural 

Engineering. 2015;9:1446-50. 

[29] Dong B, Cao C, Lee SE. Applying support vector machines to predict building 

energy consumption in tropical region. Energy and Buildings. 2005;37:545-53. 

[30] Li Q, Meng Q, Cai J, Yoshino H, Mochida A. Predicting hourly cooling load in the 

building: a comparison of support vector machine and different artificial neural 

networks. Energy Conversion and Management. 2009;50:90-6. 

[31] Heo Y, Zavala VM. Gaussian process modeling for measurement and verification 

of building energy savings. Energy and Buildings. 2012;53:7-18. 

[32] Chen X, Yang H, Sun K. Developing a meta-model for sensitivity analyses and 

prediction of building performance for passively designed high-rise residential 

buildings. Applied energy. 2017;194:422-39. 

[33] Van Gelder L, Das P, Janssen H, Roels S. Comparative study of metamodelling 

techniques in building energy simulation: Guidelines for practitioners. 

Simulation Modelling Practice and Theory. 2014;49:245-57. 

[34] Melo AP, Versage RS, Sawaya G, Lamberts R. A novel surrogate model to support 

building energy labelling system: A new approach to assess cooling energy 

demand in commercial buildings. Energy and Buildings. 2016;131:233-47. 

[35] Tso GKF, Yau KKW. Predicting electricity energy consumption: A comparison of 

regression analysis, decision tree and neural networks. Energy. 2007;32:1761-8. 

[36] del Coz Diaz JJ, Garcia-Nieto PJ, Alvarez-Rabanal FP, Alonso-Martínez M, 

Dominguez-Hernandez J, Perez-Bella JM. The use of response surface 



 45

methodology to improve the thermal transmittance of lightweight concrete 

hollow bricks by FEM. Construction and Building Materials. 2014;52:331-44. 

[37] Capozzoli A, Gorrino A, Corrado V. A building thermal bridges sensitivity 

analysis. Applied Energy. 2013;107:229-43. 

[38] Kuznik F, Arzamendia Lopez JP, Baillis D, Johannes K. Phase change material 

wall optimization for heating using metamodeling. Energy and Buildings. 

2015;106:216-24. 

[39] Asadi S, Hassan M, Beheshti A. Development and validation of a simple 

estimating tool to predict heating and cooling energy demand for attics of 

residential buildings. Energy and Buildings. 2012;54:12-21. 

[40] Banihashemi S, Golizadeh H, Reza Hosseini M, Shakouri M. Climatic, parametric 

and non-parametric analysis of energy performance of double-glazed windows 

in different climates. International Journal of Sustainable Built Environment. 

2015;4:307-22. 

[41] Sofotasiou P, Calautit JK, Hughes BR, O'Connor D. Towards an integrated 

computational method to determine internal spaces for optimum environmental 

conditions. Computers & Fluids. 2016;127:146-60. 

[42] Hang Y, Qu M, Ukkusuri S. Optimizing the design of a solar cooling system using 

central composite design techniques. Energy and Buildings. 2011;43:988-94. 

[43] Niu F, Yu Y, Yu D, Li H. Heat and mass transfer performance analysis and cooling 

capacity prediction of earth to air heat exchanger. Applied Energy. 

2015;137:211-21. 

[44] Castorani V, Landi D, Germani M. Determination of the optimal configuration of 

energy recovery ventilator through virtual prototyping and DoE techniques. 

Procedia CIRP. 2016;50:52-7. 

[45] Aste N, Del Pero C, Leonforte F, Manfren M. A simplified model for the 

estimation of energy production of PV systems. Energy. 2013;59:503-12. 

[46] Schmelas M, Feldmann T, Bollin E. Adaptive predictive control of thermo-active 

building systems (TABS) based on a multiple regression algorithm. Energy and 

Buildings. 2015;103:14-28. 

[47] Gong X, Akashi Y, Sumiyoshi D. Optimization of passive design measures for 

residential buildings in different Chinese areas. Building and Environment. 

2012;58:46-57. 



 46

[48] Rasouli M, Ge G, Simonson CJ, Besant RW. Uncertainties in energy and economic 

performance of HVAC systems and energy recovery ventilators due to 

uncertainties in building and HVAC parameters. Applied Thermal Engineering. 

2013;50:732-42. 

[49] Carlo J, Lamberts R. Development of envelope efficiency labels for commercial 

buildings: Effect of different variables on electricity consumption. Energy and 

Buildings. 2008;40:2002-8. 

[50] Sanchez DG, Lacarrière B, Musy M, Bourges B. Application of sensitivity analysis 

in building energy simulations: Combining first-and second-order elementary 

effects methods. Energy and Buildings. 2014;68:741-50. 

[51] Maderspacher J, Geyer P, Auer T, Lang W. Comparison of different meta model 

approches with a detailed buiding model for long-term simulations. Building 

Simulation Conference. Hyderabad, India 2015. p. 106-13. 

[52] Lam JC, Hui SCM, Chan ALS. Regression analysis of high-rise fully air-

conditioned of fice buildings. Energy and Buildings. 1997;26:189-98. 

[53] Jaffal I, Inard C, Ghiaus C. Fast method to predict building heating demand based 

on the design of experiments. Energy and Buildings. 2009;41:669-77. 

[54] Jaffal I, Inard C. A metamodel for building energy performance. Energy and 

Buildings. 2017;151:501-10. 

[55] EnergyPlus Version 8.9.0 Documentation, US Department of Energy. 2018. 

[56] Klein SA, et al. TRNSYS 16 - A TRaNsient SYstem Simulation program, User 

manual. Madison, WI: Solar Energy Laboratory, University of Wisconsin-

Madison; 2004. 

[57] Stephenson DG, Mitalas GP. Calculation of heat conduction transfer functions for 

multi-layers slabs. ASHRAE Transactions. 1971;77:117-26. 

[58] Box GEP, Behnken DW. Some new three level designs for the study of 

quantitative variables. Technometrics. 1960;2:455–75. 

 

 




