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Abstract

This paper deals with unknown input interval observer synthesis for discrete-

time switched systems. First, a decomposition leading to obtain a subsystem

not affected by the unknown input is presented. Second, an interval observer is

designed based on the Input-to-State Stability (ISS). The gains are computed by

solving Linear Matrix Inequalities (LMI) formulated based on multiple quadratic

Lyapunov functions under average dwell time switching signals. In addition, a

change of coordinates can be taken in order to ensure the positivity of the esti-

mation errors. Finally, an explicit expression for the unknown input bounds is

derived. Note that while the additive disturbances and the measurement noises

are unknown but assumed to be bounded with known bounds, the unknown

input signals are neither bounded nor stochastic.
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1. Introduction

Unknown Input Observers (UIO) design has been widely investigated and

frequently used in engineering implementation [37, 41]. One of the most well-

known practical interests of such kind of observers is the fault detection and iso-

lation problem [40]. UIO have been largely studied in several contexts: in partic-5

ular some works are devoted to linear as well as bilinear systems [27, 16, 37, 30],

nonlinear systems [1, 2], switched systems [18, 21] and so on. In recent years,

interval observers design has received a growing attention in control theory and

real-life applications due to the capacity of this cutting edge observer in estimat-

ing the transition of state variables of dynamical systems. In fact, they produce10

time-varying intervals in which the state variables are guaranteed to last all

times while classical observers do not provide such property. The technique,

which originates in [24], has been developed for several families of systems such

as linear and bilinear [11, 15, 14, 32], nonlinear [34, 36, 22], switched systems

[19, 31, 39, 43, 44]. The suggested approaches are mainly relied on combining15

change of coordinates with observer gain design methods to ensure both framer

and stability properties of the estimation error. Another interval observer in-

troduced in [38] is based on the T-N-L observer structure where T , N , L are

design parameters. Compared with the classical method based on coordinate

transformation, the interval observer proposed in [38] has some additional design20

degrees of freedom, which can be optimized to improve the estimation accuracy.

In addition, interval observers-based controllers have been constructed in [33, 6].

None of the above works addressed the interval observation problem for sys-

tems subject to unknown inputs. As in the case of classical observers, unknown

input often hampers and sometimes prohibits construction of interval observers.25

Some first results related to unknown input interval observer have been proposed

in the literature, e.g., [10, 28, 9] for LTI and LPV systems. To the best of the

authors’ knowledge, the design of unknown input interval observers for switched

systems has not been fully investigated in the literature and most of the pro-

posed results (the readers can refer for instance to [20, 29]) have been developed30
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for continuous-time systems. The discrete-time case has not been studied yet

and is sufficiently different to deserve a separate treatment. This motivates the

present work. Although some of the key ideas of the previous works may be

used along this construction, it is worth pointing out that the estimators we

propose are not derived directly because changing the system from continuous35

to discrete time not only raises changes of stability properties but also requires

the estimation procedure of the unknown input to be properly adjusted. More-

over, the use of common Lyapunov function as in [20] to guarantee the stability

is conservative and therefore it is hard that the set of LMI admits a solution.

In the present paper, a multiple Lyapunov function is employed to relax this40

conservatism. The problem of optimizing the accuracy of the error between the

upper and lower bounds, which has not been investigated in [20, 29], is also

considered.

In this paper, the methodology proposed in [7] is used to decompose the

state equation of the system into two subsystems by employing a nonsingular45

”disturbance-decoupling” state transformation [12]: the first one depends on

the unknown input and, in the second one, the unknown input may be dropped.

Next, another state transformation using a time invariant change of coordinates

is performed in order to ensure the cooperativity property of the observation

error so an interval observer can be designed in these new coordinates for the50

free-unknown input system. Then, one can deduce that lower and upper bounds

for the state in the original basis. Finally, the estimation of the unknown input

bounds is derived. The main contributions of this paper are

• The provided interval state estimate is insensitive against the presence of

the (possibly unbounded) unmeasurable disturbance input. Furthermore,55

unknown inputs are not constrained to be a signal of any type (random or

strategic) nor to follow any model. Thus, no prior ’useful’ knowledge of

the dynamics of unknown inputs is available. Therefore, they are suitable

for representing adversarial attack signals [42].

• A novel interval observer for a class of discrete-time linear switched sys-60
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tems with unknown inputs is proposed and the LMI formulation is given

to compute the gains based on the input-to-state stability (ISS) using a

multiple Lyapunov function under an average dwell time. ISS is a use-

ful stability notion for studying the robustness of control systems affected

by exogenous inputs. Roughly speaking, a system is input-to-state sta-65

ble if every state trajectory corresponding to a bounded control remains

bounded, and the trajectory eventually becomes small if the input signals

are small no matter what the initial states are. In the absence of exogenous

inputs, an input-to-state stable system is globally asymptotically stable.

The proposed scheme provides simultaneously stable estimation errors for70

the state and the unknown input in the sense of ISS.

The remainder of this paper is organized as follows. Some preliminaries are

briefly presented in Section 2. In Section 3, a step-by-step interval observer

design for discrete-time linear switched systems in the presence of the unknown

input, additive disturbances and measurement noises is drawn. A numerical75

example is given to illustrate the proposed approach in Section 4. Section 5

concludes the paper.

2. Preliminaries

2.1. Notation, definitions, basic result

The set of natural numbers, integers and real numbers are denoted by N,

Z and R, respectively. The set of nonnegative real numbers and nonnegative

integers are denoted by R+ = {τ ∈ R : τ ≥ 0} and Z+ = Z ∩ R+, respectively.

The Euclidean norm of a vector x ∈ Rn is denoted by |x|, and for a measurable

and locally essentially bounded input u : Z → R, the symbol ‖u‖[t0,t1] denotes

its L∞ norm,

‖u‖[t0,t1] = sup{|u|, t ∈ [t0, t1]}.

If t1 = ∞ then we will simply write ‖u‖. We denote L∞ as the set of all80

inputs u with the property ‖u‖ < ∞. We denote the sequence of integers
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1, . . . , N as 1, N . Inequalities must be understood component-wise, i.e., for

xa = [xa,1, ..., xa,n]> ∈ Rn and xb = [xb,1, ..., xb,n]> ∈ Rn, xa ≤ xb if and

only if, for all i ∈ 1, N , xa,i ≤ xb,i. For a square matrix Q ∈ Rn×n, let

the matrix Q+ ∈ Rn×n denote Q+ = (max{qi,j , 0})n,ni,j=1,1, where the notation85

Q = (qi,j)
n,n
i,j=1,1 is used. Let Q− ∈ Rn×n be defined by Q− = Q+ − Q and

the matrix of absolute values of all elements be defined by |Q| = Q+ +Q−, the

superscripts + and − for other purposes are defined appropriately when they

appear. A square matrix Q ∈ Rn×n is said to be nonnegative if all its entries

are nonnegative. I is the identity matrix of appropriate dimension. Any n×m90

(resp. p × 1) matrix, whose entries are all 1 is denoted En×m (resp. Ep) and

whose entries are all 0 is denoted 0n×m (resp. 0p). The vector of eigenvalues

of a matrix A ∈ Rn×n is denoted by λ(A). A positive (res. negative) (semi)

definte matrix P ∈ Rn×n is denoted as P � (<) 0 (resp. P ≺ (4) 0).

Consider x, x ∈ Rn such x ≤ x and define X
T

= [x x] and XT = [x x].95

For a non-square matrix B, the left pseudo-inverse of matrix B is B⊕ =

(BTB)−1BT . Additionally, B∗ is a matrix such that B∗B = 0.

Lemma 1. [5] Consider a vector x ∈ Rn such that x ≤ x ≤ x and a constant

matrix A ∈ Rn×n, then

A+x−A−x ≤ Ax ≤ A+x−A−x, (1)

with A+ = max{0, A}, A− = A+−A. If A is satisfying the relation A ≤ A ≤ A,

then

A+x+ −A+
x− −A−x+ +A

−
x− ≤ Ax ≤ A+

x+ −A+x− −A−x+ +A−x−.

Lemma 2. [4, 8] Consider a positive scalar δ and a symmetric positive definite

matrix P ∈ Rn×n, then

2xT y ≤ 1

δ
xTPx+ δyTP−1y, x, y ∈ Rn. (2)

Definition 1. [35] A discrete-time system described by x(k + 1) = f(x(k))

is nonnegative if for any integer k0 and any initial condition x(k0) ≥ 0, the

solution x satisfies x(k) ≥ 0 for all integers k ≥ k0.100
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Lemma 3. [35] A system described by x(k + 1) = Ax(k) + u(k), with x(k) ∈

Rn and A ∈ Rn×n, is nonnegative if and only if the matrix A is elementwise

nonnegative, u(k) ≥ 0 and x(k0) ≥ 0. In this case, the system is also called

cooperative.

The Lemma 3 is essential in the design of interval observers since the estima-105

tion errors should follow nonnegative dynamics. Without any lost of generality

in the present paper, we choose k0 = 0.

2.2. Average dwell time

Definition 2. [25] For a switching signal σ and any 0 ≤ kl ≤ ks, let Nσ(kl, ks)

denote the number of discontinuities of σ on the interval [kl, ks). If there exist110

a scalar τa > 0 and an integer N0 ≥ 0, such that

Nσ(kl, ks) ≤ N0 +
ks − kl
τa

(3)

holds for all kl and ks, then the scalar τa > 0 is called an average dwell time

(ADT) and N0 the chatter bound. In this paper, we assume that N0 = 0 for

simplicity as commonly used in the literature.

2.3. Input to state stability115

Input-to-State Stability (ISS) is an approach to analyse the effect of external

disturbance on the stability of systems. The following Lemma gives sufficient

conditions on Input-to-State Stability for discrete time switched systems using

multiple Lyapunov function.

Definition 3. [23] A function ϕ is said to belong to the class K if ϕ ∈ C(R+,R+),120

ϕ(0) = 0 and ϕ is strictly increasing. K∞ is the subset of K functions that are

unbounded. A function β : R+ × R+ −→ R+ is of class KL, if β(., t) is of

class K in the first argument for each fixed t ≥ 0 and β(s, t) decreases to 0 as

t −→ +∞ for each fixed s ≥ 0.
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Lemma 4. [26] Consider the discrete-time switched system125

x(k+ 1) = fσ(k)(ξ(k), η(k)), σ(k) ∈ 1, N . Suppose that there exists C1 functions

Vσ(k) : Rn −→ R+, class K∞ functions α1, α2, γ and constants 0 < α < 1,

µ ≥ 1 such that ∀ξ ∈ Rn, η ∈ Rl we have

α1(‖ξ‖) ≤ Vσ(k)(ξ) ≤ α2(‖ξ‖), (4)

Vσ(k)(ξ(k + 1))− Vσ(k)(ξ(k)) ≤ −αVσ(k)(ξ(k)) + %(‖η‖), (5)

and for each switching instant kl, l = 0, 1 2, 3, . . .,

Vσ(kl)(ξ(k)) ≤ µVσ(kl−1)(ξ(k)). (6)

Then the system x(k + 1) = fσ(k)(ξ(k), η(k)), σ(k) ∈ 1, N is Input-to-State

Stable for any switching signal satisfying the average dwell time

τa ≥ τ∗a = − ln(µ)

ln(1− α)
. (7)

3. Main results

Consider the following discrete-time linear switched system x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) +Dσ(k)d(k) + ω(k),

ym(k) = Cσ(k)x(k) + v(k), σ(k) ∈ 1, N, N ∈ N
(8)

with x ∈ Rn is the state vector, u ∈ Rm is the input, ym ∈ Rp is the output, ω ∈130

Rn and v ∈ Rp are respectively the disturbances and the measurement noises,

d ∈ Rl is the unknown input. σ(k) = σk, k = 0, 1, 2, 3, . . . is a known piecewise

constant function that takes its values in an index set 1, N , N > 1, where σk

is the index of the active subsystem and N is the number of subsystems. Aσk ,

Bσk and Cσk and Dσk are time-invariant matrices with appropriate dimensions.135

Then for simplicity, (8) can be rewritten as

 x(k + 1) = Aσkx(k) +Bσku(k) +Dσkd(k) + ω(k),

ym(k) = Cσkx(k) + v(k), σk ∈ 1, N, N ∈ N
(9)
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The switched system (9) is affected by unknown disturbances on both the input

and the output. In the case where such terms can not be measured, an unknown

input estimator can be referred as a solution. In the presence of uncertainties

which are unknown but bounded by known bounds, the use of classical ob-

servers is limited. However, interval observers can be considered as potential

candidates to cope with such uncertainties and a joint estimation of the state

and the unknown input may be performed in such a case.

Based on [7], the first step consists in employing a state transformation to de-

compose each mode of the system (9) into two subsystems where the first sub-

system dynamics are completely decoupled from the unknown input. Therefore,

such decoupled modes can be used to design an interval observer which allows

one, with another transformation if necessary to relax the classical assumptions

on the positivity of the estimation errors, to estimate the bounds of the state

vector x. The second step consists in computing two bounds d and d for the

unknown input vector d, satisfying

d(k) ≤ d(k) ≤ d(k), k ∈ Z+. (10)

For the rest of the paper, some assumptions are introduced.

Assumption 1. The switching signal σ(k) is assumed to be known.

Assumption 2. The state disturbance and the noise measurement are assumed

to be bounded such that

−ω ≤ ω(k) ≤ ω, ∀k ≥ 0, (11)

−v ≤ v(k) ≤ v, ∀k ≥ 0, (12)

with ω ∈ Rn and v ∈ Rp.

Assumption 3.

rank(CσkDσk) = rank(Dσk) = l,∀σk ∈ 1, N, l ≤ p. (13)
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Remark 1. Assumption 2 is realistic: it is frequently satisfied in practice. It140

can be relaxed by allowing the bounds to depend on time k but for the sake of

simplicity, they are assumed to be constant.

Assumption 3, also called a relative degree condition, is common in the unknown

input observers literature. It establishes the extistence condition of an unknown

input observer for the system (9).145

3.1. Step 1: Unknown input decoupling

Based on Assumption 3 and [12], there exists a nonsingular state transfor-

mation

Tσk =


D∗σk

(CσkDσk)⊕Cσk

 =


D∗σk

T̃σk

 , Tσk ∈ Rn×n, (14)

where D∗σk chosen such that D∗σkDσk = 0 and (CσkDσk)⊕ is the left pseudo-

inverse of (CσkDσk). The inverse matrix T−1σk
takes the following form

T−1σk
=
[

(I −Dσk(CσkDσk)⊕Cσk)(D∗σk)⊕ Dσk

]
. (15)

Given the change of coordinates z = Tσkx, the system (9) becomes
z(k + 1) = Ãσkz(k) + B̃σku(k) + D̃σkd(k) + w̃σk(k),

ym(k) = C̃σkz(k) + v(k), ∀σk ∈ 1, N, N ∈ N,

(16)

where

Ãσk = TσkAσkT
−1
σk

=

 Ã1σk Ã2σk

Ã3σk Ã4σk

 , C̃σk = CσkT
−1
σk
,

B̃σk = TσkBσk =

 B̃1σk

B̃2σk

 , D̃σk = TσkDσk =

 0

Il

 ,

ω̃σk(k) = Tσkω(k) =

 ω̃1σk(k),

ω̃2σk

 , z(k) =

 z1(k)

z2(k)

 , z1 ∈ Rn−l, z2 ∈ Rl.
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Consequently, the system (16) is decomposed into unknown input-depending

and unknown input-free subsystems respectively whose dynamics are described

by
z1(k + 1) = Ã1σkz1(k) + Ã2σkz2(k) + B̃1σku(k) + ω̃1σk(k),

z2(k + 1) = Ã3σkz1(k) + Ã4σkz2(k) + B̃2σku(k) + d(k) + ω̃2σk(k),

ym(k) = C̃σkz(k) + v(k).

(17)

Introducing the output transformation given by the following equation

ỹ(k) = Uσkym(k), (18)

with

Uσk =


U1σk

U2σk

 =


(CσkDσk)∗

(CσkDσk)⊕

 , (19)

the decomposed system (17) becomes



z1(k + 1) = Ã1σkz1(k) + Ã2σkz2(k) + B̃1σku(k) + ω̃1σk(k)

z2(k + 1) = Ã3σkz1(k) + Ã4σkz2(k) + B̃2σku(k) + d(k) + ω̃2σk(k)

ỹ1(k) = Čσkz1(k) + U1σkv(k)

ỹ2(k) = z2(k) + U2σkv(k)

, (20)

where the new form of the output is described by the following form

ỹ =


ỹ1

ỹ2

 , Čσk = (CσkDσk)∗Cσk(D∗σk)⊕.

Because of the time-varying form of the transformations (14) and (19), the state

z(k) of the transformed system is governed by the following reset equation at

the switching instants k = kl

z(kl) = Tσklx(kl). (21)

Using the relation of ỹ2(k) = z2(k) + U2σkv(k) in (20), it follows that

z2(k) = ỹ2(k)− U2σkv(k). (22)
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The substitution of (22) into dynamics of z1 in (20) yields

z1(k + 1) = Ã1σkz1(k) + Ã2σk ỹ2(k) + B̃1σku(k)

+ω̃1σk(k)− Ã2σkU2σkv(k)

ỹ1(k) = Čσkz1(k) + U1σkv(k).

(23)

Assumption 4. The pairs (Ã1σk , Čσk) are detectable for all σσk ∈ 1, N .

Remark 2. It is shown in [13] that the strong detectability of the matrix triplets

(Aσk , Cσk , Dσk) is equivalent to the Assumption 4. Moreover, Assumption 4 is a150

necessary but not a sufficient condition for the existence of an interval observer

for (23). An additional assumption related to the average dwell time condition

will be presented later in Theorem 1.

3.2. Step 2: Interval observer design for the unknown input-free subsystem

To design an interval observer, two properties have to be satisfied: (i) framer155

property which is the notion of providing intervals in which the state variables

stay and (ii) stability property which cares the length of estimated intervals.

For that reason, observer gains Lσk need to be chosen such that the matrices

Ã1σk − Lσk Čσk are nonnegative and the estimation errors are stable, which is

usually difficult. Naturally, one can think about finding a nonsingular transfor-160

mation β1 = Pz1 such that the matrices P (Ã1σk−Lσk Čσk)P−1 are nonnegative.

Subsequently, a framer can be constructed in these new coordinates. Neverthe-

less, the existence of a common transformation P for all σk ∈ 1, N is not obvious,

even impossible.

3.2.1. Framer design165

In this subsection, a new methodology is proposed for the unknown input-

free switched subsystem (23). It is based on the design, in the original co-

ordinates of two conventional observers. The structure is inspired by the one
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proposed in [34]. The framer is given by the following equations:

ẑ+1 (k + 1) = (Ã1σk − Lσk Čσk)ẑ+1 (k) + B̃1σku(k) + P−1σk
|Pσk |ω̃1σk

+P−1σk

[
P+
σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)]
+P−1σk

|Pσk ||Ã2σkU2σk |v + Lσk ỹ1 + P−1σk
|Pσk ||LσkU1σk |v,

ẑ−1 (k + 1) = (Ã1σk − Lσk Čσk)ẑ−1 (k) + B̃1σku(k) + P−1σk
(−|Pσk |) ω̃1σk

+P−1σk

[
P+
σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)]
−P−1σk

|Pσk ||Ã2σkU2σk |v + Lσk ỹ1 − P−1σk
|Pσk ||LσkU1σk |v,

(24)

The proposed framer and its design conditions are given in the following theorem

Theorem 1. Let Assumptions 1-4 be satisfied and x(0) ≤ x(0) ≤ x(0). Given

the nonsingular transformation matrices Pσk ∈ R(n−l)×(n−l) such that Pσk(Ã1σk−

Lσk Čσk)P−1σk
are nonnegative and consider the suitably selected initial conditions

 ẑ+1 (0) = P−1σk

(
P+
σk
z1(0)− P−σkz1(0)

)
,

ẑ−1 (0) = P−1σk

(
P+
σk
z1(0)− P−σkz1(0)

)
,

(25)

where  z(0) = T+
σ0
x(0)− T−σ0

x(0),

z(0) = T+
σ0
x(0)− T−σ0

x(0),
(26)

Then, the bounds of the substate vector z1 given by z1(k) = (P−1σk
)+Pσk ẑ

+
1 (k)− (P−1σk

)−Pσk ẑ
−
1 (k),

z1(k) = (P−1σk
)+Pσk ẑ

−
1 (k)− (P−1σk

)−Pσk ẑ
+
1 (k),

(27)

satisfy

z1(k) ≤ z1(k) ≤ z1(k), ∀ k ≥ 0. (28)

Proof. We have to prove that z1(k)− z1(k) ≥ 0 and z1(k)− z1(k) ≥ 0, ∀ k ≥ 0.

Consider the upper and lower observation errors defined respectively by ez1(k) =

Pσk ẑ
+
1 (k)− Pσkz1(k) and ez1(k) = Pσkz1(k)− Pσk ẑ

−
1 (k). Then, their dynamics

12



can be expressed as

ez1(k + 1) = Pσk ẑ
+
1 (k + 1)− Pσkz1(k + 1)

= Pσk(Ã1σk − Lσk Čσk)ẑ+1 (k)− Pσk(Ã1σk − Lσk Čσk)z1(k)

+
[
P+
σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)]
+PσkÃ2σkU2σkv + |Pσk |ω̃1σk − Pσk ω̃1σk − PσkÃ2σk ỹ2(k)

+|Pσk ||Ã2σkU2σk |v + |Pσk ||LσkU1σk |v + PσkLσkU1σkv

= Pσk(Ã1σk − Lσk Čσk)ez1(k) + Υ+
σk

(29)

where

Υ+
σk

= |Pσk |ω̃1σk − Pσk ω̃1σk + PσkÃ2σkU2σkv + PσkLσkU1σkv

+
[
P+
σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)]
−PσkÃ2σk ỹ2(k) + |Pσk ||Ã2σkU2σk |v + |Pσk ||LσkU1σk |v

The lower observation error is given by

ez1(k + 1) = Pσkz1(k + 1)− Pσk ẑ
−
1 (k + 1)

= Pσk(Ã1σk − Lσk Čσk)ẑ1(k)− Pσk(Ã1σk − Lσk Čσk)z−1 (k)

−
[
P+
σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)]
−PσkÃ2σkU2σkv + |Pσk |ω̃1σk + Pσk ω̃1σk + PσkÃ2σk ỹ2(k)

+|Pσk ||Ã2σkU2σk |v + |Pσk ||LσkU1σk |v − PσkLσkU1σkv

= Pσk(Ã1σk − Lσk Čσk)ez1(k) + Υ−σk

(30)

with

Υ−σk = |Pσk |ω̃1σk + Pσk ω̃1σk − PσkÃ2σkU2σkv − PσkLσkU1σkv

−
[
P+
σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)]
+PσkÃ2σk ỹ2(k) + |Pσk ||Ã2σkU2σk |v + |Pσk ||LσkU1σk |v

Taking in mind Lemma 1, the following inclusions hold

Γ− ≤ PσkÃ2σk ỹ2(k) ≤ Γ+ (31)

with

Γ− = P+
σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)
and

Γ+ = P+
σk

(
Ã+

2σk
ỹ2 − Ã−2σk ỹ2

)
− P−σk

(
Ã+

2σk
ỹ
2
− Ã−2σk ỹ2

)
13



−|Pσk ||Ã2σkU2σk |v ≤ PσkÃ2σkU2σkv ≤ |Pσk ||Ã2σkU2σk |v (32)

−|Pσk |ω̃1σk ≤ Pσk ω̃1σk ≤ |Pσk |ω̃1σk (33)

Based on (31),(32), (33), Υ+
σk

, Υ−σk are nonnegative by construction, ez1(0) ≥ 0,

ez1(0) ≥ 0 and Pσk(Ã1σk − Lσk Čσk)P−1σk
are nonnegative. Then, based on

Lemma 3, the upper and lower errors ez1(k) and ez1(k) are nonnegative for all

k ≥ 0 such that

Pσk ẑ
−
1 (k) ≤ Pσkz1(k) ≤ Pσk ẑ

+
1 (k) (34)

Therefore, the upper and lower bounds of the substate z1 given by (27) verify

z1(k) ≤ z1(k) ≤ z1(k), ∀ k ≥ 0

3.2.2. Stability conditions

In this subsection, the stability of the interval observer (24)-(27) is investi-170

gated in the ISS framework.

Theorem 2. Assume that the conditions of Theorem 1 are satisfied. If there

exist positive scalars α2 > α1 > 0, γ > 0, 0 < α < 1 and 0 ≤ β ≤ 1, matrices

Wσl , Sσl and diagonal positive definite matrices Mσk such that for σk,l ∈ 1, N

with σk 6= σl,

−(1− α)Mσk 0 ÃT1σkMσk − ČTσkSσk

0 −γ2In Mσk

MσkÃ1σk − Sσk Čσk Mσk −Mσk


� 0, ∀σk ∈ 1, N (35)

α1In ≤Mσk ≤ α2In (36)

14




Wσl Mσk

Mσk Mσk

 � 0 (37)

then, the lower and upper observer errors are ISS and the framer (24)-(27) is

an interval observer. In addition, the gains Lσk , given by Lσk = M−1σk Sσk can

be computed by minimising the linear problem

minimize
Mσk

,Sσk ,Wσl

βµ+ (1− β)γ, σk,l ∈ 1, N

subject to (35), (36), (37).

(38)

Proof. Consider a Multiple Quadratic Lyapunov (MQLF) function for the esti-

mation error e+(k) = ẑ+1 (k)− z1(k) defined as

Vσk(e+) = e+
T

Mσke
+, (39)

where Mσk are diagonal positive definite matrices. As shown in the previous

section, the dynamics e+(k) are described by

e+(k + 1) = (Ã1σk − Lσk Čσk)e+(k) + P−1σk
Υ+
σk

(40)

For the sequel, let define Φσk = (Ã1σk − Lσk Čσk). Therfore the increment of

the Lyapunov function (39) is given by

∆Vσk(e+) = Vσk(e+(k + 1))− Vσk(e+(k))

= e+
T

(k + 1)Mσke
+(k + 1)− e+T (k)Mσke

+(k)

= e+
T

(k)
[
ΦTσkMσkΦσk −Mσk

]
e+(k)

+e+
T

(k)ΦTσkMσkΞ+
σk

+ Ξ+TMσkΦσke
+(k) + Ξ+T

σk
MσkΞ+

σk

(41)

with Ξ+
σk

= P−1σk
Υ+
σk

.

By adding and subtracting the terms αe+
T

(k)Mσke
+(k) − γ2Ξ+T

σk
Ξ+
σk

to (41),

we obatain

∆Vσk(e+(k)) = e+
T

(k)
[
ΦTσkMσkΦσk − (1− α)Mσk

]
e+(k)

+e+
T

(k)ΦTσkMσkΞ+
σk

+ Ξ+TMσkΦσke
+(k)

+Ξ+T

σk
MσkΞ+

σk
− γ2Ξ+T

σk
Ξ+
σk
− γ2Ξ+T

σk
Ξ+
σk

(42)
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Then (42) can be rewritten as

∆V (e+(k)) =
[
e+

T

(k) Ξ+T

σk

]
Λσk

[
e+(k) Ξ+

σk

]
−αe+T (k)Mσke

+(k)− γ2Ξ+T

σk
Ξ+
σk

(43)

where

Λσk =


ΦTσkMσkΦσk − (1− α)Mσk ΦTσkMσk

MσkΦσk Mσk − γ2In

 , ∀σk ∈ 1, N (44)

thus, (44) can be rewritten as follows

Λσk =


−(1− α)Mσk 0

0 −γ2In

+


ΦTσkMσk

Mσk

M−1σk [ MσkΦσk Mσk

]
(45)

Using the Schur complement, we obtain

Λσk =



−(1− α)Mσk 0 ΦTσkMσk

0 −γ2In Mσk

MσkΦσk Mσk −Mσk


� 0, ∀σk ∈ 1, N (46)

Based on Lemma 4 and using (43), we arrive at

∆V (e+(k)) < −αe+T (k)Mσke
+(k) + γ2 ‖ Ξ+

σk
‖22 (47)

Let the inequality (47) hold for k ∈ [k0, k), which implies that

Vσk(e+(k)) < (1− α)(k−k0)Vσk(e+(k)) +

k−k0−1∑
m=0

(1− α)mγ2 ‖ Ξ+
σk
‖22 (48)

then the following inequality is deduced

α1(‖ e+(k) ‖) ≤ Vσk(e+(k)). (49)

Thus,

‖ e+(k) ‖2 ≤
1

α1

(
(1− α)(k−k0)Vσk(e+(k)) +

k−k0−1∑
m=0

(1− α)mγ2 ‖ Ξ+
σk
‖22

)
(50)
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Let Assumption 2 hold, then Ξ+
σk

is bounded when k →∞, then ‖Ξ+
σk
‖∞ ≤ Ξ+.

One can deduce that

lim
k−→∞

‖ e+(k) ‖2 <
γ2

α1α
Ξ+2 (51)

The expression (51) shows that the interval error width is bounded by
γ2

α1α
Ξ+2,

which depends on γ for given α1 and α.

Furthermore, the stability at the switching instants is guranteed based on

(6) which yields

µMσl −Mσk � 0 (52)

By appying the Schur complement, we get
µMσl In

In M−1σk

 � 0 (53)

Let us multiply the both sides by


In 0n

0n Mσk

, we have the following inequal-

ity 
Wσl Mσk

Mσk Mσk

 � 0 (54)

with Wσl = µMσl .

By making a recursion for the inequality (5) over the interval [kl, k), one can

write:

Vσi(e
+(k)) ≤ (1− α)

k−kl Vσi(e
+(kl)),∀ i ∈ 1, N (55)

In addition, based on (6), we obtain at the switching time kl,

Vσkl (e
+(k)) ≤ µVσkl−1

(e+(k)) (56)
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Let us define ς = Nσk(0,K), at instant K, by using (55) and (56) we can write

VσK (e+(K)) ≤ (1− α)
(K−ς)

Vσkς (e+(kς))

≤ µ (1− α)
(K−ς)

Vσkς−1
(e+(kς − 1))

...

≤ µς (1− α)
K
Vσ0(e+(0))

=
(

(1− α)µ
1
τa

)K
Vσ0(e+(0))

(57)

Therefore, if the average dwell time satisfies (7) we obtain

(1− α)µ
1
τa ≤ (1− α)µ− ln(1−α)

ln(µ) ≤ 1− α
1− α

= 1 (58)

Let equations (4), (5), and (55) hold, then

Vσk(e+(k)) ≤ (1− α)
k−kl Vσk(e+(k))

≤ (1− α)
k−kl Vσk(e+(k))

Vσl(e
+(k))

Vσl(e
+(k))

≤ α2

α1
(1− α)

k−kl Vσl(e
+(k))

(59)

At switching time, k = kl,

Vσk(e+(k)) ≤ α2

α1
Vσl(e

+(k)) (60)

with µ =
α2

α1
.

Then, the ISS conditions presented in Lemma 4 are verified for e+. Note that175

ez1 = Pσk ẑ
+
1 − Pσkz1 and since Pσk is bounded, one can deduce that ez1 is also

bounded. The same arguments show the the stability of the estimation error

e− and thus ez1 is bounded, therefore, (24)-(27) represent an interval observer

for (23).

An optimum average dwell time is fulfilled by defining an objective function

added to LMI conditions. As presented in [3], this optimum is ensured by

minimizing µ in the following objective function

βµ+ (1− β)γ (61)

with β ∈ [0, 1].180
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3.3. Interval state estimation in the original coordinates

Based on the estimation of the state in the coordinates z1, the bounds x and

x are deduced in the following theorem.

Theorem 3. Let the assumptions of Theorem 1 and Theorem 2 hold, then

x(k) ≤ x(k) ≤ x(k), ∀ k ≥ 0 (62)

where 

x1 = T+
1σk

z1 − T−1σkz1 + T+
2σk

ỹ2 − T−2σk ỹ2
+(−T2σkU2σk)+v + (−T2σkU2σk)−v

x1 = T+
1σk

z1 − T 1
1σk

z1 + T+
2σk

ỹ
2
− T−2σk ỹ2

−(−T2σkU2σk)+v − (−T2σkU2σk)−v

x2 = T+
3σk

z1 − T 1
3σk

z1 + T+
4σk

ỹ2 − T−4σk ỹ2
+(−T4σkU2σk)+v + (−T4σkU2σk)−v

x2 = T+
3σk

z1 − T 1
3σk

z1 + T+
4σk

ỹ
2
− T−4σk ỹ2

−(−T4σkU2σk)+v − (−T4σkU2σk)−v

(63)

x(k) =

 x1

x2

 , x(k) =

 x1

x2

 .
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Proof. Recaling that x = T−1σk
z, with T−1σk

=

 T1σk T2σk

T3σk T4σk

, then

 x1

x2

 =

 T1σk T2σk

T3σk T4σk

 z1

z2



=

 T1σk T2σk

T3σk T4σk

 z1

ỹ2 − U2σkv



=

 T1σkz1 + T2σk ỹ2 − T2σkU2σkv

T3σkz1 + T4σk ỹ2 − T4σkU2σkv


Consider the following observation errors

ex1
= x1 − x1

ex1
= x1 − x1

ex2
= x2 − x2

ex2
= x2 − x2

(64)

where

ex1
= T+

1σk
Ez1 + T−1σkEz1 + |T2σkU1σk |v

+(−T2σkU1σk)+(v − v) + (−T2σkU1σk)−(v + v),

ex1
= T+

1σk
Ez1 + T−1σkEz1 + |T2σkU1σk |v

+(−T2σkU1σk)+(v + v) + (−T2σkU1σk)−(v − v),

with

Ez1 = z1 − z1, Ez1 = z1 − z1.

Since, the observation errors ex1
, ex1

, ex2
, ex2

are nonnegative, it yields

x(k) ≤ x(k) ≤ x(k)

To prove the boundedness of xi and xi with i ∈ 1, 2, let us consider the
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errors ex1 = x1 − x1 and ex2 = x2 − x2

ex1
= x1 − x1
= |T1σk |Ez1 + |T1σk |Ez1 + 4|T2σkU1σk |v,

(65)

and

ex2
= x2 − x2
= |T3σk |Ez1 + |T3σk |Ez1 + 4|T4σkU1σk |v,

(66)

Furthermore

Ez1(k) = (P−1σk
)+Pσk ẑ

+
1 (k)− (P−1σk

)−Pσk ẑ
−
1 (k)− z1(k)

= (P−1σk
)+Pσke

+(k) + (P−1σk
)−Pσke

−(k),
(67)

and

Ez1(k) = z1(k)− (P−1σk
)+Pσk ẑ

−
1 (k) + (P−1σk

)−Pσk ẑ
+
1 (k)

= (P−1σk
)+Pσke

−(k) + (P−1σk
)−Pσke

+(k).
(68)

Since, Pσk and P−1σk
are bounded for all σk ∈ 1, N , if (51) holds, one can deduce185

that Ez1 and Ez1 are bounded. Taking in mind the construction of ex1
and ex2

,

then xi and xi with i ∈ 1, 2 are bounded.

3.4. Unknown input estimation

The upper and the lower bounds of the unknown input d are given in the

sequel. The dynamics of z2 are given by

z2(k + 1) = U2σkym(k + 1)− U2σkv(k + 1) (69)

Based on equation (17), the expression of the unknown input vector at time k

is given by

d(k) = z2(k + 1)− Ã3σkz1(k)− Ã4σkz2(k)− B̃2σku(k)− ω̃2σk(k)

= U2σk [ym(k + 1)− v(k + 1)]− Ã3σkz1(k)−A4σkU2σkym

+A4σkU2σkv(k)− B̃2σku(k)− ω̃2σk(k)

(70)
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The upper and lower bounds of d given by (70) are expressed as

d(k) =
[
U+
2σk

χ(k + 1)− U−2σkχ(k + 1)
]
− B̃2σku(k)

+
[
(−Ã3σk)+z1(k)− (−Ã3σk)−z1(k)

]
+ ω̃2σk

+
[
(−A4σkU2σk)+ym(k)− (−A4σkU2σk)−y

m
(k)
]

+ |A4σkU2σk |v,

d(k) =
[
U+
2σk

χ(k + 1)− U−2σkχ(k + 1)
]
− B̃2σku(k)

+
[
(−Ã3σk)z1(k)− (−Ã3σk)−z1(k)

]
− ω̃2σk

+
[
(−A4σkU2σk)+y

m
(k)− (−A4σkU2σk)−ym(k)

]
− |A4σkU2σk |v,

(71)

with χ(k) = ym(k) − v(k). Where χ(k) and χ(k) are respectively upper and

lower bound of χ(k)  χ(k) = ym(k) + v

χ(k) = ym(k)− v
. (72)

Theorem 4. Assume that the assumptions of Theorem 2 are satisfied, then,

(73) is an interval estimation for the unknown signal d, such that

d(k) ≤ d(k) ≤ d(k). (73)

Proof. Let us define the upper and lower bound of the observation errors of the

unknown input d as  ed(k) = d(k)− d(k)

ed(k) = d(k)− d(k)
(74)

Using (71) and (74), we obtain

ed(k) = U+
2σk

[χ(k + 1)− χ(k + 1)] + U−2σk
[
χ(k + 1)− χ(k + 1)

]
+(−Ã3σk)+ [z1(k)− z1(k)] + (−Ã3σk)− [z1(k)− z1(k)]

+(−A4σkU2σk)+ [ym(k)− ym(k)] + (−A4σkU2σk)−
[
ym(k)− y

m
(k)
]

+(A4σkU2σk)+ [v − v] + (A4σkU2σk)− [v + v] +
[
ω̃2σk + ω̃2σk

]
ed(k) = U+

2σk

[
χ(k + 1)− χ(k + 1)

]
+ U−2σk [χ(k + 1)− χ(k + 1)]

+(−Ã3σk)+ [z1(k)− z1(k)] + (−Ã3σk)− [z1(k)− z1(k)]

+(−A4σkU2σk)+
[
ym(k)− y

m
(k)
]

+ (−A4σkU2σk)− [ym(k)− ym(k)]

+(A4σkU2σk)+ [v − v] + (A4σkU2σk)− [v + v] +
[
ω̃2σk − ω̃2σk

]
(75)
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By analysing the construction of the bounds of the observation errors of the

unknown input d given by (75), and taking in mind Assumptions 1-2, the upper190

and the lower observation errors of the unknown input ed and ed are nonnegative.

To prove their boundedness, consider ed = d− d. Hence,

ed = U+
2σk

[
χ(k + 1)− χ(k + 1)

]
+ U−2σk

[
χ(k + 1)− χ(k + 1)

]
+(−Ã3σk)+ [z1(k)− z1(k)] + (−Ã3σk)− [z1(k)− z1(k)]

+(−A4σkU2σk)+
[
ym(k)− y

m
(k)
]

+ (−A4σkU2σk)−
[
ym(k)− y

m
(k)
]

+2|A4σkU2σk)|v + 2ω̃2σk

(76)

Using results of Theorem 1 and Theorem 3 as well as taking in mind the con-

struction of ed, the boundedness of d is verified.

4. Numerical simulations

Given the system (9) with three modes (N = 3) where:

A1 =


0.55 0.5 0.7

0 0.8 0.5

0 0 0.4

 , B1 =


0

0.5

0.7

 , C1 =

 0 1 0

1 0 1

 , D1 =


1

2

1



A2 =


0.2 −0.1 0.1

0 0.4 0.2

0 0 0.1

 , B2 =


0.4

0.3

0

 , C2 =

 1.01 0 1

1 1 1

 , D2 =


1

0

4.73



A3 =


0.09 0.09 0.09

0.09 0.18 0.09

0.09 0.09 0.27

 , B3 =


0.1

0.0

0.1

 , C3 =

 1 0 1

0 1 1

 , D3 =


1

2

1

 ,
w(k) and v(k) are respectively the disturbances and the measurement noises195

which are uniformly bounded such that−w ≤ w(k) ≤ w with w =
[

0.06 0.06 0.06
]
,

and −v ≤ v(k) ≤ v with v =
[

0.06 0.06
]
. The unknown input is given as
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d(k) = 0.5 sin(0.5k). As above-mentioned, the synthesis of the unknown input

interval estimation is subdivided in two steps.

Step 1: Synthesis of the unknown input200

The unknown input is partially decoupled based on the nonsingular state

and output transformation Tσk and U−1σk given repectively by (14) and (19)

T1 =


−2 1 0

−1 0 1

0.25 0.25 0.25

 , T2 =


0 1 0

−4.73 0 1

0.1752 0.0871 0.1744

 ,

T3 =


−0.5 1 0

−1 0 1

0.32 0.24 0.56



U1 =

 −1 1

0.25 0.25

 , U2 =

 −0.9983 1

0.0873 0.0871

 , U3 =

 −0.75 1

0.32 0.24

 .
Step 2: Interval observer design for the unknown input-free subsys-

tem

To relax the design conditions, based on the Yalmip toolbox, we first look

for observer gains Lσk such that (35) holds. Secondly, we propose a nonsin-

gular transformation Pσk such that the matrices Pσk(Ã1σk − Lσk Čσk)P−1σk
are

nonnegative. The parameters in Theorem 2 are given as α = 0.9 and α1 = 0.1,

M1 =

 0.1 0

0 0.1

 , M2 =

 0.1036 0

0 0.1010

 , M3 =

 0.1007 0

0 0.1005

 .

S1 =

 −0.035

0.01

 , S2 =

 0.0329

0.0716

 , S3 =

 0.0082

−0.0022

 .
The interval observer gains are computed by Lσk = M−1σk Sσk with

L1 =

 −0.35

0.1

 , L2 =

 0.3177

0.7093

 , L3 =

 0.0813

−0.022

 .
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The matrices Pσk , ∀σk ∈ 1, 3 ensuring the nonnegativity of Pσk(Ã1σk−Lσk Čσk)P−1σk

are given by

P1 =

 −0.5555 0.4444

0.5555 0.5556

 , P2 =

 0.0018 −0.0006

−0.0018 1.0006

 ,

P3 =

 0.2109 0.1582

−0.2109 0.8418

 .
Furthermore, µ = 3.0973 leads to an average dwell time τa > 0.4910. The

switched signal σk verifying the average dwell time is plotted in Figure 1. The

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 40
Time(s)

1

2

3

switching signal

Figure 1: The switching signal

optimal value of γ is equal to 0.1147. Despite the disturbances and the switching205

instants, the proposed interval observer is depicted in Figure 2 where solid line

and dashed lines represent respectively the state and the estimated bounds

fulfilling the conditions of Theorem 1 and Theorem 2. This leads to the inclusion

x ≤ x ≤ x and to the ISS stability of the estimation errors. Moreover, the upper

and the lower bound of the unknown input d are drawn in Figure 3 where the210

solid line is the unknown input. It is enclosed by the dashed lines which are the

upper and lower estimated bound. These simulations show the success of the

used approach and the robustness with regard to the disturbances.

5. Conclusion

A simultaneous input and state interval observer is proposed in this pa-215

per for discrete-time linear switched systems subject to bounded noises and
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Figure 2: State and estimated bounds
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Figure 3: The unknown input

disturbances. Moreover, sufficient conditions for the stability of the interval

observer are derived in terms of LMI. Finally, the effectiveness of the proposed

approach is shown on a numerical example. For future works, the case of un-

known switching signals will be considered. The extension to Linear-Parameter220

Varying switched systems as well as the application for fault detection are also
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promising directions to be considered. On the other hand, extension to interval

observer design for discrete-time switched systems with unknown inputs in the

spirit of what is done in [38] is also an interesting perspective.
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