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Abstract 

Antimicrobial resistance (AMR) has become a major threat worldwide, especially in countries 
with inadequate sanitation and low antibiotic regulation. However, adequately prioritizing 
AMR interventions in such settings requires a quantification of the relative impacts of 
environmental, animal, and human sources in a One-Health perspective. Here, we propose a 
stochastic quantitative risk assessment model for the different components at interplay in 
AMR selection and spread. The model computes the incidence of AMR colonization in 
humans from five different sources: water or food consumption, contacts with livestock, and 
inter-human contacts in hospitals or the community, and combines these incidences into a 
per-year acquisition risk. Using data from the literature and Monte-Carlo simulations, we 
apply the model to hypothetical Asian-like settings, focusing on resistant bacteria that may 
cause infections in humans. In both scenarios A, illustrative of low-income countries, and B, 
illustrative of high-income countries, the overall individual risk of becoming colonized with 
resistant bacteria at least once per year is high. However, the average predicted incidence of 
colonization was lower in scenario B at 0.82 (CrI [0.13,5.1]) acquisitions/person/year, vs 1.69 
(CrI [0.66, 11.13]) acquisitions/person/year for scenario A. A high percentage of population 
with no access to improved water on premises and a high percentage of population involved 
in husbandry are shown to strongly increase the AMR acquisition risk. The One-Health AMR 
risk assessment framework we developed may prove useful to policy makers throughout 
Asia, as it can easily be parameterized to realistically reproduce conditions in a given 
country, provided data is available. 
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Summary for social media 

Antimicrobial resistance has become a major threat worldwide, especially in countries with 
inadequate sanitation and low antibiotic regulation. However, adequately prioritizing 
interventions against resistance requires a quantification of the relative impacts of 
environmental, animal, and human sources in a One-Health perspective. In this work, we 
propose a framework to quantitatively assess the risk of resistance acquisition in human 
populations, accounting for five different sources: water or food consumption, contacts with 
livestock, and inter-human contacts in hospitals or the community. Using data from the 
literature and computer simulations, we apply the model to hypothetical Asian-like settings, 
focusing on resistant bacteria that may cause infections in humans. Our results suggest that 
the risk of resistance acquisition could be twice higher in typical low-income Asian countries 
than in high-income Asian countries. A high percentage of population with no access to 
improved water on premises and a high percentage of population involved in husbandry are 
shown to strongly increase this risk. We hope that the One-Health risk assessment 
framework we developed may prove useful to policy makers throughout Asia, as it can easily 
be parameterized to realistically reproduce conditions in a given country, provided data is 
available. 

1. INTRODUCTION 

Antibiotics are regarded as one of the most significant medical achievements of the 
20th century. However, systematic misuse and overuse of these drugs in human medicine 
and food production has accelerated the development of antimicrobial resistance (AMR), 
threatening the sustainability of an effective global public health response to infectious 
diseases (Davies & Davies, 2010; WHO, 2014). Harmonized and immediate actions on a 
global scale are needed to mitigate AMR burden and prioritization of AMR control 
interventions is essential for optimal allocation of risk management attention, particularly in 
resource-limited settings. In South and Southeast Asia, which incur high burdens of bacterial 
diseases and where most of the drivers of AMR emergence and spread are found (WHO, 
2019), few systematic studies have been conducted to allow prioritization of control 
interventions. 

The emergence and spread of antibiotic-resistant bacteria (ARB) are not only the 
consequences of biological mechanisms; they also involve policies, economics, socio-cultural 
beliefs, and behaviors as well as awareness on antimicrobial stewardship and AMR 
containment and occur in three primary and interdependent sectors: the human sector, the 
animal sector, and the environment (Hernando-Amado, Coque, Baquero, & Martinez, 2019). 
In Asia, given the complexity and extent of AMR, resources are often insufficient to address 
all concerns. Moreover, knowledge on the AMR situation is often poor. At the state or 
regional level, quantities of antibiotics consumed or prevalence of resistance in waters or 
food products may for example be unknown or not well documented. To what extent would 
a modification of practices in terms of antibiotic usage in humans or in livestock affect the 
risk of antibiotic resistance acquisition in humans? How do hygiene and sanitation levels 
affect that risk? It is essential to scientifically assess how different factors impact AMR risk in 
populations to be able to prioritize AMR control interventions (Nadimpalli et al., 2018; WHO, 
2019).  

In a previous work, a situational analysis of AMR status in WHO’s South-East Asian 
countries was performed using a risk assessment approach based on a systematic 
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description of processes at play in the acquisition, selection, and spread of ARB in the 
specific context of South-East Asia (Chereau, Opatowski, Tourdjman, & Vong, 2017). This 
approach helped identify gaps in critical knowledge and weaknesses in the relevant 
infrastructures and underlined the importance of developing a coordinated One-Health 
strategy to contain AMR in South-East Asia. However, the assessment performed was only 
qualitative. The development of a quantitative (or semi-quantitative) risk assessment model 
using computational tools is a further step that can allow working with scenarios with 
varying settings and quality of interventions and subsequent calculations of risks. 

Quantitative risk assessment has proven useful in the last decades to assess the level of 
threat for human health associated with ARB coming from livestock animals exposed to 
antibiotics (Anderson, Woo, & Crawford, 2001; Cox, 2005; Cox & Popken, 2004, 2014; Hurd 
et al., 2004; Kelly et al., 2004; Singer et al., 2007), as well as the level of human exposure to 
AMR through bathing water or food consumption (Alban, Ellis-Iversen, Andreasen, Dahl, & 
Sonksen, 2017; Ben et al., 2019; Evers et al., 2017; O'Flaherty, Solimini, Pantanella, & 
Cummins, 2019; Sun et al., 2016), with the potential to facilitate the selection of the most 
appropriate interventions in a complex situation. 

We propose here a One-Health quantitative risk assessment model that computes 
numerical estimates of the incidence of AMR colonization in humans from 5 different 
sources: water or food consumption, contacts with livestock, and inter-human contacts in 
hospitals and the community, and combines these incidences into an individual per-year 
acquisition risk.  We run the model for two different settings illustrative of Asian countries, 
including one well-developed country (high middle-income country or high-income country) 
and one developing country (low middle-income country).  

 

2. METHODS 
 
2.1.  General AMR model 

2.1.1 Definitions and Hypotheses 

We built a conceptual risk assessment model that provides an overall picture of the selection 
and spread of an ARB within a country. The three major components classically considered 
when taking a One-Health approach on ARB acquisition in humans have been included in the 
model: human transmission, animal-to-human transmission, and environment-to-human 
transmission. The model was deliberately built to be generic. It depicts the selection and 
spread of any resistant bacterial species, that could typically be carried asymptomatically in 
humans but with clinical relevance - that is, with a pathogenic potential -, such as methicillin-
resistant Staphylococcus aureus or extended-spectrum beta-lactamase producing 
Enterobacteriaceae. 

Hazard identification (identifying situations where acquisition of resistant pathogens may 
occur) and exposure assessment (quantifying amounts of exposure during these situations) 
were used to develop a hierarchical model outlining key-steps in the pathways driving the 
spread of antibiotic resistance within and between the three major components.  
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The likelihood of occurrence of each key-step was parameterized based on context 
assessment data. Context-driven factors for each component include level of surveillance, 
antibiotic stewardship in humans and animals, infection control, and prevention.  

Parameters. The model includes two sets of parameters (inputs): a list of parameters related 
to the mechanistic processes; and a list of situational parameters, associated with the 
drivers, the impact of interventions, and the frequency of interventions implementation in 
the studied countries. 

2.1.2 Model 

The overall model of ARB acquisition is composed of five sub-models predicting the 
acquisition of an ARB via water or food consumption, contacts with livestock, and inter-
human contacts in hospitals or the community. The hierarchical structure of this overall 
model is depicted by the schematic on Fig. 1. 

 

 
Fig. 1. Overall model of ARB acquisition risk. The model accounts for 5 reservoirs of ARB: livestock, 

food, water, hospitals and the general population. The 1-year incidences of acquisition of the ARB are 
computed for each of these reservoirs and put together to compute a global acquisition risk.  

For each of these sub-models, the output is the 1-year incidence rate of acquisition of the 
ARB per 100 individuals via the corresponding route of acquisition, defined as the number of 
new acquisitions with the ARB from this route, per 100 individuals over one year. The overall 
1-year incidence I of acquisition of the ARB per 100 individuals may then be computed from 
the outputs IL (livestock-associated incidence), IF (food-associated incidence), IW (water-
associated incidence), IH1 (community-associated incidence), and IH2 (hospital-associated 

incidence) of the five sub-models as follows. 

(a) The 1-year incidence I1 of acquisition of the ARB per 100 individuals (number of 
acquisitions per 100 individuals per year) due to their general surroundings and living 
conditions, including livestock contacts, food consumption, and water consumption, may be 
computed as: 

I1 = IL + IF + IW (eq. 1) 
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(b) Let D be the average duration of carriage of the considered ARB, in years. D needs to be 
calibrated from the literature for each ARB species. Here we assume that D follows a 
Gaussian distribution with an 8-day mean, mostly reflecting short-term ARB carriage after 
contamination in healthy individuals, as seen for instance in multi-resistant 
Enterobacteriaceae (OstholmBalkhed et al., 2018):  

D ~ Normal(8/365;0.01)  (eq. 2) 

(c) Then, the average community prevalence (P1) of carriage of the ARB may be computed, 
assuming that it is stable in time (Rothman, Greenland, & Lash, 2008), as:  

    
          

            
     (eq. 3) 

In this formula, the first term reflects ARB carriage that stems from food, water or livestock 
contacts, while the second term, P0, reflects ARB carriage that stems from other sources. 
This prevalence P1 may be used as an input in sub-models H1 and H2 that compute the 
incidence of acquisition of the ARB due to contacts with humans within hospitals and the 
community, assuming the prevalence upon hospital admission equal to the global 
community prevalence. 

(d) The final incidence I (per 100 individuals, per year) may then be computed as a sum of 
these two functions of P1: 

I = IH1(P1) + IH2(P1)  (eq. 4) 

Finally, this 1-year incidence can be transformed into a probability R of acquisition (risk) of 
the ARB over 1 year ranging from 0 to 1, by truncating at 1 the incidence I as follows: 

R = min(I;1)  (eq. 5) 

Because many of the processes associated with resistance selection and dissemination are 
unknown, and the model developed here did not aim at reproducing mechanisms with 
precision, we used simple functions to model associations between variables. We assumed 
that a single exposure to the ARB was sufficient to initiate colonization and that the survival 
of the microorganisms was independent of any other microorganisms within the host. The 
risk associated with a repeated exposure was modelled using a binomial distribution. We 
assumed that the ARB amplification following at-risk exposure, such as antibiotic misuse or 
bad practices, was saturated, reaching a plateau for high levels of at-risk exposure. Hence, 
we systematically used the following function to model the amplification in ARB prevalence 
X due to a level L of at-risk exposure:  

X -> X 1/(1 + L)  (eq. 6) 

Conversely, we assumed that the impact in terms of ARB clearance of hygiene efforts or 
decontamination procedures was exponential, using the following function to model the 
decrease in ARB prevalence X due to a level L of hygiene or decontamination:  

X -> X.e-L  (eq. 7) 

2.2.  Reservoirs sub-models 
2.2.1 Water-related sub-model 

The risk assessment model relating to water exposure covers all processes from water 
contamination to water consumption, and is illustrated in Fig. 2. The resulting incidence of 
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ARB acquisition over a year per 100 individuals IW is computed from the number of days of 
tap water consumption per year W_dose and the probability of contamination via drinking 
water PcolW, using a binomial distribution as follows: 

IW = Bin(W_dose*100,PcolW)  (eq. 8) 

 
Fig. 2. Model of ARB acquisition via water consumption. Ellipses represent ARB drivers that may be 
impacted by interventions, while grey rectangles represent other ARB drivers that are held constant 

in this study. 

The probability of ARB acquisition by an individual through drinking water PcolW  is computed 
as the product of ARB concentration in natural water W_sel, multiplied by a corrective factor 
to account for the quality of the consumed water, W_conso, and the risk of ARB acquisition 
following ingestion of contaminated water W_acq: 

PcolW = W_sel x W_conso x W_acq  (eq. 9) 

● ARB concentration in natural water 
We assume a baseline level of ARB presence in water W_pres, resulting mostly from 
community, hospital or livestock waste (Fuentefria, Ferreira, & Corcao, 2011; Sapkota, 
Curriero, Gibson, & Schwab, 2007). Several studies have measured ARB concentration in 
natural water in the South or Southeast Asia (SSA) region (Rashid, Rakib, & Hasan, 2015; 
Sapkota et al., 2007; Talukdar et al., 2013). ARB concentration in water can be amplified by 
the presence of antibiotics W_atb (Baquero, Martinez, & Canton, 2008). In SSA, antibiotics 
are mostly released by hospitals, pharmaceutical industries or livestock, and studies showed 
that concentration of antibiotics in water remained high even after wastewater treatment 
(Akiba et al., 2015; Diwan et al., 2010; Larsson et al., 2014; Lin, Lai, Tung, & Lin, 2015; 
Mutiyar & Mittal, 2014; Sim et al., 2011). Hence, W_sel is computed as: 

W_sel =W_pres (1/(1 + W_atb))  (eq. 10) 

● Impact of water treatment and access to safely managed water: 
Treatment and disinfection of drinking water may reduce the level of ARB contamination in 
water. Little information is available about quality of treatment in SSA . Access to improved 
water is highly variable across SSA : in Nepal, only 27% of population have access to 
improved water on premises, compared to 94% in Korea (WHO & UNICEF, 2014, 2017). The 
impact of water treatment on contamination of drinking water is computed from the 
treatment efficacy W_treat and the probability of access to treated water W_access: 

W_conso = W_access x e-W_treat + (1 - W_access)  (eq. 11) 

The variables included in the water sub-model are summarized in Table I. 
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Table I. Characteristics of parameters used for the water-related sub-model 

Variable Definition Possible values 

W_pres Natural ARB concentration in water Continuous variable in [0,1] 

W_atb Presence of antibiotics in water 0: none / 1: low / 2: average / 3:high 

W_treat Management of drinking water 0: neutral / 0.5: reduces ARB by 40%  / 1: 

reduces ARB by ~60% / 2: reduces by 85% / 3: 

reduces by 95% 

W_acces

s 

Percentage of the population with 

access of improved water on 

premises 

Continuous variable in [0,1] 

W_acq Probability of acquisition of ARB 

following ingestion of contaminated 

water on a day 

Continuous variable in [0, 1] 

W_dose Number of days of tap water 

consumption over a year 

Integer in         

 
2.2.2 Food-related sub-model 
The food-processing step is an important component where ARB can be selected or 
controlled. This includes food transportation, food storage, and retail on markets. The last 
component is the consumer who will store, prepare, cook, and consume the food. Here, we 
focused on ARB acquisition through meat consumption, as recent data suggests that meat is 
the main source of AMR exposure among food products (Jans et al., 2018). The risk 
assessment model due to food exposure covers all processes from animal production to 
meat consumption and is illustrated in Fig. 3. The resulting incidence of ARB acquisition by 
food consumption over a year per 100 individuals IF is computed from the number of days of 
meat exposure F_dose per year, and the probability of colonisation via food PcolF, as follows: 

IF = Bin(F_dose*100 , PcolF)  (eq. 12) 



9 
 

 
Fig. 3. Model of ARB acquisition via food consumption. Ellipses represent ARB drivers that may be 

impacted by interventions, while grey rectangles represent other ARB drivers that are held constant 
in this study. 

The probability of colonisation via consumed meat PcolF is computed as the product of ARB 
prevalence in animals coming from farms F_arb amplified by inappropriate slaughter and 
retail treatment of the meat F_treat, the effect of food preparation on ARB contamination 
F_cook, and the risk of ARB acquisition following the ingestion of contaminated food F_acq:  

 PcolF = F_arbF_treat x F_cook x F_acq (eq. 13) 

● Antibiotic selection model in meat-producing animals: 
Antibiotic exposure in farms exerts a selective pressure, which amplifies ARB prevalence in 
meat-producing animals. Antibiotics are largely used in SSA farms for prophylaxis and 
metaphylaxis (Archawakulathep et al., 2014; Laxminarayan & Chaudhury, 2016; Thomas P. 
Van Boeckel et al., 2017). Here, we assume a baseline level of presence of the bacteria in 
animals and meat when antibiotics are not used, F_prev. This prevalence is amplified 
according to antibiotic use for production in farms F_atb: 

F_arb = F_prev (1/(1 + F_atb ) )  (eq. 14) 

● Impact of inappropriate slaughter and retail treatment 
Hygiene and disinfection levels at slaughter and during retail may also reduce or amplify the 
level of ARB contamination in products. In most countries of the region, there is no food 
safety policy or weak program implementation (WHO/SEARO, 2014). Poor hygiene practices 
during slaughter were also reported, potentially leading to meat contamination (Boonyasiri 
et al., 2014; Chotinun, Rojanasthien, Unger, Tadee, & Patchanee, 2014), and poor food 
safety during subsequent meat handling. Here, the levels of hygiene and disinfection at 
slaughter, F_slaugh, and during retail, F_ret, may either be negative (modelling good hygiene 
or disinfection procedures leading to ARB reduction) or positive (modelling low hygiene and 
disinfection, leading to amplification of the level of ARB in product). 
The effect of slaughter and retail treatment F_treat is modelled as follows: 
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F_treat = 1 / ( (1+F_slaugh) (1+F_ret) )  (eq. 15) 

● Impact of cooking on ARB elimination / inactivation 
While cooking has been shown to efficiently eradicate bacteria (Boonyasiri et al., 2014), 
consumption of raw meat and insufficient cooking are important risk factors of acquisition. 
In Thailand, Nham (a very popular sausage) is made from raw meat, left to ferment at 
ambient temperature for up to 4 days and usually consumed without cooking. Such recipes 
are typical sources of undesirable microorganisms such as Salmonella spp., S. aureus, and 
Listeria monocytogenes (Swetwiwathana & Visessanguan, 2015). We assume that cooking 
reduces strongly the rate of ARB by killing the bacteria. When the product is consumed raw, 
food preparation does not impact ARB contamination. The effect of food preparation on 
ARB, F_cook, is thus modelled through an empirical function of the percentage of raw food 
consumption F_raw: 

F_cook  =  1 with probability F_raw 
   0.01 with probability (1-F_raw) 

The variables included in the food submodel are summarized in Table II. 

Table II. Characteristics of parameters used for the food-related sub-model 

Variable Definition Possible values 

F_prev Prevalence of natural ARB in animals Continuous variable in [0,1] 

F_atb Level of antibiotic use for production in farms 0: no use / 1: low / 2: average / 

3:high 

F_slaugh Level of hygiene at slaughter Continuous variable in ]-1, 1[ 

<0: eliminates ARB / 0: neutral / >0: 

expends ARB 

F_ret Level of hygiene / temperature and general 

conditions in retail 

Continuous variable in ]-1, 1[ 

<0: eliminates ARB / 0: neutral / >0: 

expends ARB 

F_raw Percentage of raw food consumption Continuous variable in [0, 1] 

F_dose Frequency of meat consumption in the 

population over a year 

Integer in         

F_acq Probability of acquisition of bacteria when 

consuming contaminated product 

Continuous variable in [0,1] 

 
2.2.3 Livestock contact-related sub-model 
In most countries of SSA , livestock are mainly raised in small-sized family-type farms, with a 
large proportion of the rural population possessing one or several livestock species. For 
instance, in India, based on a 2012 survey (India Human Development Survey-II, 2011-12), 
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42% of households own livestock animals, with most livestock producers operating on a 
small scale. Similarly, in Thailand, nearly 50% of pig holdings include less than 2 pigs and less 
than 2% include more than 50 pigs (FAO). However, commercial (or industrial) farming is 
currently expanding, with a potentially important impact on ARB spread, as practices differ 
widely between family-type and industrial-type farms. The risk assessment model due to 
livestock contacts characterizes all human contacts with livestock animals occurring within 
both types of farms and is illustrated in Fig. 4. The resulting incidence of ARB acquisition over 
a year per 100 individuals IL is computed from the probability of being involved in husbandry 
L_husb, the proportion of family-type farms in the country L_PHFam, the mean number of 
contacts per person with livestock animals over 1 year L_NCtc, and the per-contact 
acquisition risk RCtc, according to the type of farms (denoted by the subscript F for family, I 
for industrial), as follows: 

IL = L_husb x [L_PHFam x Bin(L_NCtcF*100, RCtcF) 
+ (1-LPHFam) x Bin(L_NCtcI*100, RCtcI)]  (eq. 16) 

 
Fig. 4. Model of acquisition via livestock contacts. Ellipses represent ARB drivers that may be 

impacted by interventions, while grey rectangles represent other ARB drivers that are held constant 
in this study. 

● Number of contacts with animals 
The total number of contacts with animals per year in each type of farm for a given 
individual being involved in husbandry results from the yearly frequency of human-animal 
contacts in this farm type (L_CtcAHF or L_CtcAHI, respectively in family-type and industrial-
type farms), and from the average number of animals in this farm type (L_NaF or L_NaI, 
respectively in family-type and industrial-type farms): 

L_NCtcF = L_NaF x L_CtcAHF (eq. 17) 
L_NCtcI = L_NaI x L_CtcAHI (eq. 17) 

● Per contact acquisition risk 
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For a human to acquire ARB after a contact with livestock, there either needs to be 
transmission of a pathogenic resistant bacterium from animal to human, or transmission of a 
non-pathogenic resistant bacterium followed by within-host transfer of genetic material to a 
pathogenic bacterium. As a first approximation, we will neglect this second possibility and 
focus on the first situation (direct transmission of a resistant bacterium). The risk of this 
transmission during a contact depends on the probability L_pBMR that the animal is 
colonized by a resistant bacterium, on the animal-man transmissibility L_tAH of this 
bacterium, and on hygiene and control measures taken during the contacts L_Hyg. Both 
L_pBMR and L_Hyg may depend on the farm type, denoted as the subscript F for family-type 
farms or I for industrial-type farms: 

RCtcF = L_pBMRF x L_tAH x e-L_HygF  (eq. 18) 
RCtcI = L_pBMRI x L_tAH x e-L_HygI  (eq. 18) 

The probability L_pBMR that a livestock animal carries a resistant bacterium results from the 
"natural" prevalence L_prev of ARB in livestock animals, over which little data is available, 
and from antibiotic exposure L_atb of livestock animals. The latter depends on the farm type 
(denoted again as F or I) and has been reported to be very high in countries such as India or 
Indonesia, with antibiotics used as growth promoters, especially in industrial-type settings 
(Brower et al., 2017; Thomas P Van Boeckel et al., 2015), leading to ARB selection: 

L_pBMRF = L_prev (1/(1+ L_atbF))  (eq. 19) 
L_pBMRI = L_prev (1/(1 + L_atbI))  (eq. 20) 

The variables included in the livestock contact model are summarized in Table III. 

Table III. Characteristics of parameters used for the livestock contact-related sub-model 

Variable Definition Possible values 

L_husb Portion of individuals involved in husbandry Continuous variable in [0,1] 

L_tAH Probability of human ARB acquisition during 

a contact with a colonized animal 

Continuous variable in [0,1] 

L_prev Probability of animal colonization Continuous variable in [0,1] 

L_PHFam Portion of family-type farms (as opposed to 

industrial-type farms) 

Continuous variable in [0,1] 

L_NaF / L_NaI Average number of animals per family-type 

or industrial-type farm  

Integer in         

L_CtcAHF / 

L_CtcAHI 

Number of animal-human contacts, per 

animal and per year, for family-type or 

industrial-type farms 

Integer in         

L_atbF / L_atbI Level of animal exposure to antibiotics in 

family-type or industrial-type farms 

0: none/ 1: low/ 2: medium/ 3: 

high 
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L_HygF / L_HygI Probability of compliance to hygiene and 

control measures during human-animal 

contacts, in family-type or industrial-type 

farms 

Continuous variable in [0,1] 

 
2.2.4 Hospital-related sub-model 
The risk assessment model due to hospital contamination is based on a characterization of 
at-risk contacts within hospitals, and is illustrated in Fig. 5. The resulting incidence of ARB 
acquisition over a year per 100 individuals IH1 is computed from the number of 
hospitalization days over 1 year per person, H_Nhospit, and the acquisition risk over a single 
day of hospitalization probability PcolH, as follows: 

IH1 = Bin(H_Nhospit *100, PcolH)  (eq. 21) 

The risk of acquiring an ARB over 1 day of hospitalization PcolH is computed as the product of 
ARB prevalence at hospital admission H_Padm, amplified by antibiotic exposure within the 
hospital H_atb; the level of inter-individual transmission within the hospital H_trans, 
amplified by the frequency of multiple rooms (that is, rooms hosting multiple patients) 
within the hospital H_Fmr; and another amplifying factor related to level of hygiene within 
the hospital H_hyg: 

PcolH = H_Padm(1/(1+ H_atb)) x H_trans(1/(1+H_Fmr)) x e-H_hyg  (eq. 22) 

As explained earlier, the prevalence at hospital admission H_Padm may be computed from 
the outputs of the first three submodels and a term P0 reflecting other ARB sources. 

 

 
Fig. 5. Model of acquisition via hospital. Ellipses represent ARB drivers that may be impacted by 

interventions, while grey rectangles represent other ARB drivers that are held constant in this study. 
ARB prevalence at hospital admission is computed from the incidence I1 based on equation 3. 

The variables included in the hospital submodel are summarized in Table IV. 

Table IV. Characteristics of parameters used for the hospital-related sub-model 

Variable Definition Possible values 
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H_Nhospit Number of hospital days per year, per person Integer in         

H_Padm Probability of ARB carriage at hospital admission Continuous variable in [0,1] 

H_atb Level of patient antibiotic exposure within 

hospitals 

0: none/ 1: low/ 2: medium/ 3: 

high 

H_trans Probability of patient ARB acquisition during a 

contact with a colonized patient within a hospital 

Continuous variable in [0,1] 

H_Fmr Level of frequency of multiple rooms within 

hospitals  

0: none/ 1: low/ 2: medium/ 3: 

high 

H_hyg Probability of compliance to hygiene and other 

infection control measures within hospitals 

Continuous variable in [0,1] 

 
2.2.5 Community transmission model 
The risk of transmission in the community can be modulated by two principal factors: 
antibiotic misuse and hygiene. The resulting incidence of ARB acquisition over a year per 100 
individuals IH2 is computed from the number of days of exposure to other individuals C_dose 
and the probability of acquisition when exposed to them PcolC, as follows: 

IH2 = Bin(100*C_dose, PcolC)  (eq. 23) 

 

 
Fig. 6. Model of acquisition via the community. Ellipses represent ARB drivers that may be impacted 

by interventions, while grey rectangles represent other ARB drivers that are held constant in this 
study. ARB prevalence in the community is computed from the incidence I1 based on equation 3. 

For a given individual, the risk of acquisition over a day PcolC is computed as the product of 
the prevalence of ARB in community C_sel and transmission risk during contacts with 
colonised C_trans, impacted by the effects of not having access to basic hygiene installations 
C_effhyg and to private sanitation C_effpsan: 

PcolC = C_sel x C_trans 1/(1 + C_effhyg x C_effsan)   (eq. 24) 

● Antibiotic selection in the community: 
Antibiotic consumption by individuals in the community exert a selective pressure that 
amplifies prevalence. In some countries of SSA , antibiotic consumption is very high 
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(Kathleen Anne Holloway, 2011; WHO, 2015). In 2009, a study evaluated that more than one 
billion units of antibiotics were sold in India (Ganguly et al., 2011). In 2014, antibiotics were 
accessible without prescription in more than half of SSA countries and most of the countries 
reported that quality could be enforced (K. A. Holloway, Kotwani, Batmanabane, Puri, & 
Tisocki, 2017). In almost all countries, necessary public information campaigns on 
antimicrobial use are ongoing or have already been conducted: a lack of knowledge was 
observed in physicians and community (WHO, 2015, 2017; WHO/SEARO, 2011). Misuse can 
fluctuate according to countries, regulation policies, and public awareness. Here, we assume 
a baseline level of presence of the bacteria in the community when antibiotics are not used 
C_prev. It is amplified by the misuse of antibiotics C_atb. The resulting prevalence, C_sel, is 
modelled as follows: 

C_sel = C_prev(1/(1+C_atb))  (eq. 25) 

As explained earlier, the baseline prevalence in the community C_prev may be computed 
from the outputs of the first three submodels and a term P0 reflecting other ARB sources. 

● Impact of hygiene 
Two hygiene factors may affect ARB transmission in the community: hygiene practices, such 
as hand hygiene, and access to private (individual) sanitation. Access to private sanitation 
and hygiene services differ by country. In 2015, the percentage of population with access to 
basic hygiene facilities (handwashing facility with soap and water available on premises) 
varied from 87% in Bhutan to 40% in Bangladesh (WHO & UNICEF, 2017). Shared sanitary 
were used by 2% of population in Sri Lanka and Maldives versus 22% in Bangladesh (WHO & 
UNICEF, 2017). We assume that poor access to proper sanitation and hygiene services 
increases the transmission risk. 

C_effpsan = 0 with proba (C_psan) 
 1 with proba (1-C_psan) 

C_effhyg  = 0 with proba (C_hyg) 
                                              1 with proba (1-C_hyg) 

The variables included in the community submodel are summarized in Table V. 

Table V. Characteristics of parameters used for the community-related sub-model 

Variable Definition Possible values 

C_prev ARB prevalence in the community Continuous variable in 

[0,1] 

C_atb Frequency of antibiotics misuse in the community Continuous variable in 

[0,1] 

C_hyg Percentage of population with access to hygiene 

installation 

Continuous variable in 

[0,1] 

C_psan Percentage of population with access to private 

sanitation 

Continuous variable in 

[0,1] 

C_trans Transmission risk during contacts with colonised Continuous variable in [0, 

1] 
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C_dose Frequency of exposure to other individuals over a year Integer in         

 
2.3. Application to two illustrative contexts 

The default mean values for parameters were set based on a non-exhaustive literature 
review of extended spectrum beta-lactamase producing Enterobacteriaceae (ESBL-PE) 
prevalence, antibiotic use, and context in SSA. First, the baseline simulation of the risk was 
assessed over the range of values for all parameters. The model was then applied in two 
distinct scenarios. Scenario A illustrates the situation in a south-Asian developing country 
with poor sanitation and infrastructures (e.g. Nepal); whereas scenario B illustrates the 
situation in a high-income Asian country (e.g. Singapore, South-Korea). For simplicity 
reasons, only a single parameter per sub-model was allowed to vary between these two 
sets. Table 6 provides the full list of model parameters with their assumed baseline values, 
as well as values for scenarios A and B. In this application, the term P0 reflecting potential 
sources of ARB within human populations  beyond food, water or livestock contacts was 
assumed null.
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Table VI. List of model parameters with their values in the baseline, A (lower-middle-income Asian country) and B (higher-middle-income Asian 
country) scenarios. Parameter values are assumed to follow either uniform distributions (in which case the distribution is provided as 
Uniform(min,max)) or Gaussian distributions (in which case the distribution is provided as Normal(mean,standard deviation)). 

Parameter Variable Baseline 

Scenario A 

(lower-income 

country)  

Scenario B 

(higher-income 

country) 

References 

 Water model  

Natural ARB concentration in water W_pres Uniform(0.29,0.6)   

(Baquero et al., 

2008; Rashid et 

al., 2015; Sapkota 

et al., 2007; 

Talukdar et al., 

2013) 

Presence of antibiotics in water W_atb Uniform(0,1)   

(Baquero et al., 

2008; Diwan et al., 

2010; Larsson et 

al., 2014; Lin et al., 

2015; Mutiyar & 

Mittal, 2014; Sim 

et al., 2011) 

Management of drinking water W_treat Uniform(1,2)   
(Baquero et al., 

2008) 

Percentage of the population with access of 

improved water on premises 
W_access Uniform(0.3,0.8) Uniform(0.3; 0.4) Uniform(0.7;0.8) 

(WHO & UNICEF, 

2014, 2017) 
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Probability of acquisition of ARB following 

ingestion of contaminated water on a day 
W_acq Normal(0.05,0.01)   Assumed 

Frequency of water consumption over a year W_dose 
Normal(mean=360) 

 
  Assumed 

 Food model  

Prevalence of natural ARB in animals F_prev Uniform(0.01,0.15)   
(Boonyasiri et al., 

2014) 

Level of antibiotic use for production in farms F_atb Uniform(2,3)   

(Archawakulathep 

et al., 2014; 

Laxminarayan & 

Chaudhury, 2016; 

Thomas P Van 

Boeckel et al., 

2014) 

Level of bad hygiene in practice at slaughter F_slaugh Normal(0,0.1)   

(Boonyasiri et al., 

2014; Chotinun et 

al., 2014; 

Kluytmans et al., 

2013) 

Level of hygiene / temperature and general 

conditions in retail 
F_ret Uniform(-0,5,0,5) Uniform(0.1;0.5) Uniform(-0.5;-0.1) 

(Boonyasiri et al., 

2014) 
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Percentage of raw food consumption F_raw Normal(0.2,0.01)   
(Van De, Le, Lien, 

& Eom, 2014) 

Frequency of meat consumption in the 

population over a year 
F_dose Normal(50,10)   

(Nam, Jo, & Lee, 

2010) 

Probability of acquisition of bacteria when 

consuming contaminated product 
F_acq Normal(0.1,0.01)   

Assumed 

 Livestock model  

Percentage of individuals involved in 

husbandry 
L_husb Normal(0.7, 0.1) Normal(0.8, 0.1) Normal(0.3, 0.1) 

(Brower et al., 

2017; Desai & 

Vanneman, 2015; 

FAO) 

Baseline risk of transmission during human-

animal contacts 
L_tAH 

Uniform(0.001, 

0.005) 
  

Assumed 

Prevalence in animals / carriage probability L_prev 
Uniform(0.01; 

0.05) 
  

(Boonyasiri et al., 

2014; Brower et 

al., 2017) 

Proportion of husbandry in family context, i.e. 

small (the other part being industrial farms, 

i.e. big farms) 

L_PHFam Uniform(0.35,0.95)   

(Brower et al., 

2017; Desai & 

Vanneman, 2015; 

FAO) 

Number of animals per 

farm 

Family farms L_NaF Normal(10, 2)   
(Desai & 

Vanneman, 2015; Industrial farms L_NaI N(200, 20)   
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FAO) 

Number of human-animal 

contacts, per animal and 

per year 

Family farms L_CtcAHF 
365 contacts per 

year 
  

(Desai & 

Vanneman, 2015; 

FAO) Industrial farms L_CtcAHI 

52 contacts per 

year 

(1/week/animal) 

  

Level of proportion of 

animals exposed to 

antibiotics 

Family farms L_atbF Uniform(1,2)   (Thomas P Van 

Boeckel et al., 

2015) Industrial farms L_atbI Uniform(2,3)   

Level of hygiene and 

control measures during 

contacts, equivalent to % 

of individual compliance   

Family farms L_HygF Uniform(0.1,0.3)   

Assumed 
Industrial farms L_HygI Uniform(0.4,0.6)   

 Hospital model  

Number of hospital days per year, per person H_Nhospit Normal(0.45,0.05)   

(Chompook, Sa, 

Hanvoravongchai, 

Lertiendumrong, 

& Putthasri, 2009; 

Mahendradhata et 

al., 2017) 

Carriage prevalence at admission  H_Padm Normal(0.3,0.05)   
(Azim et al., 2010; 

Thuy et al., 2017) 
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Percentage of hospital patients exposed to 

antibiotics 
H_atb Uniform(1,2)   

(Gandra et al., 

2017) 

Baseline risk of transmission during patient 

contacts within hospitals 
H_trans Normal(0.2; 0.01)   Assumed 

Frequency of multiple rooms within hospitals H_Fmr Uniform(1,2)   Assumed 

Level of hygiene and control measures during 

contacts, equivalent to percentage of 

compliance 

H_hyg Uniform(0.2,0.4) Uniform(0.2,0.3) Uniform(0.5,0.6) 

(Santosaningsih et 

al., 2017; Sastry, R, 

& Bhat, 2017) 

 Community model  

Prevalence in the community C_prev Normal(0.3,0.05)    

Frequency of antibiotics misuse in the 

community 
C_atb Uniform(0.15,0.55) Uniform(0.4,0.55) Uniform(0.15,0.30) 

(Ganguly et al., 

2011; K. Holloway, 

Mathai, & Gray, 

2011; K. A. 

Holloway et al., 

2017; WHO, 2015; 

WHO/SEARO, 

2011) 

Percentage of population with access to 

hygiene installations 
C_hyg Mean = 0.6   

(WHO & UNICEF, 

2014, 2017) 

Percentage of population with access to 

private sanitation 
C_psan Mean = 0.9   

(WHO & UNICEF, 

2014, 2017) 
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Transmission risk during contacts with 

colonised individuals 
C_trans 

Normal(0.01, 

0.001) 
  Assumed 

Frequency of exposure to other individuals 

over a year 
C_dose 360   Assumed 
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2.4. Implementation 
The hierarchical model was built using the R platform (www.r-project.org) and mc2d package 
(Pouillot & Delignette-Muller, 2010). At the first level, each source-associated incidence was 
computed. At the second level, these incidences were combined to assess the global acquisition risk 
for humans. Two-dimensional Monte Carlo simulations were run to compute these incidences for 
each component and the global risk. All distributions for parameters represent a combination of the 
parameters’ uncertainty  due to limited or imperfect knowledge) and variability. For each simulated 
scenario, 100,000 iterations were run. 

3. RESULTS 
 

3.1.  Predicted incidence and risk of AMR acquisition 
The predicted distribution of the yearly incidence rates for each sub-model is provided in Fig. 7. 
Scenario B (high level of development setting, Fig. 7B) led to much lower overall incidences of 
acquisition of the ARB from contacts with livestock than scenario A (low level of development 
setting, Fig. 7A) and the baseline scenario (Fig. 7C) with median (95%Confidence interval [CI]) 
incidences of 98 [22,286], 275 [84,667], and 241 [72,589] acquisitions of the ARB per 100 
individuals and per year respectively. The same was true for incidences of ARB acquisition due to 
consumption of contaminated water (425 [215,724], 740 [386,1182], 572 [266,1050] respectively). 
When adding in the transmission process from the hospital and community, the three scenarios 
also predicted distinct average risks, 67% [18%,100%], 100% [66%,100%], and 100% [41%,100%] 
respectively, of acquiring at least once a resistant bacteria over a year.  
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A 

 

B 

 

C 

 

 

Fig. 7. Model-predicted distributions for three scenarios. The figure shows the distributions of the predicted 
yearly incidences of ARB acquisition for 100 human individuals from the different reservoirs in (A) scenario A 

(low level of development setting), (B) scenario B (high level of development setting), and (C) the baseline 
scenario. W: water (blue); L: livestock (brown); F: food (orange); H: hospital (beige); and C: community 

(pink). Input_prev (in grey) represents the predicted prevalence in humans resulting from acquisition from 
the W, L, and F reservoirs. It is an input parameter of the H and C models. “Incidence” and “Risk”  in red  

represent respectively the distributions of the acquisition incidence over a year (saturated at 1000 for 
illustration purposes) and yearly acquisition risk per 100 individuals. The black dashed lines indicate the 

median value of each predicted distribution. 
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3.2. Sensitivity analysis 

We performed a sensitivity analysis exploring the five parameters varied across scenarios A, B and 
baseline (Fig. 8). The parameters that had the highest impact on the final incidence of resistant 
bacteria acquisition in the population were the percentage of population with access to improved 
water on premises and the percentage of individuals in the population involved in husbandry. 
Interestingly, the model did not show a strong impact of the level of conditions in retail nor level of 
hygiene in hospitals.  

In order to assess the impact of the different parameters on the predicted incidence of ARB 
acquisition at each level, we also carried out multivariate sensitivity analyses. Fig. S1 shows for each 
submodel the Spearman rank correlation of all model parameters with the resulting incidence of 
ARB acquisition related to this submodel, together with their 95% confidence intervals. Parameters 
with the highest Spearman rank correlation were the percentage of population with access to 
improved water and premises (W_access, r= -0.57 [-0.61; -0.52]) for the water submodel, the 
percentage of raw food consumption (F_raw and F_cook=0.68 []0.65;0.72) for the food submodel, 
the probability of human ARB acquisition during a contact with a colonized individual (L_taH=0.77 
[0.75;0.8]) for the livestock submodel, the number of hospital days per year, per person 
(H_Nhospit, r=0.44 [0.38; 0.50]) for the hospital submodel and the frequency of antibiotic misuse in 
the community (C_atb, r=0.31 [0.24;0.37]) for the community submodel. 

 
Fig. 8. Range of estimated incidence for selected parameters. The figure represents the average risk 
calculated over 100,000 repetitions of the model for the baseline scenario (black vertical line) and for 

extreme values of five parameters. W_access sampled in a Uniform distribution ranging respectively (0.3,0.4) 
and (0.7,0.8); F_ret sampled in a uniform distribution ranging respectively (0.1, 0.5) and (-0.5, -0.1); L_husb 

sampled in a Normal distribution of means 0.8 and 0.3 and standard deviation 0.1; H_hyg sampled in a 
Uniform distribution ranging (0.2,0.3) and (0.5,0.6) ; and C_atb sampled in a Uniform distribution ranging  

(0.4, 0.55) and (0.15,0.30). 

 

4. DISCUSSION 
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We developed a risk assessment tool to assess the routes of acquisition of ARB in the south- or 
southeast-Asian context. This tool comes as a complement to already developed conceptual 
approaches for situational analysis in Asia (Chereau et al., 2017; WHO, 2019) and may prove useful 
for three main reasons.  

First, as evidenced by our earlier work, there are many knowledge gaps that hinder our capacity to 
fully estimate the risk of ARB acquisition (Chereau et al., 2017). This is true in SSA but also 
anywhere in the world. In this regard, the illustrative scenarios provided here demonstrate that the 
tool we propose may be used to complement these identified gaps of knowledge and to assess the 
range of potential impacts that the related unknown or uncertain parameters may have on the risk 
of ARB acquisition in a given setting.  

Second, we chose to apply the model to the specific case of ESBL-PE in two different typical 
countries for illustrative purposes. However, by adapting parameters values and/or deactivating 
some of the factors or submodels, the model could be applied to any other human bacterial species 
for which non-sexual human-to-human direct transmission exists and animal/environmental 
sources are known, e.g. Salmonella spp., S. aureus, any Enterobacteriaceae species, Streptococcus 
pneumoniae and Listeria monocytogenes. Importantly, we assumed P0 as null in our application, but 
non-null values for this term may be used for ARB that arise directly in human populations or from 
sources other than food, livestock contacts or water.  The model being generic, it could also be 
applied to countries from other parts of the world beyond SSA. Again, parameters and considered 
paths should be switched on and off to depict the most accurately possible the country-pathogen 
situation of interest.  

Third, while its quantitative outputs should be taken with caution, this tool may also be used to 
provide qualitative predictions of the public health impact that could be expected following the 
implementation of control measures. In particular, it should allow ranking considered strategies 
according to their potential effectiveness. It may also help estimate the impact of governance, 
regulations, guidelines, and surveillance capacities on drivers at each key-step. To do so, it will be 
necessary to parameterize the model using realistic data from a specific country. The 
parameterized model will then be run to assess the impact on AMR of public health strategies such 
as decreasing antibiotic use in livestock, in the community or in hospitals; improving hygiene 
practices in husbandry, in hospitals or for food retail; etc.  

4.1.  Model validation 

It should be underlined that, for many ARB, there is still a scarcity of data in SSA allowing full 
validation of model predictions, for instance on ARB prevalence in different subpopulations or 
antibiotic use in livestock animals throughout the region. However, using available data, it is 
possible to show that our model is able to provide consistent predictions. 

For instance, in Thailand, a country which is thought to have a better food supply chain compared 
with other south-east Asian countries, ESBL-PE have been isolated in pork and chicken throughout 
the production chain, from farms (with 39% [28%-49%] of broilers and 69% [65%-74%] of pigs 
colonized), slaughterhouses (where 17% [0-34%] of pork meat samples were contaminated), up to 
markets retailers (with 36% [11%-61%] of contaminated  chicken samples and 53% [28%-79%] of 
contaminated pork samples) (Boonyasiri et al., 2014). In the same study, ESBL-PE were also isolated 
in 60% [42%-78%] of humans working in contact with these healthy livestock animals. For this 
specific bacterium and setting, the model parameterization provides consistent predictions; for 
instance, for a baseline prevalence of ARB in meat-producing animals of 0.15, and an assumed high 
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level of antibiotic exposure in these animals, the formula we used yields a prevalence of 62% [min-
max 0.61-0.63] of ARB in farm animals before slaughter; further assuming a high level of hygiene 
and disinfection at slaughter (F_slaugh = -0.7), and a moderately high level of bad retail practices 
(F_ret = 0.5), this yields a prevalence of ARB in meat after slaughter of 21% [min-max 0.21-0.26] and 
a prevalence of ARB in retailed meat of 35% [min-max 0.28-0.41]. Assuming mid-range animal-to-
man ARB transmissibility and hygiene level on farms (LtAH = 0.004 and Lhyg = 0.3), this also yields a 
predicted prevalence of ARB carriage among humans working in a 100-animal livestock farm with 
daily contacts with livestock of 60% [min-max 0.46-0.68].  

When focusing on a given SSA country for future model use, using similar prevalence data collected 
from surveys in water, in food, among livestock animals or their environment, and among humans 
would allow a fine calibration and/or validation of the model.    

4.2.  Model limitations 

First, the main limitations of the proposed model relate to the assumptions we were forced to 
make due to the lack of available and accurate data. In many countries, precise estimates of model 
parameters are not available, as highlighted in our earlier work, making the model difficult to 
parameterize with precision (Chereau et al., 2017). This is for example often the case of ARB 
prevalence and antibiotic concentration in waters, or ARB prevalence in animals. Antibiotic use is 
also not monitored in many SSA countries, both in farms and human populations. Country-specific 
contextual characteristics are also often lacking, e.g. raw food consumption, hygiene related 
parameters or access to improved water. Additionally, we already mentioned that many knowledge 
gaps remain: little is known regarding antibiotic resistance reversibility after withdrawal of 
antimicrobials, the probabilities of acquisition following exposure through ingestion (for food or 
water) or contacts, or the efficiency of wastewater treatments or hygiene at limiting ARB 
persistence and multiplication (Chereau et al., 2017). On the one hand, this lack of precision about 
model parameters values results in a strong uncertainty of model estimates and large prediction 
intervals, which should be considered when using the results in a decision process.  On the other 
hand, the availability of quantitative risk assessment tools such as our model, which dissect the 
involved processes and highlight variables of interest, may help countries to collect better data, 
which may also naturally come along as national AMR containment programs gain experience over 
time.  

Second, and of importance, there is a scarcity of data on ARB carriage at hospital admission in the 
region, but from the data available, we assumed this to be high, and equal to the carriage 
prevalence in the community (before amplification due to community factors). This assumption 
may be realistic in some countries but not all of them. For instance, in an Indian study, ESBL-
producing Enterobacteriaceae carriage at ICU admission was estimated at 92% (Azim et al., 2010). 
Better and detailed data on antibiotic use in hospitals are needed as well, especially considering 
that recent reports suggest high and often inappropriate antibiotic use in some SSA hospitals 
(Gandra et al., 2017).  

Third, in order to make the model as simple as possible, we assumed that incidence rates of ARB 
acquisition from livestock contacts, meat consumption and water consumption were additive and 
independent, and that there were no interactions between these processes. The same assumption 
was made for incidence rates of ARB acquisition from hospital and community. This may not 
represent the full complexity of the situation: indeed livestock animals also drink contaminated 
water, and individuals with frequent livestock contacts may tend to eat meat more frequently. 
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However, we made this hypothesis to facilitate the interpretation of the model. More 
complexification may be added in the future when more data is made available in the different 
compartments and at their interfaces. 

Fourth, when modelling ARB acquisition via water, we assumed that the presence of antibiotics in 
water systematically selected for ARB. However, this may not be true for all antibiotics. Indeed, 
some antibiotic residues can become inactive and therefore have limited impact on ARB 
prevalence. Moreover, we assumed that wastewater treatment would always tend to reduce ARB 
prevalence in water which may not be the case: some wastewater treatment may amplify certain 
antibiotic resistance genes even if the bacteria is removed. 

Fifth, our food submodel may be incomplete. We didn’t take into account ARB acquisition from 
natural products consumption in the model, as insufficient scientific knowledge and concrete 
information was available. However, a recent review by Hölzel el al. underlines that knowledge 
about the weight of this acquisition route is still very poor and suggests that for most bacteria, the 
risk of acquisition via natural products consumption is very low, especially compared with meat 
products (Holzel, Tetens, & Schwaiger, 2018). In addition, we assumed that cooking eradicated ARB 
in contaminated meat in 99% of cases. This assumption was based on available data on ESBL-PE, for 
which total elimination through cooking of previously contaminated meat was observed (Boonyasiri 
et al., 2014), but may not hold true for all bacterial species. 

Lastly, it is important to highlight that resistance emergence or evolution was not considered here. 
The present model investigates the acquisition risk of potentially pathogenic ARB for humans from 
the selection and diffusion in the different reservoirs of an already existing resistant bacterium. The 
processes leading to the emergence of a novel ARB or the evolution of an existing one are still 
poorly known and quantified, making their modelling particularly challenging. Antibiotic exposure 
has been suggested to amplify this process, and several studies suggest that SSA, for the high rates 
of antibiotic use, are particularly at risk of emergence of new strains. Future studies should be 
designed to address that specific question. It is important to note that we did not either specifically 
model the transmission of antibiotic resistance genes on their own, e.g. carried by other species 
than the one of interest or mobile elements. Indeed, it can be assumed that such genes would be 
selected or eliminated through the same processes as ARB, and therefore one can expect that their 
diffusion risk would be correlated to the one estimated here. 

4.3.  Conclusions 

To conclude, we propose here a framework allowing a quantitative risk assessment of AMR 
acquisition in Asia by taking in a One-Health perspective that accounts simultaneously for the 
human, animal and environmental sectors. This quantitative assessment, as opposed to earlier 
qualitative assessments, allows computing risk levels and their impacts more accurately. After 
careful parameterization for a specific country setting, it will also allow a quantitative assessment of 
the impact of potential control measures and provide better support for their prioritization. This 
illustrates the need for collecting high-quality data on antimicrobial use, hygiene practices and ARB 
prevalence, as model predictions are bound to be dependent on the quality of the available data. 

One advantage of the model is its flexibility, as it can be used in a variety of ways, depending on 
available data or questions one wants to address. For instance, any of the sub-models may be run 
independently, rather than the entire model, when focusing on a specific aspect of AMR selection. 
The model may also be adapted to any bacterial species of choice.  
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We therefore hope that our model will prove useful for policymakers. In future work, a free 
software allowing users to run this model could be made available to program managers. 
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APPENDIX 

Supplementary Fig. S1 - Multivariate sensitivity analysis of the impact of the model variables on 
the risk at each sub-level. 

Spearman rank correlation (mean, 95%CrI) between input variables and output risk calculated from 
100,000 samples for: 

A) The water sub-model 
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B) The food sub-model 
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C) The livestock contacts sub-model 
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D) The hospital sub-model 
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E) The community sub-model 

 

 

 


