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This paper deals with unknown input interval observer synthesis for discretetime switched systems. First, a decomposition leading to obtain a subsystem not affected by the unknown input is presented. Second, an interval observer is designed based on the Input-to-State Stability (ISS). The gains are computed by solving Linear Matrix Inequalities (LMI) formulated based on multiple quadratic Lyapunov functions under average dwell time switching signals. In addition, a change of coordinates can be taken in order to ensure the positivity of the estimation errors. Finally, an explicit expression for the unknown input bounds is derived. Note that while the additive disturbances and the measurement noises are unknown but assumed to be bounded with known bounds, the unknown input signals are neither bounded nor stochastic.

Introduction

Unknown Input Observers (UIO) design has been widely investigated and frequently used in engineering implementation [START_REF] Guan | A novel approach to the design of unknown input observers[END_REF][START_REF] Gao | Unknown Input Observer-Based Robust Fault Estimation for Systems Corrupted by Partially Decoupled Disturbances[END_REF]. One of the most wellknown practical interests of such kind of observers is the fault detection and isolation problem [START_REF] Zhang | A state augmentation approach to interval fault estimation for descriptor systems[END_REF]. UIO have been largely studied in several contexts: in particular some works are devoted to linear as well as bilinear systems [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF][START_REF] Yang | Observers for linear systems with unknown inputs[END_REF][START_REF] Guan | A novel approach to the design of unknown input observers[END_REF][START_REF] Lee | Observers for bilinear systems with unknown inputs and application to superheater temperature control[END_REF],

nonlinear systems [START_REF] Chakrabarty | State and Unknown Input Observers for Nonlinear Systems With Bounded Exogenous Inputs[END_REF][START_REF] Chakrabarty | State and unknown input observers for discrete-time nonlinear systems[END_REF], switched systems [START_REF] Millerioux | Unknown input observers for switched linear discrete time systems[END_REF][START_REF] Ríos | State Estimation for Linear Switched Systems with Unknown Inputs[END_REF] and so on. In recent years, interval observers design has received a growing attention in control theory and real-life applications due to the capacity of this cutting edge observer in estimating the transition of state variables of dynamical systems. In fact, they produce time-varying intervals in which the state variables are guaranteed to last all times while classical observers do not provide such property. The technique, which originates in [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF], has been developed for several families of systems such as linear and bilinear [START_REF] Cacace | A new approach to design interval observers for linear systems[END_REF][START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF][START_REF] Mazenc | Interval Observers For Discrete-time Systems[END_REF][START_REF] Dinh | Interval Observers for Continuous-time Bilinear Systems with Discrete-time Outputs[END_REF], nonlinear [START_REF] Dinh | Interval Observer Composed of Observers for Nonlinear Systems[END_REF][START_REF] Raissi | Interval State Estimation for a Class of Nonlinear Systems[END_REF][START_REF] Ito | Interval Observers for Global Feedback Control of Nonlinear Systems with Robustness with respect to Disturbances[END_REF], switched systems [START_REF] Ethabet | Interval estimation for continuous-time switched linear systems[END_REF][START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF][START_REF] He | Control of non-linear switched systems with average dwell time: interval observer-based framework[END_REF][START_REF] Huang | Further result on interval observer design for discrete-time switched systems and application to circuit systems[END_REF][START_REF] Dkhil | Interval estimation for discrete-time switched linear systems based on L ∞ observer and ellipsoid analysis[END_REF]. The suggested approaches are mainly relied on combining change of coordinates with observer gain design methods to ensure both framer and stability properties of the estimation error. Another interval observer introduced in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] is based on the T-N-L observer structure where T , N , L are design parameters. Compared with the classical method based on coordinate transformation, the interval observer proposed in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] has some additional design degrees of freedom, which can be optimized to improve the estimation accuracy.

In addition, interval observers-based controllers have been constructed in [START_REF] Dinh | Decentralized interval observer-based control for a class of nonlinear systems[END_REF][START_REF] Efimov | Control of nonlinear and LPV systems: Interval observer-based framework[END_REF]. None of the above works addressed the interval observation problem for systems subject to unknown inputs. As in the case of classical observers, unknown input often hampers and sometimes prohibits construction of interval observers. Some first results related to unknown input interval observer have been proposed in the literature, e.g., [START_REF] Robinson | Interval observer design for unknown input estimation of linear time invariant discrete-time systems[END_REF][START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L ∞ -gain criteria[END_REF][START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF] for LTI and LPV systems. To the best of the authors' knowledge, the design of unknown input interval observers for switched systems has not been fully investigated in the literature and most of the proposed results (the readers can refer for instance to [START_REF] Ethabet | Interval observer design for continuous-time switched systems under known switching and unknown inputs[END_REF][START_REF] Ifqir | Robust interval observer for switched systems with unknown inputs: Application to vehicle dynamics estimation[END_REF]) have been developed for continuous-time systems. The discrete-time case has not been studied yet and is sufficiently different to deserve a separate treatment. This motivates the present work. Although some of the key ideas of the previous works may be used along this construction, it is worth pointing out that the estimators we propose are not derived directly because changing the system from continuous to discrete time not only raises changes of stability properties but also requires the estimation procedure of the unknown input to be properly adjusted. Moreover, the use of common Lyapunov function as in [START_REF] Ethabet | Interval observer design for continuous-time switched systems under known switching and unknown inputs[END_REF] to guarantee the stability is conservative and therefore it is hard that the set of LMI admits a solution.

In the present paper, a multiple Lyapunov function is employed to relax this conservatism. The problem of optimizing the accuracy of the error between the upper and lower bounds, which has not been investigated in [START_REF] Ethabet | Interval observer design for continuous-time switched systems under known switching and unknown inputs[END_REF][START_REF] Ifqir | Robust interval observer for switched systems with unknown inputs: Application to vehicle dynamics estimation[END_REF], is also considered.

In this paper, the methodology proposed in [START_REF] Maquin | Estimation of unknown inputs in linear systems[END_REF] is used to decompose the state equation of the system into two subsystems by employing a nonsingular "disturbance-decoupling" state transformation [START_REF] Bejarano | Switched Observers for Switched Linear Systems With Unknown Inputs[END_REF]: the first one depends on the unknown input and, in the second one, the unknown input may be dropped.

Next, another state transformation using a time invariant change of coordinates is performed in order to ensure the cooperativity property of the observation error so an interval observer can be designed in these new coordinates for the free-unknown input system. Then, one can deduce that lower and upper bounds for the state in the original basis. Finally, the estimation of the unknown input bounds is derived. The main contributions of this paper are

• The provided interval state estimate is insensitive against the presence of the (possibly unbounded) unmeasurable disturbance input. Furthermore, unknown inputs are not constrained to be a signal of any type (random or strategic) nor to follow any model. Thus, no prior 'useful' knowledge of the dynamics of unknown inputs is available. Therefore, they are suitable for representing adversarial attack signals [START_REF] Khajenejad | Simultaneous input and state interval observers for nonlinear systems with full-rank direct feedthrough[END_REF].

• A novel interval observer for a class of discrete-time linear switched sys-tems with unknown inputs is proposed and the LMI formulation is given to compute the gains based on the input-to-state stability (ISS) using a multiple Lyapunov function under an average dwell time. ISS is a useful stability notion for studying the robustness of control systems affected by exogenous inputs. Roughly speaking, a system is input-to-state stable if every state trajectory corresponding to a bounded control remains bounded, and the trajectory eventually becomes small if the input signals are small no matter what the initial states are. In the absence of exogenous inputs, an input-to-state stable system is globally asymptotically stable.

The proposed scheme provides simultaneously stable estimation errors for the state and the unknown input in the sense of ISS.

The remainder of this paper is organized as follows. Some preliminaries are briefly presented in Section 2. In Section 3, a step-by-step interval observer design for discrete-time linear switched systems in the presence of the unknown input, additive disturbances and measurement noises is drawn. A numerical example is given to illustrate the proposed approach in Section 4. Section 5 concludes the paper.

Preliminaries

Notation, definitions, basic result

The set of natural numbers, integers and real numbers are denoted by N, Z and R, respectively. The set of nonnegative real numbers and nonnegative integers are denoted by

R + = {τ ∈ R : τ ≥ 0} and Z + = Z ∩ R + , respectively.
The Euclidean norm of a vector x ∈ R n is denoted by |x|, and for a measurable and locally essentially bounded input u :

Z → R, the symbol u [t0,t1] denotes its L ∞ norm, u [t0,t1] = sup{|u|, t ∈ [t 0 , t 1 ]}.
If t 1 = ∞ then we will simply write u . We denote L ∞ as the set of all inputs u with the property u < ∞. We denote the sequence of integers 1, . . . , N as 1, N . Inequalities must be understood component-wise, i.e., for

x a = [x a,1 , ..., x a,n ] ∈ R n and x b = [x b,1 , ..., x b,n ] ∈ R n , x a ≤ x b if and only if, for all i ∈ 1, N , x a,i ≤ x b,i . For a square matrix Q ∈ R n×n , let the matrix Q + ∈ R n×n denote Q + = (max{q i,j , 0}) n,n i,j=1,1
, where the notation

Q = (q i,j ) n,n i,j=1,1 is used. Let Q -∈ R n×n be defined by Q -= Q + -Q
and the matrix of absolute values of all elements be defined by |Q| = Q + + Q -, the superscripts + and -for other purposes are defined appropriately when they appear. A square matrix Q ∈ R n×n is said to be nonnegative if all its entries are nonnegative. I is the identity matrix of appropriate dimension. Any n × m (resp. p × 1) matrix, whose entries are all 1 is denoted E n×m (resp. E p ) and whose entries are all 0 is denoted 0 n×m (resp. 0 p ). The vector of eigenvalues of a matrix A ∈ R n×n is denoted by λ(A). A positive (res. negative) (semi) definte matrix P ∈ R n×n is denoted as P ( ) 0 (resp. P ≺ ( ) 0).

Consider x, x ∈ R n such x ≤ x and define X T = [x x] and X T = [x x].
For a non-square matrix B, the left pseudo-inverse of matrix B is B ⊕ = (B T B) -1 B T . Additionally, B * is a matrix such that B * B = 0.

Lemma 1.

[5] Consider a vector x ∈ R n such that x ≤ x ≤ x and a constant matrix A ∈ R n×n , then

A + x -A -x ≤ Ax ≤ A + x -A -x, (1) 
with

A + = max{0, A}, A -= A + -A. If A is satisfying the relation A ≤ A ≤ A, then A + x + -A + x --A -x + + A -x -≤ Ax ≤ A + x + -A + x --A -x + + A -x -.
Lemma 2. [START_REF] Jiang | An adaptative technique for robust diagnosis of fault with independent effects on systems outputs[END_REF][START_REF] Mitrinovic | Analytic Inequalities[END_REF] Consider a positive scalar δ and a symmetric positive definite matrix P ∈ R n×n , then

2x T y ≤ 1 δ x T P x + δy T P -1 y, x, y ∈ R n . ( 2 
)
Definition 1. [START_REF] Dinh | Interval observer and Positive observer[END_REF] A discrete-time system described by x(k

+ 1) = f (x(k))
is nonnegative if for any integer k 0 and any initial condition x(k 0 ) ≥ 0, the solution x satisfies x(k) ≥ 0 for all integers k ≥ k 0 .

Lemma 3.

[35] A system described by x(k + 1) = Ax(k) + u(k), with x(k) ∈ R n and A ∈ R n×n , is nonnegative if and only if the matrix A is elementwise nonnegative, u(k) ≥ 0 and x(k 0 ) ≥ 0. In this case, the system is also called cooperative.

The Lemma 3 is essential in the design of interval observers since the estimation errors should follow nonnegative dynamics. Without any lost of generality in the present paper, we choose k 0 = 0.

Average dwell time

Definition 2.

[25] For a switching signal σ and any

0 ≤ k l ≤ k s , let N σ (k l , k s )
denote the number of discontinuities of σ on the interval [k l , k s ). If there exist a scalar τ a > 0 and an integer N 0 ≥ 0, such that

N σ (k l , k s ) ≤ N 0 + k s -k l τ a (3) 
holds for all k l and k s , then the scalar τ a > 0 is called an average dwell time (ADT) and N 0 the chatter bound. In this paper, we assume that N 0 = 0 for simplicity as commonly used in the literature.

Input to state stability

Input-to-State Stability (ISS) is an approach to analyse the effect of external disturbance on the stability of systems. The following Lemma gives sufficient conditions on Input-to-State Stability for discrete time switched systems using multiple Lyapunov function.

Definition 3. [23] A function ϕ is said to belong to the class K if ϕ ∈ C(R + , R + ), ϕ(0) = 0 and ϕ is strictly increasing. K ∞ is the subset of K functions that are unbounded. A function β : R + × R + -→ R + is of class KL, if β(., t) is of
class K in the first argument for each fixed t ≥ 0 and β(s, t) decreases to 0 as t -→ +∞ for each fixed s ≥ 0.

Lemma 4. [START_REF] Zhu | Robust MPC under eventtriggerd mechanism and Round-Robin protocol: An average dwell-time approach[END_REF] Consider the discrete-time switched system

x(k + 1) = f σ(k) (ξ(k), η(k)), σ(k) ∈ 1, N . Suppose that there exists C 1 functions V σ(k) : R n -→ R + , class K ∞ functions α 1 , α 2 , γ and constants 0 < α < 1, µ ≥ 1 such that ∀ξ ∈ R n , η ∈ R l we have α 1 ( ξ ) ≤ V σ(k) (ξ) ≤ α 2 ( ξ ), (4) 
V σ(k) (ξ(k + 1)) -V σ(k) (ξ(k)) ≤ -αV σ(k) (ξ(k)) + ( η ), (5) 
and for each switching instant k l , l = 0, 1 2, 3, . . .,

V σ(k l ) (ξ(k)) ≤ µV σ(k l -1) (ξ(k)). ( 6 
)
Then the system x(k

+ 1) = f σ(k) (ξ(k), η(k)), σ(k) ∈ 1, N is Input-to-State
Stable for any switching signal satisfying the average dwell time

τ a ≥ τ * a = - ln(µ) ln(1 -α) . (7) 

Main results

Consider the following discrete-time linear switched system

   x(k + 1) = A σ(k) x(k) + B σ(k) u(k) + D σ(k) d(k) + ω(k), y m (k) = C σ(k) x(k) + v(k), σ(k) ∈ 1, N , N ∈ N (8) with x ∈ R n is the state vector, u ∈ R m is the input, y m ∈ R p is the output, ω ∈
R n and v ∈ R p are respectively the disturbances and the measurement noises, Then for simplicity, (8) can be rewritten as

d ∈ R l is the unknown input. σ(k) = σ k , k = 0, 1, 2, 3, . . .
   x(k + 1) = A σ k x(k) + B σ k u(k) + D σ k d(k) + ω(k), y m (k) = C σ k x(k) + v(k), σ k ∈ 1, N , N ∈ N (9) 
The switched system ( 9) is affected by unknown disturbances on both the input and the output. In the case where such terms can not be measured, an unknown input estimator can be referred as a solution. In the presence of uncertainties which are unknown but bounded by known bounds, the use of classical observers is limited. However, interval observers can be considered as potential candidates to cope with such uncertainties and a joint estimation of the state and the unknown input may be performed in such a case.

Based on [START_REF] Maquin | Estimation of unknown inputs in linear systems[END_REF], the first step consists in employing a state transformation to decompose each mode of the system (9) into two subsystems where the first subsystem dynamics are completely decoupled from the unknown input. Therefore, such decoupled modes can be used to design an interval observer which allows one, with another transformation if necessary to relax the classical assumptions on the positivity of the estimation errors, to estimate the bounds of the state vector x. The second step consists in computing two bounds d and d for the unknown input vector d, satisfying

d(k) ≤ d(k) ≤ d(k), k ∈ Z + . ( 10 
)
For the rest of the paper, some assumptions are introduced.

Assumption 1. The switching signal σ(k) is assumed to be known.

Assumption 2. The state disturbance and the noise measurement are assumed to be bounded such that

-ω ≤ ω(k) ≤ ω, ∀k ≥ 0, (11) 
-v ≤ v(k) ≤ v, ∀k ≥ 0, ( 12 
)
with ω ∈ R n and v ∈ R p . Assumption 3. rank(C σ k D σ k ) = rank(D σ k ) = l, ∀σ k ∈ 1, N , l ≤ p. ( 13 
)
can be relaxed by allowing the bounds to depend on time k but for the sake of simplicity, they are assumed to be constant.

Assumption 3, also called a relative degree condition, is common in the unknown input observers literature. It establishes the extistence condition of an unknown input observer for the system (9). Based on Assumption 3 and [START_REF] Bejarano | Switched Observers for Switched Linear Systems With Unknown Inputs[END_REF], there exists a nonsingular state transformation

T σ k =      D * σ k (C σ k D σ k ) ⊕ C σ k      =      D * σ k Tσ k      , T σ k ∈ R n×n , (14) 
where

D * σ k chosen such that D * σ k D σ k = 0 and (C σ k D σ k ) ⊕ is the left pseudo- inverse of (C σ k D σ k ). The inverse matrix T -1 σ k takes the following form T -1 σ k = (I -D σ k (C σ k D σ k ) ⊕ C σ k )(D * σ k ) ⊕ D σ k . ( 15 
)
Given the change of coordinates z = T σ k x, the system (9) becomes

         z(k + 1) = Ãσ k z(k) + Bσ k u(k) + Dσ k d(k) + wσ k (k), y m (k) = Cσ k z(k) + v(k), ∀σ k ∈ 1, N , N ∈ N, (16) 
where

Ãσ k = T σ k A σ k T -1 σ k =   Ã1σ k Ã2σ k Ã3σ k Ã4σ k   , Cσ k = C σ k T -1 σ k , Bσ k = T σ k B σ k =   B1σ k B2σ k   , Dσ k = T σ k D σ k =   0 I l   , ωσ k (k) = T σ k ω(k) =   ω1σ k (k), ω2σ k   , z(k) =   z 1 (k) z 2 (k)   , z 1 ∈ R n-l , z 2 ∈ R l .
Consequently, the system ( 16) is decomposed into unknown input-depending and unknown input-free subsystems respectively whose dynamics are described by

         z 1 (k + 1) = Ã1σ k z 1 (k) + Ã2σ k z 2 (k) + B1σ k u(k) + ω1σ k (k), z 2 (k + 1) = Ã3σ k z 1 (k) + Ã4σ k z 2 (k) + B2σ k u(k) + d(k) + ω2σ k (k), y m (k) = Cσ k z(k) + v(k). (17) 
Introducing the output transformation given by the following equation

ỹ(k) = U σ k y m (k), (18) 
with

U σ k =      U 1σ k U 2σ k      =      (C σ k D σ k ) * (C σ k D σ k ) ⊕      , (19) 
the decomposed system [START_REF] Zhao | Stochastic input-to-state stability and H ∞ filtering for a class of stochastic nonlinear systems[END_REF] becomes

               z 1 (k + 1) = Ã1σ k z 1 (k) + Ã2σ k z 2 (k) + B1σ k u(k) + ω1σ k (k) z 2 (k + 1) = Ã3σ k z 1 (k) + Ã4σ k z 2 (k) + B2σ k u(k) + d(k) + ω2σ k (k) ỹ1 (k) = Čσ k z 1 (k) + U 1σ k v(k) ỹ2 (k) = z 2 (k) + U 2σ k v(k) , (20) 
where the new form of the output is described by the following form

ỹ =      ỹ1 ỹ2      , Čσ k = (C σ k D σ k ) * C σ k (D * σ k ) ⊕ .
Because of the time-varying form of the transformations ( 14) and ( 19), the state z(k) of the transformed system is governed by the following reset equation at

the switching instants k = k l z(k l ) = T σ k l x(k l ). ( 21 
)
Using the relation of ỹ2

(k) = z 2 (k) + U 2σ k v(k) in (20), it follows that z 2 (k) = ỹ2 (k) -U 2σ k v(k). (22) 
The substitution of ( 22) into dynamics of z 1 in (20) yields

               z 1 (k + 1) = Ã1σ k z 1 (k) + Ã2σ k ỹ2 (k) + B1σ k u(k) +ω 1σ k (k) -Ã2σ k U 2σ k v(k) ỹ1 (k) = Čσ k z 1 (k) + U 1σ k v(k). (23) 
Assumption 4. The pairs ( Ã1σ k , Čσ k ) are detectable for all σ σ k ∈ 1, N .

Remark 2. It is shown in [START_REF] Bejarano | Unknown input and state estimation for unobservable systems[END_REF] that the strong detectability of the matrix triplets

(A σ k , C σ k , D σ k ) is equivalent to the Assumption 4.
Moreover, Assumption 4 is a necessary but not a sufficient condition for the existence of an interval observer for [START_REF] Guiyuan | Input-to-state stability of discrete-time switched nonlinear systems[END_REF]. An additional assumption related to the average dwell time condition will be presented later in Theorem 1.

Step 2: Interval observer design for the unknown input-free subsystem

To design an interval observer, two properties have to be satisfied: (i) framer property which is the notion of providing intervals in which the state variables stay and (ii) stability property which cares the length of estimated intervals.

For that reason, observer gains L σ k need to be chosen such that the matrices Ã1σ k -L σ k Čσ k are nonnegative and the estimation errors are stable, which is usually difficult. Naturally, one can think about finding a nonsingular transformation β 1 = P z 1 such that the matrices P ( Ã1σ k -L σ k Čσ k )P -1 are nonnegative.

Subsequently, a framer can be constructed in these new coordinates. Nevertheless, the existence of a common transformation P for all σ k ∈ 1, N is not obvious, even impossible.

Framer design

In this subsection, a new methodology is proposed for the unknown inputfree switched subsystem [START_REF] Guiyuan | Input-to-state stability of discrete-time switched nonlinear systems[END_REF]. It is based on the design, in the original coordinates of two conventional observers. The structure is inspired by the one proposed in [START_REF] Dinh | Interval Observer Composed of Observers for Nonlinear Systems[END_REF]. The framer is given by the following equations:

                                 ẑ+ 1 (k + 1) = ( Ã1σ k -L σ k Čσ k )ẑ + 1 (k) + B1σ k u(k) + P -1 σ k |P σ k |ω 1σ k +P -1 σ k P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 +P -1 σ k |P σ k || Ã2σ k U 2σ k |v + L σ k ỹ1 + P -1 σ k |P σ k ||L σ k U 1σ k |v, ẑ- 1 (k + 1) = ( Ã1σ k -L σ k Čσ k )ẑ - 1 (k) + B1σ k u(k) + P -1 σ k (-|P σ k |) ω1σ k +P -1 σ k P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P -1 σ k |P σ k || Ã2σ k U 2σ k |v + L σ k ỹ1 -P -1 σ k |P σ k ||L σ k U 1σ k |v, (24) 
The proposed framer and its design conditions are given in the following theorem Theorem 1. Let Assumptions 1-4 be satisfied and x(0) ≤ x(0) ≤ x(0). Given the nonsingular transformation matrices

P σ k ∈ R (n-l)×(n-l) such that P σ k ( Ã1σ k - L σ k Čσ k )P -1
σ k are nonnegative and consider the suitably selected initial conditions

   ẑ+ 1 (0) = P -1 σ k P + σ k z 1 (0) -P - σ k z 1 (0) , ẑ- 1 (0) = P -1 σ k P + σ k z 1 (0) -P - σ k z 1 (0) , (25) 
where

   z(0) = T + σ0 x(0) -T - σ0 x(0), z(0) = T + σ0 x(0) -T - σ0 x(0), (26) 
Then, the bounds of the substate vector z 1 given by

   z 1 (k) = (P -1 σ k ) + P σ k ẑ+ 1 (k) -(P -1 σ k ) -P σ k ẑ- 1 (k), z 1 (k) = (P -1 σ k ) + P σ k ẑ- 1 (k) -(P -1 σ k ) -P σ k ẑ+ 1 (k), (27) 
satisfy

z 1 (k) ≤ z 1 (k) ≤ z 1 (k), ∀ k ≥ 0. ( 28 
)
Proof. We have to prove that z

1 (k) -z 1 (k) ≥ 0 and z 1 (k) -z 1 (k) ≥ 0, ∀ k ≥ 0.
Consider the upper and lower observation errors defined respectively by e z1 (k) =

P σ k ẑ+ 1 (k) -P σ k z 1 (k) and e z1 (k) = P σ k z 1 (k) -P σ k ẑ- 1 (k).
Then, their dynamics can be expressed as

e z1 (k + 1) = P σ k ẑ+ 1 (k + 1) -P σ k z 1 (k + 1) = P σ k ( Ã1σ k -L σ k Čσ k )ẑ + 1 (k) -P σ k ( Ã1σ k -L σ k Čσ k )z 1 (k) + P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 +P σ k Ã2σ k U 2σ k v + |P σ k |ω 1σ k -P σ k ω1σ k -P σ k Ã2σ k ỹ2 (k) +|P σ k || Ã2σ k U 2σ k |v + |P σ k ||L σ k U 1σ k |v + P σ k L σ k U 1σ k v = P σ k ( Ã1σ k -L σ k Čσ k )e z1 (k) + Υ + σ k (29)
where

Υ + σ k = |P σ k |ω 1σ k -P σ k ω1σ k + P σ k Ã2σ k U 2σ k v + P σ k L σ k U 1σ k v + P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P σ k Ã2σ k ỹ2 (k) + |P σ k || Ã2σ k U 2σ k |v + |P σ k ||L σ k U 1σ k |v
The lower observation error is given by

e z1 (k + 1) = P σ k z 1 (k + 1) -P σ k ẑ- 1 (k + 1) = P σ k ( Ã1σ k -L σ k Čσ k )ẑ 1 (k) -P σ k ( Ã1σ k -L σ k Čσ k )z - 1 (k) -P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P σ k Ã2σ k U 2σ k v + |P σ k |ω 1σ k + P σ k ω1σ k + P σ k Ã2σ k ỹ2 (k) +|P σ k || Ã2σ k U 2σ k |v + |P σ k ||L σ k U 1σ k |v -P σ k L σ k U 1σ k v = P σ k ( Ã1σ k -L σ k Čσ k )e z1 (k) + Υ - σ k (30) with Υ - σ k = |P σ k |ω 1σ k + P σ k ω1σ k -P σ k Ã2σ k U 2σ k v -P σ k L σ k U 1σ k v -P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 +P σ k Ã2σ k ỹ2 (k) + |P σ k || Ã2σ k U 2σ k |v + |P σ k ||L σ k U 1σ k |v
Taking in mind Lemma 1, the following inclusions hold

Γ -≤ P σ k Ã2σ k ỹ2 (k) ≤ Γ + (31) 
with

Γ -= P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2
and

Γ + = P + σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -P - σ k Ã+ 2σ k ỹ2 -Ã- 2σ k ỹ2 -|P σ k || Ã2σ k U 2σ k |v ≤ P σ k Ã2σ k U 2σ k v ≤ |P σ k || Ã2σ k U 2σ k |v (32) 
-|P σ k |ω 1σ k ≤ P σ k ω1σ k ≤ |P σ k |ω 1σ k (33) 
Based on ( 31),( 32), [START_REF] Dinh | Decentralized interval observer-based control for a class of nonlinear systems[END_REF], Υ + σ k , Υ - σ k are nonnegative by construction, e z1 (0) ≥ 0, e z1 (0) ≥ 0 and

P σ k ( Ã1σ k -L σ k Čσ k )P -1
σ k are nonnegative. Then, based on Lemma 3, the upper and lower errors e z1 (k) and e z1 (k) are nonnegative for all k ≥ 0 such that

P σ k ẑ- 1 (k) ≤ P σ k z 1 (k) ≤ P σ k ẑ+ 1 (k) (34) 
Therefore, the upper and lower bounds of the substate z 1 given by ( 27) verify

z 1 (k) ≤ z 1 (k) ≤ z 1 (k), ∀ k ≥ 0 3.2.

Stability conditions

In this subsection, the stability of the interval observer ( 24)-( 27) is investi-170 gated in the ISS framework.

Theorem 2. Assume that the conditions of Theorem 1 are satisfied. If there exist positive scalars α 2 > α 1 > 0, γ > 0, 0 < α < 1 and 0 ≤ β ≤ 1, matrices W σ l , S σ l and diagonal positive definite matrices M σ k such that for σ k,l ∈ 1, N

with σ k = σ l ,            -(1 -α)M σ k 0 ÃT 1σ k M σ k -ČT σ k S σ k 0 -γ 2 I n M σ k M σ k Ã1σ k -S σ k Čσ k M σ k -M σ k            0, ∀σ k ∈ 1, N (35) 
α 1 I n ≤ M σ k ≤ α 2 I n (36)      W σ l M σ k M σ k M σ k      0 ( 37 
)
then, the lower and upper observer errors are ISS and the framer (24)-( 27) is an interval observer. In addition, the gains L σ k , given by L σ k = M -1 σ k S σ k can be computed by minimising the linear problem minimize 36), [START_REF] Guan | A novel approach to the design of unknown input observers[END_REF].

Mσ k ,Sσ k ,Wσ l βµ + (1 -β)γ, σ k,l ∈ 1, N subject to (35), (
(

) 38 
Proof. Consider a Multiple Quadratic Lyapunov (MQLF) function for the esti-

mation error e + (k) = ẑ+ 1 (k) -z 1 (k) defined as V σ k (e + ) = e + T M σ k e + , (39) 
where M σ k are diagonal positive definite matrices. As shown in the previous section, the dynamics e + (k) are described by

e + (k + 1) = ( Ã1σ k -L σ k Čσ k )e + (k) + P -1 σ k Υ + σ k (40) 
For the sequel, let define Φ σ k = ( Ã1σ k -L σ k Čσ k ). Therfore the increment of the Lyapunov function ( 39) is given by

∆V σ k (e + ) = V σ k (e + (k + 1)) -V σ k (e + (k)) = e + T (k + 1)M σ k e + (k + 1) -e + T (k)M σ k e + (k) = e + T (k) Φ T σ k M σ k Φ σ k -M σ k e + (k) +e + T (k)Φ T σ k M σ k Ξ + σ k + Ξ + T M σ k Φ σ k e + (k) + Ξ + T σ k M σ k Ξ + σ k (41) with Ξ + σ k = P -1 σ k Υ + σ k .

By adding and subtracting the terms αe

+ T (k)M σ k e + (k) -γ 2 Ξ + T σ k Ξ + σ k to (41), we obatain ∆V σ k (e + (k)) = e + T (k) Φ T σ k M σ k Φ σ k -(1 -α)M σ k e + (k) +e + T (k)Φ T σ k M σ k Ξ + σ k + Ξ + T M σ k Φ σ k e + (k) +Ξ + T σ k M σ k Ξ + σ k -γ 2 Ξ + T σ k Ξ + σ k -γ 2 Ξ + T σ k Ξ + σ k (42) 
Then ( 42) can be rewritten as

∆V (e + (k)) = e + T (k) Ξ + T σ k Λ σ k e + (k) Ξ + σ k -αe + T (k)M σ k e + (k) -γ 2 Ξ + T σ k Ξ + σ k (43) 
where

Λ σ k =      Φ T σ k M σ k Φ σ k -(1 -α)M σ k Φ T σ k M σ k M σ k Φ σ k M σ k -γ 2 I n      , ∀σ k ∈ 1, N (44) 
thus, ( 44) can be rewritten as follows

Λ σ k =      -(1 -α)M σ k 0 0 -γ 2 I n      +      Φ T σ k M σ k M σ k      M -1 σ k M σ k Φ σ k M σ k (45) 
Using the Schur complement, we obtain

Λ σ k =            -(1 -α)M σ k 0 Φ T σ k M σ k 0 -γ 2 I n M σ k M σ k Φ σ k M σ k -M σ k            0, ∀σ k ∈ 1, N (46) 
Based on Lemma 4 and using [START_REF] Huang | Further result on interval observer design for discrete-time switched systems and application to circuit systems[END_REF], we arrive at

∆V (e + (k)) < -αe + T (k)M σ k e + (k) + γ 2 Ξ + σ k 2 2
(47)

Let the inequality (47) hold for k ∈ [k 0 , k), which implies that

V σ k (e + (k)) < (1 -α) (k-k0) V σ k (e + (k)) + k-k0-1 m=0 (1 -α) m γ 2 Ξ + σ k 2 2 (48)
then the following inequality is deduced

α 1 ( e + (k) ) ≤ V σ k (e + (k)). ( 49 
)
Thus,

e + (k) 2 ≤ 1 α 1 (1 -α) (k-k0) V σ k (e + (k)) + k-k0-1 m=0 (1 -α) m γ 2 Ξ + σ k 2 2 (50) Let Assumption 2 hold, then Ξ + σ k is bounded when k → ∞, then Ξ + σ k ∞ ≤ Ξ + . One can deduce that lim k-→∞ e + (k) 2 < γ 2 α 1 α Ξ +2 (51) 
The expression (51) shows that the interval error width is bounded by

γ 2 α 1 α Ξ +2 ,
which depends on γ for given α 1 and α.

Furthermore, the stability at the switching instants is guranteed based on (6) which yields

µM σ l -M σ k 0 (52) 
By appying the Schur complement, we get

     µM σ l I n I n M -1 σ k      0 (53) 
Let us multiply the both sides by

     I n 0 n 0 n M σ k     
, we have the following inequality

     W σ l M σ k M σ k M σ k      0 (54) with W σ l = µM σ l .
By making a recursion for the inequality (5) over the interval [k l , k), one can write:

V σi (e + (k)) ≤ (1 -α) k-k l V σi (e + (k l )), ∀ i ∈ 1, N (55) 
In addition, based on [START_REF] Efimov | Control of nonlinear and LPV systems: Interval observer-based framework[END_REF], we obtain at the switching time k l ,

V σ k l (e + (k)) ≤ µV σ k l -1 (e + (k)) (56) 
Let us define ς = N σ k (0, K), at instant K, by using ( 55) and (56) we can write

V σ K (e + (K)) ≤ (1 -α) (K-ς) V σ kς (e + (k ς )) ≤ µ (1 -α) (K-ς) V σ kς -1 (e + (k ς - 1)) 
. . .

≤ µ ς (1 -α) K V σ0 (e + (0)) = (1 -α) µ 1 τa K V σ0 (e + (0)) (57) 
Therefore, if the average dwell time satisfies [START_REF] Maquin | Estimation of unknown inputs in linear systems[END_REF] we obtain

(1 -α) µ 1 τa ≤ (1 -α) µ -ln(1-α) ln(µ) ≤ 1 -α 1 -α = 1 (58) 
Let equations ( 4), [START_REF] Efimov | On interval observers for time-varying discrete-time systems[END_REF], and (55) hold, then

V σ k (e + (k)) ≤ (1 -α) k-k l V σ k (e + (k)) ≤ (1 -α) k-k l V σ k (e + (k)) V σ l (e + (k)) V σ l (e + (k)) ≤ α 2 α 1 (1 -α) k-k l V σ l (e + (k)) (59) 
At switching time, k = k l ,

V σ k (e + (k)) ≤ α 2 α 1 V σ l (e + (k)) (60) with µ = α 2 α 1 .
Then, the ISS conditions presented in Lemma 4 are verified for e + . Note that 175 e z1 = P σ k ẑ+ 1 -P σ k z 1 and since P σ k is bounded, one can deduce that e z1 is also bounded. The same arguments show the the stability of the estimation error e -and thus e z1 is bounded, therefore, ( 24)-( 27) represent an interval observer for ( 23).

An optimum average dwell time is fulfilled by defining an objective function added to LMI conditions. As presented in [START_REF] Zammali | Interval estimation for discrete-time LPV switched systems[END_REF], this optimum is ensured by minimizing µ in the following objective function

βµ + (1 -β)γ (61) 
with β ∈ [0, 1]. 180

Interval state estimation in the original coordinates

Based on the estimation of the state in the coordinates z 1 , the bounds x and

x are deduced in the following theorem.

Theorem 3. Let the assumptions of Theorem 1 and Theorem 2 hold, then

x(k) ≤ x(k) ≤ x(k), ∀ k ≥ 0 ( 62 
)
where

                                                         x 1 = T + 1σ k z 1 -T - 1σ k z 1 + T + 2σ k ỹ2 -T - 2σ k ỹ2 +(-T 2σ k U 2σ k ) + v + (-T 2σ k U 2σ k ) -v x 1 = T + 1σ k z 1 -T 1 1σ k z 1 + T + 2σ k ỹ2 -T - 2σ k ỹ2 -(-T 2σ k U 2σ k ) + v -(-T 2σ k U 2σ k ) -v x 2 = T + 3σ k z 1 -T 1 3σ k z 1 + T + 4σ k ỹ2 -T - 4σ k ỹ2 +(-T 4σ k U 2σ k ) + v + (-T 4σ k U 2σ k ) -v x 2 = T + 3σ k z 1 -T 1 3σ k z 1 + T + 4σ k ỹ2 -T - 4σ k ỹ2 -(-T 4σ k U 2σ k ) + v -(-T 4σ k U 2σ k ) -v (63) x(k) =   x 1 x 2   , x(k) =   x 1 x 2   . Proof. Recaling that x = T -1 σ k z, with T -1 σ k =   T 1σ k T 2σ k T 3σ k T 4σ k   , then   x 1 x 2   =   T 1σ k T 2σ k T 3σ k T 4σ k     z 1 z 2   =   T 1σ k T 2σ k T 3σ k T 4σ k     z 1 ỹ2 -U 2σ k v   =   T 1σ k z 1 + T 2σ k ỹ2 -T 2σ k U 2σ k v T 3σ k z 1 + T 4σ k ỹ2 -T 4σ k U 2σ k v  
Consider the following observation errors

               e x1 = x 1 -x 1 e x1 = x 1 -x 1 e x2 = x 2 -x 2 e x2 = x 2 -x 2 (64) 
where

e x1 = T + 1σ k E z1 + T - 1σ k E z1 + |T 2σ k U 1σ k |v +(-T 2σ k U 1σ k ) + (v -v) + (-T 2σ k U 1σ k ) -(v + v), e x1 = T + 1σ k E z1 + T - 1σ k E z1 + |T 2σ k U 1σ k |v +(-T 2σ k U 1σ k ) + (v + v) + (-T 2σ k U 1σ k ) -(v -v), with E z1 = z 1 -z 1 , E z1 = z 1 -z 1 .
Since, the observation errors e x1 , e x1 , e x2 , e x2 are nonnegative, it yields

x(k) ≤ x(k) ≤ x(k)
To prove the boundedness of x i and x i with i ∈ 1, 2, let us consider the errors e x1 = x 1 -x 1 and e x2 = x 2 -x 2

e x1 = x 1 -x 1 = |T 1σ k |E z1 + |T 1σ k |E z1 + 4|T 2σ k U 1σ k |v, (65) 
and

e x2 = x 2 -x 2 = |T 3σ k |E z1 + |T 3σ k |E z1 + 4|T 4σ k U 1σ k |v, (66) Furthermore E z1 (k) = (P -1 σ k ) + P σ k ẑ+ 1 (k) -(P -1 σ k ) -P σ k ẑ- 1 (k) -z 1 (k) = (P -1 σ k ) + P σ k e + (k) + (P -1 σ k ) -P σ k e -(k), (67) 
and

E z1 (k) = z 1 (k) -(P -1 σ k ) + P σ k ẑ- 1 (k) + (P -1 σ k ) -P σ k ẑ+ 1 (k) = (P -1 σ k ) + P σ k e -(k) + (P -1 σ k ) -P σ k e + (k). (68) 
Since, P σ k and P -1 σ k are bounded for all σ k ∈ 1, N , if (51) holds, one can deduce that E z1 and E z1 are bounded. Taking in mind the construction of e x1 and e x2 , then x i and x i with i ∈ 1, 2 are bounded.

Unknown input estimation

The upper and the lower bounds of the unknown input d are given in the sequel. The dynamics of z 2 are given by

z 2 (k + 1) = U 2σ k y m (k + 1) -U 2σ k v(k + 1) (69) 
Based on equation [START_REF] Zhao | Stochastic input-to-state stability and H ∞ filtering for a class of stochastic nonlinear systems[END_REF], the expression of the unknown input vector at time k is given by

d(k) = z 2 (k + 1) -Ã3σ k z 1 (k) -Ã4σ k z 2 (k) -B2σ k u(k) -ω2σ k (k) = U 2σ k [y m (k + 1) -v(k + 1)] -Ã3σ k z 1 (k) -A 4σ k U 2σ k y m +A 4σ k U 2σ k v(k) -B2σ k u(k) -ω2σ k (k) (70) 
The upper and lower bounds of d given by (70) are expressed as

                           d(k) = U + 2σ k χ(k + 1) -U - 2σ k χ(k + 1) -B2σ k u(k) + (-Ã3σ k ) + z 1 (k) -(-Ã3σ k ) -z 1 (k) + ω2σ k + (-A 4σ k U 2σ k ) + y m (k) -(-A 4σ k U 2σ k ) -y m (k) + |A 4σ k U 2σ k |v, d(k) = U + 2σ k χ(k + 1) -U - 2σ k χ(k + 1) -B2σ k u(k) + (-Ã3σ k )z 1 (k) -(-Ã3σ k ) -z 1 (k) -ω2σ k + (-A 4σ k U 2σ k ) + y m (k) -(-A 4σ k U 2σ k ) -y m (k) -|A 4σ k U 2σ k |v, (71) 
with χ(k) = y m (k) -v(k). Where χ(k) and χ(k) are respectively upper and

lower bound of χ(k)    χ(k) = y m (k) + v χ(k) = y m (k) -v . ( 72 
)
Theorem 4. Assume that the assumptions of Theorem 2 are satisfied, then, (73) is an interval estimation for the unknown signal d, such that 

d(k) ≤ d(k) ≤ d(k). (73) 
Using ( 71) and (74), we obtain 

                                             e d (k) = U + 2σ k [χ(k + 1) -χ(k + 1)] + U - 2σ k χ(k + 1) -χ(k + 1) +(-Ã3σ k ) + [z 1 (k) -z 1 (k)] + (-Ã3σ k ) -[z 1 (k) -z 1 (k)] +(-A 4σ k U 2σ k ) + [y m (k) -y m (k)] + (-A 4σ k U 2σ k ) -y m (k) -y m (k) +(A 4σ k U 2σ k ) + [v -v] + (A 4σ k U 2σ k ) -[v + v] + ω2σ k + ω2σ k e d (k) = U + 2σ k χ(k + 1) -χ(k + 1) + U - 2σ k [χ(k + 1) -χ(k + 1)] +(-Ã3σ k ) + [z 1 (k) -z 1 (k)] + (-Ã3σ k ) -[z 1 (k) -z 1 (k)] +(-A 4σ k U 2σ k ) + y m (k) -y m (k) + (-A 4σ k U 2σ k ) -[y m (k) -y m (k)] +(A 4σ k U 2σ k ) + [v -v] + (A 4σ k U 2σ k ) -[v + v] + ω2σ k -ω2σ k ( 
e d = U + 2σ k χ(k + 1) -χ(k + 1) + U - 2σ k χ(k + 1) -χ(k + 1) +(-Ã3σ k ) + [z 1 (k) -z 1 (k)] + (-Ã3σ k ) -[z 1 (k) -z 1 (k)] +(-A 4σ k U 2σ k ) + y m (k) -y m (k) + (-A 4σ k U 2σ k ) -y m (k) -y m (k) +2|A 4σ k U 2σ k )|v + 2ω 2σ k (76) 
Using results of Theorem 1 and Theorem 3 as well as taking in mind the construction of e d , the boundedness of d is verified.

Numerical simulations

Given the system (9) with three modes (N = 3) where:

A 1 =     
0.55 0.5 0.7 0 0.8 0.5

0 0 0.4      , B 1 =      0 0.5 0.7      , C 1 =   0 1 0 1 0 1   , D 1 =      1 2 1      A 2 =      0.2 -0.1 0.1 0 0.4 0.2 0 0 0.1      , B 2 =      0.4 0.3 0      , C 2 =   1.01 0 1 1 1 1   , D 2 =      1 0 4.73      A 3 =     
0.09 0.09 0.09 0.09 0.18 0.09 0.09 0.09 0.27

     , B 3 =      0.1 0.0 0.1      , C 3 =   1 0 1 0 1 1   , D 3 =      1 2 1      , w ( 
k) and v(k) are respectively the disturbances and the measurement noises which are uniformly bounded such that -w ≤ w(k) ≤ w with w = 0.06 0.06 0.06 , and -v ≤ v(k) ≤ v with v = 0.06 0.06 . The unknown input is given as d(k) = 0.5 sin(0.5k). As above-mentioned, the synthesis of the unknown input interval estimation is subdivided in two steps.

Step 1: Synthesis of the unknown input 200

The unknown input is partially decoupled based on the nonsingular state and output transformation T σ k and U -1 σ k given repectively by ( 14) and ( 19) 

T 1 =      -2 1 0 -1 0 1 0.25 0.25 0.25      , T 2 =      0 1 0 -4.73 0 1 0.1752 0.0871 0.1744      , T 3 =      -0.5 1 0 -1 0 1 0.32 0.24 0.56      U 1 =   -1 1 

Conclusion

A simultaneous input and state interval observer is proposed in this paper for discrete-time linear switched systems subject to bounded noises and Varying switched systems as well as the application for fault detection are also

  is a known piecewise constant function that takes its values in an index set 1, N , N > 1, where σ k is the index of the active subsystem and N is the number of subsystems. A σ k , B σ k and C σ k and D σ k are time-invariant matrices with appropriate dimensions.
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 31 Step 1: Unknown input decoupling

Proof.

  Let us define the upper and lower bound of the observation errors of the unknown input d as    e d (k) = d(k) -d(k) e d (k) = d(k) -d(k)

  75) By analysing the construction of the bounds of the observation errors of the unknown input d given by (75), and taking in mind Assumptions 1-2, the upper and the lower observation errors of the unknown input e d and e d are nonnegative. To prove their boundedness, consider e d = d -d. Hence,

Step 2 :Figure 1 :

 21 Figure 1: The switching signal

25

 25 

Figure 2 :Figure 3 :

 23 Figure 2: State and estimated bounds

promising directions to be considered. On the other hand, extension to interval observer design for discrete-time switched systems with unknown inputs in the spirit of what is done in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] is also an interesting perspective.
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