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This paper proposes a new interval observer for continuous-time linear parameter-varying systems with an unmeasurable parameter vector subject to unknown but bounded disturbances. The parameter-varying matrices are assumed to be elementwise bounded. This observer is used to compute a so-called residual interval used for sensor fault detection by checking if zero is contained in the interval. To attenuate the effect of the system's uncertainties on the detectability of faults, additional weighting matrices and different upper and lower observer gains are introduced, providing more degrees of freedom than the classical interval observer strategies. In addition, a L∞ procedure is proposed to tune the value of the observer gains, this procedure being easy to modify to introduce additional constraints on the estimation algorithm. Simulations are run to show the efficiency of the proposed fault detection strategy.

Introduction

Most real-life systems obey nonlinear dynamics, making the design of control and estimation algorithms a complex task. A common and powerful way to reduce this complexity is to use a linear parameter-varying (LPV) plant [START_REF] Shamma | An overview of LPV systems[END_REF]. Indeed, due to their partial linearity, methods developed for linear systems can be applied to such plants. In addition, during their evolution, systems can be subject to faults that could provoke serious damages if they go undetected. Therefore, strategies have to be developed to detect such faults. The case of sensor fault detection has been widely studied in the literature [START_REF] Varga | Solving Fault Diagnosis Problems[END_REF]. Passive fault detection strategies usually rely on the comparison of the system's output with the estimate of the output computed from a fault-free model (Li et al., 2020). However, when the system is subject to unknown but bounded disturbances, classical strategies are limited [START_REF] Robinson | Prognosis of uncertain linear time-invariant discrete systems using unknown input interval observer[END_REF], difficult to implement and could lead to a false positive [START_REF] Lamouchi | Interval observer framework for fault-tolerant control of linear parameter-varying systems[END_REF].

Set-based estimation algorithms have been intro-duced to deal with the problem of state estimation for uncertain systems, provided that the uncertainties are bounded. Two classes of algorithms have been developed: set-membership estimation [START_REF] Combastel | A state bounding observer for uncertain non-linear continuous-time systems based on zonotopes[END_REF]Li et al., 2020) and interval observers [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF][START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF][START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF][START_REF] Garbouj | Optimal interval observer for switched Takagi-Sugeno systems: an application to interval fault estimation[END_REF]. In this paper, interval observers are considered to design a passive sensor fault detection strategy. While a classical pointwise observer computes an estimate of the true value of the system's state based on the system's dynamics and output, an interval observer uses two sub-observers to provide bounds for the system's state by also taking into account the uncertainties' bounds. The advantage of such estimation strategies is that they are often more computationally efficient than setmembership algorithms. Several passive set-based sensor fault detection strategies for LPV systems have been proposed, both based on set-membership estimation [START_REF] Nejjari | Robust fault detection for LPV systems using interval observers and zonotopes[END_REF][START_REF] Blesa | Robust fault detection using polytope-based set-membership consistency test[END_REF][START_REF] Wan | Fault detection for uncertain LPV systems using probabilistic setmembership parity relation[END_REF] and interval observers [START_REF] Lamouchi | Interval observer framework for fault-tolerant control of linear parameter-varying systems[END_REF][START_REF] Rotondo | State estimation and decoupling of unknown inputs in uncertain LPV systems using interval observers[END_REF][START_REF] Rotondo | Robust fault and icing diagnosis in unmanned aerial vehicles using LPV interval observers[END_REF][START_REF] Ifqir | Adaptive threshold generation for vehicle fault detection using switched T-S interval observers[END_REF][START_REF] Garbouj | Optimal interval observer for switched Takagi-Sugeno systems: an application to interval fault estimation[END_REF]. The classical approach consists in computing a so-called residual interval. If the interval does not contain zero, then the system is subject to a fault. However, due to this strategy, low-magnitude faults could go undetected. Therefore, to ensure that the maximum range of faults is detected, the residual interval has to be tight. Interval observers are based on a change of coordinates meant to ensure that they satisfy the cooperativity property [START_REF] Mazenc | Interval observers for linear time-invariant systems with disturbances[END_REF] (i.e. the estimation error state matrix is Metzler and the estimation error dynamics are stable). The performance of the fault detection algorithm (i.e. the tightness of the residual interval) is then heavily influenced by the choice of target coordinates. For this reason, [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] propose the socalled TNL design strategy (where T , N and L denote the weighting matrices and gain used in this strategy), based on the introduction of additional weighting matrices in the observer design. This approach provides more degrees of freedom in the observer design since a change of coordinates is no longer necessary to ensure cooperativity. In addition, several interval observers for LPV systems have been proposed under the assumption that the vector of scheduling parameters is always available [START_REF] Wang | Interval observer design for LPV systems with parametric uncertainty[END_REF][START_REF] Li | Interval observer design for continuous-time linear parameter-varying systems[END_REF]. In the general case, only the bounds of the parameters (and thus of the parameter-varying matrices) are known [START_REF] Efimov | Interval estimation for LPV systems applying high order sliding mode techniques[END_REF][START_REF] Efimov | Control of nonlinear and LPV systems: interval observerbased framework[END_REF]. This is why [START_REF] Chebotarev | Interval observers for continuous-time LPV systems with L 1 /L 2 performance[END_REF] introduce an interval observer with different gains for the upper and lower sub-observers.

Following [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF], [START_REF] Chebotarev | Interval observers for continuous-time LPV systems with L 1 /L 2 performance[END_REF] and [START_REF] Zammali | Sensor fault detection for switched systems using interval observer with L∞ performance[END_REF], this study therefore proposes a sensor fault detection strategy for LPV systems based on a robust interval observer. The contributions of this paper are twofold: (i) a novel interval observer structure for continuoustime LPV systems, based on the TNL approach and used to build a residual interval, is introduced; (ii) a new modular L ∞ gain design procedure, ensuring the cooperativity of the estimation error dynamics and the tightness of the residual interval, is proposed.

The remainder of this paper is organized as follows. Section 2 presents general prerequisites and formulates the problem addressed. Section 3 introduces the proposed structure and design procedure for the interval observer. Simulation results are given in Section 4 to assess the efficiency of the proposed fault detection strategy. Finally, Section 5 draws concluding remarks and perspectives.

Prerequisites and problem formulation

Notations

The sets of positive integers, real numbers and positive real numbers are denoted respectively by N, R and R + . The matrices I n and 0 are respectively the identity matrix of size n ∈ N and the matrix filled with zeros of appropriate size. The matrices A and A † , with A ∈ R n×m , denote respectively the transpose and the Moore-Penrose inverse of matrix A. The fact that a matrix A ∈ R n×n is positive definite (resp. semidefinite) is denoted by A 0 (resp. A 0) and the fact that A is negative semidefinite is denoted by A 0. The matrix diag(A 1 , . . . , A n ) is the block diagonal matrix with diagonal blocks A 1 , . . . , A n . Given a signal x : R + → R n , x t denotes the value of x at time t (the notation x(t) is alternatively used in the literature). The Euclidean norm of

x t is x t 2 2 = x t x t and the L ∞ norm of x is x ∞ = sup { x t 2 , t ∈ R + }. The set of all signals x satisfying x ∞ < ∞ is denoted by L n ∞ .
The Kronecker product of two matrices A and B is denoted by A ⊗ B. Finally, is a placeholder denoting the transpose of a term placed symmetrically in a matrix.

Interval analysis

Let A, B ∈ R n×m be two matrices. Then the inequality A ≤ B is understood elementwise. The matrix A can be written as A = A + -A -, with A + = max{0, A} (the maximum operator is understood elementwise), such that A + , A -≥ 0. The above operations are extended without modification to any vector x ∈ R n .

Lemma 2.1 [START_REF] Efimov | Interval estimation for LPV systems applying high order sliding mode techniques[END_REF]). Let x, x, x ∈ R n be vectors satisfying x ≤ x ≤ x.

(i) Let A ∈ R m×n be a constant matrix. Then:

A + x -A -x ≤ Ax ≤ A + x -A -x.
(ii) Let A, A, A ∈ R m×n be matrices such that A ≤ A ≤ A. Then:

A + x + -A + x --A -x + + A -x -≤ Ax ≤ A + x + -A + x --A -x + + A -x -. Remark 2.1. If x ∈ R n is a constant vector and A, A, A ∈ R m×n are matrices such that A ≤ A ≤ A, then, by (i) of Lemma 2.1: Ax + -Ax -≤ Ax ≤ Ax + -Ax -.
In addition to the above results, it is necessary to introduce a particular kind of matrix for the development of interval observers for continuoustime systems.

Definition 2.1 [START_REF] Chebotarev | Interval observers for continuous-time LPV systems with L 1 /L 2 performance[END_REF]). A matrix A ∈ R n×n is called Metzler if all its offdiagonal elements are nonnegative. The matrix A is Metzler if there exists a diagonal matrix

D ∈ R n×n + such that A + D ≥ 0.
Finally, the following lemma gives properties on the growth of a particular kind of nonlinear functions.

Lemma 2.2 [START_REF] Zheng | Design of interval observer for a class of uncertain unobservable nonlinear systems[END_REF]). Let F (z, ρ) = A(ρ)x be a function of x and ρ, with A(ρ) a matrix and x ≤ x ≤ x. If there exist two matrices A and A and two functions F (x, x) and F (x, x) satisfying, for all possible values of ρ and

x, A ≤ A(ρ) ≤ A and F (x, x) ≤ F (x, ρ) ≤ F (x, x) then:          F (x, x) -F (x, ρ) 2 ≤ l F x -x 2 + l F x -x 2 + m F F (x, x) -F (x, ρ) 2 ≤ l F x -x 2 + l F x -x 2 + m F
where m F and m F are positive constants depending on the values of A and x and:

     l F = A + 2 + A + 2 l F = A - 2 + A - 2 2.3. Problem formulation
Consider the following continuous-time LPV system:

ẋt = A(ρ t )x t + B(ρ t )u t + D(ρ t )w t y t = Cx t + f t (1)
where 

x t ∈ R nx , u t ∈ R nu , y t ∈ R ny , w t ∈ R nw , f t ∈ R n f and ρ t ∈
M (ρ t ) = M 0 + ∆M (ρ t ), (2) 
Assumption 2.1. The measurement vector y t is obtained by several sensors through the matrix C.

Only one is potentially affected by a fault f t .

Assumption 2.2. The initial state vector x 0 and the vector w t are unknown but bounded and satisfy

x 0 ≤ x 0 ≤ x 0 and w t ≤ w t ≤ w t , ∀t ∈ R + , with x 0 , x 0 ∈ R nx such that x 0 2 , x 0 2 ≤ ∞ and w t , w t ∈ L nw ∞ .
The parameter vector ρ t is not measurable. Then, the value of the matrices ∆M , with M ∈ {A, B, D}, is not accessible.

Assumption 2.3. The matrices ∆M , with M ∈ {A, B, D}, are unknown but bounded and satisfy

∆M ≤ ∆M (ρ t ) ≤ ∆M , ∀t ∈ R + .
The following assumption is necessary to avoid the design of a controller for system (1), which is out of the scope of the present paper.

Assumption 2.4. The input vector u t and state vector x t are such that u t ∈ L nu ∞ and x t ∈ L nx ∞ . As a direct consequence, when

f t = 0, y t ∈ L ny ∞ .
Classical passive fault detection strategies consist in obtaining an estimate y t ∈ R ny of the output y t from an observer built upon a faultless model of the system. This estimate is then used to compute a so-called residual signal r t = y ty t . By the way it is defined, this residual diverges from zero when the system is subject to a fault. However, in the presence of disturbances and uncertainties on the model as in (1), the residual signal might deviate from zero even in a fault-free situation.

To cope with this issue, another passive strategy can be used, consisting in using an interval observer to find guaranteed bounds x t , x t ∈ R nx for the system's state vector such that, in a faultfree situation, x t ≤ x t ≤ x t . Then, based on Lemma 2.1, it is possible to compute y t , y t ∈ R ny as: To perform the passive fault-detection task described above, based on the work of [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF]; [START_REF] Chebotarev | Interval observers for continuous-time LPV systems with L 1 /L 2 performance[END_REF] and [START_REF] Zammali | Sensor fault detection for switched systems using interval observer with L∞ performance[END_REF], the following presents a new residual framer structure for continuous-time linear parameter-varying systems with an unmeasurable parameter vector subject to disturbances. To allow for the detection of low-magnitude faults, this framer should attenuate the effect of the uncertainties on the interval [r t , r t ].

y t = C + x t -C -x t y t = C + x t -C -x t (3) 

Main result

Framer design

Let T and N be matrices satisfying:

T + N C = I nx . ( 5 
)
Assumption 3.1. The pair (T A 0 , C) is detectable.

Inspired by [START_REF] Li | Interval observer design for continuous-time linear parameter-varying systems[END_REF], the proposed framer for the state of system (1) is:

                     ξt = (T A 0 -LC) x t + T B 0 u t + Ly t + φ t + χ t + ω t x t = ξ t + N y t ξt = T A 0 -LC x t + T B 0 u t + Ly t + φ t + χ t + ω t x t = ξ t + N y t (6a) (6b) (6c) (6d)
where:

φ t = T + δ t (A, x) -T -δ t (A, x) φ t = T + δ t (A, x) -T -δ t (A, x) (7)            χ t = T + ∆Bu + t -∆Bu - t -T -∆Bu + t -∆Bu - t χ t = T + ∆Bu + t -∆Bu - t -T -∆Bu + t -∆Bu - t (8)          ω t = (T D 0 ) + w t -(T D 0 ) -w t + T + δ t (D, w) -T -δ t (D, w) ω t = (T D 0 ) + w t -(T D 0 ) -w t + T + δ t (D, w) -T -δ t (D, w) (9) 
with: Theorem 3.1. Let Assumptions 2.2 and 2.3 hold and T A 0 -LC and T A 0 -LC be Metzler matrices. Then, x t and x t obeying the dynamics (6) satisfy, in the fault-free case (i.e. for f t = 0):

         δ t (M, a) = ∆M + a + t -∆M + a - t -∆M -a + t + ∆M -a - t δ t (M, a) = ∆M + a + t -∆M + a - t ∆M -a + t + ∆M -a - t ( 
x t ≤ x t ≤ x t , ∀t ∈ R + . (11) 
Proof. In the following, it is assumed that f t = 0, ∀t ∈ R + . Let e ξ t = ξ t -T x t , e ξ t = ξ t -T x t , e t = x tx t and e t = x tx t . Then:

ėξ t = (T A 0 -LC) x t + T B 0 u t + Ly t + φ t + χ t + ω t -T A(ρ t )x t -T B(ρ t )u t -T D(ρ t )w t = (T A 0 -LC) e t + Φ t + X t + Ω t where Φ t = φ t -T ∆A(ρ t )x t , X t = χ t - T ∆B(ρ t )u t and Ω t = ω t -T D(ρ t )w t .
In addition:

e t = ξ t + N y t -(T + N C)x t = ξ t -T x t + N f t = e ξ t .
Therefore:

ėt = (T A 0 -LC) e t + Φ t + X t + Ω t . ( 12 
)
Following the same procedure:

ėt = T A 0 -LC e t + Φ t + X t + Ω t (13)
where

Φ t = φ t -T ∆A(ρ t )x t , X t = χ t - T ∆B(ρ t )u t and Ω t = ω t -T D(ρ t )w t .
By Assumptions 2.2 and 2.3 and Lemma 2.1, X t ≤ 0, X t ≥ 0, Ω t ≤ 0 and Ω t ≥ 0. To prove that x t ≤ x t ≤ x t , it is enough to prove that whenever the j-th component of e t (respectively e t ) is equal to 0, the j-th component of the derivative ėt (resp. ėt ) is nonpositive (resp. nonnegative). Indeed, in this case, e t (resp. e t ) can never become positive (resp. negative).

Let a j t denote the j-th component of a t , where a can be any of the vector previously defined. If e j t = 0 and e j t ≥ 0, then x j t = x j t ≤ x j t and, by Lemma 2.1, Φ j t ≤ 0. Moreover:

ėj t = nx i=1 (T A 0 -LC) ji e i t + Φ i t + X i t + Ω i t
where (T A 0 -LC) ji is the component located at the j-th row and i-th column of T A 0 -LC. Considering T A 0 -LC is Metzler, by Definition 2.1, (T A 0 -LC) ji e i t ≤ 0, ∀i ∈ 1, n x such that i = j. Since e j t = 0, it does not contribute to ėj t and ėj t ≤ 0. The same reasoning on e j t leads to ėj t ≥ 0. With what precedes and the fact that, by Assumption 2.2, Φ 0 ≤ 0, Φ 0 ≥ 0, e 0 ≤ 0 and e 0 ≥ 0, (11) is satisfied.

The desired residual framer (4) can then be constructed from the proposed state framer (6).

Stability and L ∞ performance

For the framer (6) to be an interval observer, it is necessary that the estimation errors e t and e t are input-to-state stable (ISS). Accordingly, to guarantee input-to-state stability and to attenuate the effect of the uncertainties on the residual framer, as per the design requirements stated in Section 2.3, a L ∞ procedure is proposed to tune the observer gains L and L. To unroll this procedure, the following lemma is recalled.

Lemma 3.1 [START_REF] Rao | Generalized inverse of a matrix and its applications[END_REF]). Given matrices X ∈ R n×m , Y ∈ R m×p and Z ∈ R n×p with rank Y = p, the general solution X of the equation XY = Z is:

X = ZY † + Ξ I m -Y Y †
where Ξ ∈ R n×m is an arbitrary matrix.

From this lemma and the relations (5): 14) with Ξ ∈ R nx×(nx+ny) a free matrix and:

T = Θ † λ 1 + ΞΨλ 1 , N = Θ † λ 2 + ΞΨλ 2 , (
Θ = I nx C , Ψ = I nx+ny -ΘΘ † , λ 1 = I nx 0 , λ 2 = 0 I ny .
The following theorem then presents the gain tuning procedure.

Theorem 3.2. Let all the assumptions of Theorem 3.1 hold. For two given positive scalars α and η, if there exist two positive scalars γ and µ, a positive definite diagonal matrix P ∈ R 2nx×2nx and a block diagonal matrix Y ∈ R 2nx×2ny such that:

S + ηP ≥ 0 (15a) Λ 11 P -γI 2nx P 0 -γI 2nx 0 (15b) P 0 µ -γ C 0 µI 2ny 0 ( 15c 
)
where

Λ 11 = S + S + αP + γQ, S = P (I 2 ⊗ T )(I 2 ⊗ A 0 ) -Y Υ, Υ = I 2 ⊗ C, Q = 6 • diag(l 2 φ , l 2 
φ ) and:

C = C + -C - -C -C + ,
then, (6) is a robust interval observer for system (1) in the fault-free case. This interval observer has the performance:

R t 2 2 ≤ µV 0 e -αt + µ 2 ε 2 ∞ ( 16 
)
where R t = r t r t , V 0 = E 0 P E 0 , E t = e t e t and:

ε t = X t + Ω t X t + Ω t .
Proof. In the following, it is assumed that f t = 0. Since P 0, all its diagonal terms are strictly positive. Considering Y = P diag(L, L), the matrices T A 0 -LC and T A 0 -LC are Metzler if condition (15a) is satisfied, according to Definition 2.1. The dynamics of E t are:

Ėt = ΠE t + Φ t + ε t (17) 
where

Π = (I 2 ⊗ T )(I 2 ⊗ A 0 ) -LΥ, L = diag(L, L) and Φ t = Φ t Φ t .
The functions T ∆A(ρ t )x t , φ t and φ t satisfy the assumptions of Lemma 2.2 so that Φ t and Φ t are globally Lipschitz. In addition, by Lemma 2.2: 

           Φ t Φ t ≤ l φ x t -x t 2 + l φ x t -x t 2 + m φ 2 Φ t Φ t ≤ l φ x t -x t 2 + l φ x t -x t 2 + m φ 2 where x t -x t 2 2 = e t e
Φ t Φ t ≤ E t QE t + β (18) with β = 3 m 2 φ + m 2 φ . Consider now the candidate Lyapunov function V t = E t P E t . The time derivative of V is: Vt = Ė t P E t + E t P Ėt = E t (S + S)E t + Φ t P E t + E t P Φ t + E t P ε t + ε t P E t = E t (S + S + αP )E t + Φ t P E t + E t P Φ t + E t P ε t + ε t P E t -αE t P E t + γΦ t Φ t -γΦ t Φ t + γε t ε t -γε t ε t
so that, with (18): where:

Vt ≤ E t Φ t ε t Λ E t Φ t ε t -αV t + γ ε t 2 2 + γβ (19) System Observer C Residual generator u t x t + + f t y t x t x t r t r t
Λ = Λ 11 P P P -γI 2nx 0 P 0 -γI 2nx .
Since γβ is a positive constant, ( 19) is true if the following inequality is satisfied:

Vt ≤ E t Φ t ε t Λ E t Φ t ε t -αV t + γ ε t 2 2 . ( 20 
)
According to [START_REF] Sontag | On characterizations of the input-to-state stability property[END_REF], the system ( 17) is ISS if Λ 0 since ε t 2 < ∞ by Assumptions 2.2 and 2.4. Then, if condition (15b) is satisfied, the framer ( 6) is a robust interval observer for (1) in the fault-free case.

In addition, since Λ 0, the quadratic term in the right hand side of inequality (20) is negative. Therefore, the following inequality is satisfied:

Vt ≤ -αV t + γ ε 2 ∞
or, integrating the differential inequality:

V t ≤ V 0 e -αt + γ 1 -e -αt ε 2 ∞ ≤ V 0 e -αt + γ ε 2 ∞ (21) since e -αt ≤ 1. From (3) and (4), R t = CE t (since f t = 0). If: R t 2 2 ≤ µ V t + (µ -γ) ε 2 ∞ (22)
then ( 16) is satisfied since V t satisfies (21). Moreover, condition ( 22) is alternatively written:

P -C C/µ 0 0 µ -γ 0 
which is equivalent, by Schur complement [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], to condition (15c).

From Theorem 3.2, the matrices L and L are obtained as diag(L, L) = P -1 Z by minimizing µ subject to the constraints (15a) to (15c).

Fault detection

The interval observer (6) tuned with the procedure described in Theorem 3.2 is used for fault detection. The structure of the fault detector is presented in Figure 1.

The fault-free output signal is injected into the interval observer (6). Then, based on equations ( 3) and ( 4), the residual generator provides the residual interval [r t , r t ]. Therefore, if 0 ∈ [r t , r t ], the system is subject to a fault f t = 0 and if 0 ∈ [r t , r t ], the system is fault-free or subject to a low-magnitude fault which cannot be detected by the proposed fault detection scheme.

Remark 3.1. The present paper focuses on the design of a TNL interval observer with L ∞ performance for robust sensor fault detection. The sensibility analysis of the proposed interval observer, characterized for example by the minimum detectable fault approach [START_REF] Meseguer | Observer gain effect in linear interval observer-based fault detection[END_REF][START_REF] Pourasghar | Characterisation of interval-observer fault detection and isolation properties using the setinvariance approach[END_REF], is therefore not addressed here and left to subsequent works.

Simulation results

To assess the efficiency of the proposed fault detection algorithm, the example of a dampened mass-spring system [START_REF] Scherer | A tutorial on the control of linear parameter-varying systems[END_REF] is considered. This system obeys the LPV dynamics:

ẋt = 0 1 2 + ρ t -1 x t + 0 1 u t + w t y t = [1 0] x t + f t
where x t = [pt ṗt], with p t the position of the mass, so that:

A 0 = 0 1 -2 -1 , ∆A(ρ t ) = 0 0 ρ t 0 , B 0 = 0 1 , ∆B(ρ t ) = 0, D 0 = I 2 , ∆D(ρ t ) = 0 and C = [1 0].
For this example, it is assumed that ρ t = sin(0.3t), u t is the square wave u t = sgn(sin(t)) and w t = 0.1 [cos(2t) sin(3t)]. Therefore, w t = -w t = 0.1 and:

∆A = -∆A = 0 0 1 0 .
The initial state vector is x 0 = 0 and the bounds for the initial state are x 0 = -x 0 = 0.1 • 1 2 . The value of the matrix Ξ is a design parameter of the proposed interval observer. It can be chosen in different ways, such as to minimize the values of l φ and l φ . For the sake of simplicity, it is chosen here as:

Ξ = 0.1 0 -0.1 -3 0 3 0 2 4 6 8 10 -1 -0.5 0 0.5 1 p t (m)
First state Proposed bounds

0 2 4 6 8 10 -1 0 1 t (s) ṗt (m • s -1 )
Second state Proposed bounds Remark 4.1. Due to the symmetry of the constraints (15), the values of L and L are equal. However, the L ∞ design procedure proposed in Theorem 3.2 allows for the introduction of additional constraints on the observer gains that could lead to different values.

Finally, the sensor fault signal considered is:

f t =    0.1 if 2 ≤ t ≤ 4 0.05 • (t -7) if 7 ≤ t ≤ 9 0 otherwise
The intervals obtained with the proposed interval observer for the two states are presented in Figure 2 and the residual interval is presented in Figure 3. The states are contained in the computed intervals. Despite the presence of a disturbance signal w t acting on the system, the fault f t is detected since, between t = 2 s and t = 4 s, 0 is not contained in the residual interval [r t , r t ].. However, due to this same perturbation signal, the fault f t appearing between t = 7 s and t = 9 s is not detected for the first 0.3 s. Indeed, between t = 7 s and t = 7.3 s, the magnitude of the fault is too low to be detectable. The sensibility analysis mentioned in Remark 3.1 would characterize the minimal level of detectable fault. Moreover, there is no false positive since 0 ∈ [r t , r t ] when the system is faultfree.

Conclusion

This paper has presented a new strategy for robust sensor fault detection for continuous-time linear parameter-varying systems with unmeasurable parameter vector subject to unknown but bounded disturbances. An interval observer based on the TNL formalism is used to provide bounds for the residual signal, thus reducing the conservatism of classical interval observer approaches by introducing weighting matrices to provide more degrees of freedom in the observer design. A L ∞ procedure is proposed to tune the gains of the observer, thus attenuating the effect of the unknown disturbance on the estimation process. With this procedure, additional constraints can be easily introduced in the design problem. Simulation results are presented to assess the efficiency of the proposed fault detection algorithm. This method can then be applied to any linear system presenting bounded parametric uncertainties, subject to bounded perturbations and equipped with sensors providing continuoustime measurements. In future work, the sensibility analysis of the proposed observer has to be studied. In addition, the proposed strategy could be adapted to systems subject to actuator or input sensor faults.

  10) and L and L are observer gains such that T A 0 -LC and T A 0 -LC are Metzler. The matrices T and N are weighting matrices introduced in Wang et al. (2018) to add more degrees of freedom when tuning the values of L and L.
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