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Clusterwise Methods: a Synthesis and New 
Developments  

Gilbert Saporta1  

 
Clusterwise methods are a mix of cluster analysis and statistical 
modelling. When we look for some statistical modelization (regression, 
PCA, etc.) it would be unwise to fit a single model to the whole set of 
data if we know that the data set is heterogenous. The solution is simple: 
it consists to fit as many models as the number of clusters. When the 
clusters are not known beforehand, instead of finding first the clusters 
and after the models, clusterwise methods aim at finding simultaneously 
the clusters and the models, by optimizing some criterium.   

There are two main approaches:  
1. the least squares approach introduced by E.Diday in the 70's, 

derived from k-means;  
2. mixture models with latent classes using maximum likelihood but 

only the first one easily enables prediction. 
 
1.Typological PCA 
 
In his pioneering paper, Diday (1974) proposed the simultaneous 

search of k subspaces with maximal inertia, ie local factorial planes. The 
algorithm, derived from k-means, is the following: after a first partition, 
units are reallocated (or not) to the nearest cluster according to their 
distances to the local plane. New local factorial planes are computed 
until convergence. Convergence is guaranteed since the sum of the 
inertia is increasing at each step. Note that there are two types of 
updating: after each reallocation (true k-means, or «stochastic» 
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algorithm) or after a « pass », or complete run of all observations which 
is the « batch » algorithm.    

 
2. Clusterwise regression 
 
Clusterwise regression simultaneously looks for a partition of the 

observations into clusters, and minimizes the sum of squared error 
computed over all the clusters. Starting from an initial partition Charles 
(1977) defined the reallocation step in order to get the smallest 
regression residual ie the best prediction. Since it could happen that a 
cluster might contain less observations than the number of predictors, a 
ridge or other kind of regularized regression should be used instead of 
OLS. 

Esposito-Vinzi et al. (2005) studied clusterwise regression using 
common PLS components across clusters, while Niang et al. (2016) 
advocate the use of local PLS components.  

Preda & Saporta (2005) proposed a clusterwise functional 
regression where for each cluster, one estimates the functional linear 

model
0

ˆ ( )
T

k tY t X dtβ= ∫  by PLS regression since it is an ill-posed 

problem. 
Carvalho et al. (2010) presented a clusterwise generalization of 

«center and range» regression for symbolic interval data. In this problem 
one predicts the center and the mid-ranges by two regressions.  

Once each local model has been calibrated, a common issue is how 
to predict the response of a new unit whose only the predictors are 
known. The simplest way or “hard rule” is to allocate the new unit to the 
nearest cluster and apply the relevant model. This necessitates the 
choice of a relevant distance. A more flexible way is to use a weighted 
average of the K predictions; the weights being the posterior 
probabilities to belong to each cluster. A third solution is to pick at 
random, with unequal probabilities, one of the K models. 
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The three previous solutions are easy to implement in the 
framework of k-means like methods. But it is not the case for the 
mixture model, or latent class regression, since one needs to know the 
true cluster in order to compute the likelihood and get the posterior 
membership probabilities.  

In order to find the adequate number of clusters, and prevent trivial 
solutions, it is necessary to use cross-validation.  

 
3. Multiblock clusterwise methods 
 
Bougeard et al. (2017, 2018) have extended clusterwise methods to 

the case where the variables are organized into blocks as illustrated in 
Figure 1.  

 

 
 
Figure 1: A known structure of variables into blocks and an 

unknown structure of observations into clusters. 
 
In their first paper they “clusterize” PLS2 regression and multiblock 

redundancy analysis. The second paper introduces regularization within 
the specific goal of prediction. 

The application shows that clusterwise regularized multiblock 
regression is a useful tool to analyze complex data as found, eg, in 
marketing, biology, social sciences, or many fields dealing with 
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population mixtures. The method and its interpretation tools are 
available for users though the R package mbclusterwise. 

 
Keywords: Clusterwise regression, Mixture models, Dimension 
reduction, PLS regression, Multiblock data 
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