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Abstract—This paper deals with unknown input interval ob-
servers for discrete-time linear switched systems. A new structure
of interval observer is used to overcome the design difficulty
of coordinate transformation often used in such context. The
interval observer gains are computed by solving Linear Matrix
Inequalities (LMI) derived from multiple quadratic Lyapunov
functions (MQLF) under average dwell time switching signals.
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I. INTRODUCTION

Interval observers present a potentiel solution to deal with
systems affected by various types of disturbances and measure-
ment noise. They rely on the design of a dynamic structure
with two outputs giving an upper and a lower of the actual state
[16]. Note that this cutting-edge class of observers requires
the knowledge of bounds of the initial state values as well
as bounds of measurement noise and disturbances. In return
for these requirements which are generally satisfied in real-
life applications, interval estimation addresses weak points of
classical observers which give only asymptotic estimates in the
absence of disturbances. That is why the technique originating
in [9] has been developed in many directions, e.g., a family of
linear systems [2], [6], [24], some classes of nonliear systems
[17], fuzzy systems [18] and other conerns such as monitoring,
fault detection and control purposes [4], [5] etc.

Many of the dynamical systems encountered in practice
are of hybrid nature. Recently, framers and interval observers
design for switched systems which consist of a finite number
of subsystems governed by switching signals have received a

great interest [7], [8], [14], [15], [19]. Usually, it is not very
difficult to achieve the framer property, which is the notion of
providing intervals in which state variables stay, if one does not
care about the length of estimated intervals (i.e., the stability
property). For switched systems, the most challenging step in
interval observer designs is to ensure this last property. Most
of the above works are based on the positivity of the estimation
errors after a coordinate transformation which may cause
conservatisms: indeed, it is often hard to design simultaneously
observer gains and changes of coordinates ensuring at the same
time the positivity property and good estimation accuracy.

Note that in addition to noise and disturbances, real systems
are often subject to unknown inputs. Such a case has been
already investigated for non switched systems (the reader
can for instance refer to [3], [12], [13], [23]). Furthermore,
some works attempted to consider the case of continuous-time
switched systems with unknown inputs [21], [22]. However,
to the best of the authors’ knowledge, the case of interval
observers design for discrete-time switched systems subject
to unknown inputs have not yet been fully considered in the
literature. It is worth pointing out that the estimators proposed
in the present work are not derived directly because changing
the system from continuous to discrete time not only raises
changes of stability properties but also requires the estimation
procedure of the unknown input to be properly adjusted.

Moreover, inspired by [20], a new structure providing more
design degrees of freedom than existing works in the literature
is introduced. This study has three main contributions: first, a



new observer structure, that not only provides more design
degrees of freedom but also relaxes the design conditions,
is developed. Second, the construction simultaneously returns
interval estimates of states and unknown inputs for a class of
uncertain discrete-time linear switched systems. Finally, the
method takes into account the effects of process disturbances
and measurement noise by incorporating H∞ technique to
attenuate uncertainties in order to obtain accurate interval
estimation.

The remainder of this paper is organized as follows. Some
preliminaries are introduced in Section II. Section III in-
troduces the structure of an interval observer allowing the
estimation of the state and the reconstruction of the unknown
input based on the use of H∞ formalism. Section IV draws
simulation results to illustrate the different steps of the pro-
posed design. Section V gives the conclusion and perspectives.

II. PRELIMINARIES

A. Notation, definitions, basic result

The set of natural numbers, integers and real numbers are
denoted by N, Z and R, respectively. The set of nonnegative
real numbers and nonnegative integers are denoted by R+ =
{τ ∈ R : τ ≥ 0} and Z+ = Z ∩ R+, respectively. The
Euclidean norm of a vector x ∈ Rn is denoted by |x|, and for
a measurable and locally essentially bounded input u : Z →
R, the symbol ‖u‖[t0,t1] denotes its L∞ norm, ‖u‖[t0,t1] =
sup{|u|, t ∈ [t0, t1]}. If t1 = ∞ then we will simply write
‖u‖. We denote L∞ as the set of all inputs u with the property
‖u‖ < ∞. We denote the sequence of integers 1, . . . , N as
1, N . Inequalities must be understood component-wise, i.e.,
for xa = [xa,1, ..., xa,n]> ∈ Rn and xb = [xb,1, ..., xb,n]> ∈
Rn, xa ≤ xb if and only if, for all i ∈ 1, N , xa,i ≤ xb,i.
For a square matrix Q ∈ Rn×n, let the matrix Q+ ∈ Rn×n
denote Q+ = (max{qi,j , 0})n,ni,j=1,1, where the notation Q =

(qi,j)
n,n
i,j=1,1 is used. Let Q− ∈ Rn×n be defined by Q− =

Q+ −Q and the matrix of absolute values of all elements be
defined by |Q| = Q+ + Q−, the superscripts + and − for
other purposes are defined appropriately when they appear.
The asterisk ? denotes the symmetric term in a symmetric
matrix. A square matrix Q ∈ Rn×n is said to be nonnegative
if all its entries are nonnegative. 0 and I are respectively the
zero and identity matrix of appropriate dimensions. A positive
(res. negative) (semi) definte matrix P ∈ Rn×n is denoted as
P � (<) 0 (resp. P ≺ (4) 0). For a non-square matrix B, its
left pseudo-inverse is B† = (BTB)−1BT .

Lemma 1. [2] Consider a vector x ∈ Rn such that x ≤ x ≤
x and a constant matrix A ∈ Rn×n, then

A+x−A−x ≤ Ax ≤ A+x−A−x, (1)

with A+ = max{0, A}, A− = A+ −A.

Lemma 2. [16] A system described by x(k+ 1) = Ax(k) +
u(k), with x(k) ∈ Rn and A ∈ Rn×n, is nonnegative if and
only if the matrix A is elementwise nonnegative, u(k) ≥ 0 and
x(k0) ≥ 0. In this case, the system is also called cooperative.

Lemma 3. [1] Given matrices Ξ ∈ Ra×b, Ψ ∈ Rb×c and
Υ ∈ Ra×c with rank(Ψ) = c. The general solution Ξ of the
equation ΞΨ = Υ is

Ξ = ΥΨ† + S
(
I −ΨΨ†

)
(2)

where S ∈ Ra×b is an arbitrary matrix.

B. Average dwell time

Definition 1. [10] For a switching signal σ and any 0 ≤
kl ≤ ks, let Nσ(kl, ks) denote the number of discontinuities
of σ on the interval [kl, ks). If there exist a scalar τa > 0 and
an integer N0 ≥ 0, such that

Nσ(kl, ks) ≤ N0 +
ks − kl
τa

(3)

holds for all kl and ks, then the scalar τa > 0 is called an
average dwell time (ADT) and N0 the chatter bound. In this
paper, we assume that N0 = 0 for simplicity as commonly
used in the literature.

C. Input to state stability

Lemma 4. [11] Consider the discrete-time switched system
x(k+1) = fσ(k)(ξ(k), η(k)), σ(k) ∈ 1, N . Suppose that there
exists C1 functions Vσ(k) : Rn −→ R+, class K∞ functions
α1, α2, γ and constants 0 < α < 1, µ ≥ 1 such that ∀ξ ∈ Rn,
η ∈ Rl we have

α1(‖ξ‖) ≤ Vσ(k)(ξ) ≤ α2(‖ξ‖), (4)

Vσ(k)(ξ(k+1))−Vσ(k)(ξ(k)) ≤ −αVσ(k)(ξ(k))+%(‖η‖), (5)

and for each switching instant kl, l = 0, 1 2, 3, . . .,

Vσ(kl)(ξ(k)) ≤ µVσ(kl−1)(ξ(k)). (6)

Then the system x(k+ 1) = fσ(k)(ξ(k), η(k)), σ(k) ∈ 1, N is
Input-to-State Stable (ISS) for any switching signal satisfying
the average dwell time

τa ≥ τ∗a = − ln(µ)

ln(1− α)
. (7)

III. MAIN RESULTS

Consider the following discrete-time linear switched system{
x(k + 1) = Aσkx(k) +Bσku(k) +Dσkd(k) + ω(k),
y(k) = Cσkx(k) + v(k), σk ∈ 1, N, N ∈ N.

(8)
with x ∈ Rn is the state vector, u ∈ Rm is the input,
y ∈ Rp is the output, ω ∈ Rn and v ∈ Rp are respectively
the disturbances and the measurement noise. d ∈ Rl is the
unknown input. σk = σ(k) is a known piecewise constant
function that takes its values in an index set 1, N , N > 1,
where σk is the index of the active subsystem and N is the
number of subsystems. Aσk , Bσk and Cσk and Dσk are time-
invariant matrices of the corresponding dimensions. The σthk
is said to be active when σk ∈ 1, N and k ∈ [kσk , kσk+1

).
Some assumptions are introduced.



Assumption 1. The switching signal σ(k) is assumed to be
known.

Assumption 2. The initial condition, the disturbances and the
measurement noise are assumed to be bounded such that

x0 ≤ x(0) ≤ x0, ∀k ≥ 0, (9)

−ω ≤ ω(k) ≤ ω, ∀k ≥ 0, (10)

−v ≤ v(k) ≤ v, ∀k ≥ 0, (11)

where x0, x0, ω ∈ Rn and v ∈ Rp are known vectors.

Assumption 3. ∀ σk ∈ 1, N, N ∈ N, the matrices Cσk and
Dσk , are full row rank and full column rank respectively.

Interval observers overcome weak points of classical ob-
servers. They can cope with large disturbances and give com-
ponentwise information on the range of the possible solutions
at any time instant at the cost of restrictive assumptions.
Indeed, the interval property requires error systems to be
positive. Although some relaxing techniques are available,
securing the positivity at some point during the design process
remains the key. Motivated by [20], this paper looks for
better tricks in achieving the positivity without employing
changes of coordinates frequently employed in the literature.
We introduce new matrices to relax design conditions after
decoupling the unknown input from the studied system (8) by
considering it as an auxiliary state. In fact, (8) can be rewritten
as{

Eσk x̃(k + 1) = Ãσk x̃(k) + B̃σku(k) + Ĩω(k),

y(k) = C̃σk x̃(k) + v(k),
(12)

where

x̃(k + 1) =

[
x(k + 1)
d(k)

]
, x̃(0) =

[
x(0)

0

]
,

Eσk =

[
I −Dσk

0 0

]
, Ĩ =

[
I
0

]
Ãσk =

[
Aσk 0

0 0

]
, B̃σk =

[
Bσk

0

]
, C̃σk =

[
Cσk 0

]
.

By designing the interval observer of the augmented state
x̃(k + 1), i.e., two bounds x̃(k), x̃(k) such that

x̃(k) ≤ x̃(k) ≤ x̃(k),∀k ∈ Z+, (13)

one can immediately deduce the bounds that enclose the state
and the unknown input.

Remark 1. By augmenting unknown input d(k) as a part of
the state vector x̃(k+ 1), the structural conditions for decou-
pling unknown input in [3], [12] are relaxed. Subsequently, the
proposed method possesses a wider application scope than the
above-mentioned works.

In the sequel, a new framer candidate is introduced for the
augmented state (12) and a sufficient condition is given such
that the framer becomes an interval observer.

A. Framer design

As a solution to (12), the following framer candidate is
considered

ξ(k + 1) = TσkÃσk x̃(k) + TσkB̃σku(k)

+Lσk(y(k)− C̃σk x̃(k)) + ∆

x̃(k) = ξ(k) +Nσky(k)

ξ(k + 1) = TσkÃσk x̃(k) + TσkB̃σku(k)

+Lσk(y(k)− C̃σk x̃(k))−∆
x̃(k) = ξ(k) +Nσky(k)

(14)

with

∆ = |Tσk Ĩ|ω + |Lσk |v + |Nσk |v (15)

where Lσk is an appropriate observer gain associated to the
σk-subsystem with σk ∈ 1, N to be computed later.

The matrices Tσk , Nσk , with σk ∈ 1, N , are computed
satisfying the following condition

TσkEσk +Nσk C̃σk+1
= I (16)

Theorem 1. Let Assumptions 1-3 hold, the lower bound x̃(k)
and upper bound x̃(k) for the state x̃(k) given by (14) satisfy
(13), if (16) hold and (TσkÃσk −Lσk C̃σk) ≥ 0, ∀ σk ∈ 1, N

provided that x̃0 :=

[
x(0)

0

]
≤ x̃(0) ≤ x̃0 :=

[
x(0)

0

]
.

Proof. Let e(k) = x̃(k) − x̃(k) and e(k) = x̃(k) − x̃(k)
be the upper observation and the lower observation errors,
respectively. The aim is to prove that e(k) and e(k) are
nonnegative. Bearing in mind (16), the dynamic of the upper
error follows

e(k + 1) = (TσkÃσk − Lσk C̃σk)e(k) + ∆

−Tσk Ĩω(k) + Lσkv(k) +Nσkv(k + 1).
(17)

Similarly, the dynamic of the lower error is described by

e(k + 1) = (TσkÃσk − Lσk C̃σk)e(k) + ∆

+Tσk Ĩω(k)− Lσkv(k)−Nσkv(k + 1)
(18)

Taking in consideration Lemma 1, we have

∆− Tσk Ĩω(k) + Lσkv(k) +Nσkv(k + 1) ≥ 0 (19)

∆ + Tσk Ĩω(k)− Lσkv(k)−Nσkv(k + 1) ≥ 0 (20)

From the fact that e(0) = x̃(0)− x̃(0) ≥ 0 and e(0) = x̃(0)−
x̃(0) ≥ 0, it follows that, for all k ∈ Z+, e(k) ≥ 0 and
e(k) ≥ 0. This ends the proof.

Remark 2. The main difference between the approach used
in literature and the one presented in (14) is the introduction
of additional parameters Tσk , Nσk in the framer structure. If
we choose Tσk = I and Nσk = 0 for all σk ∈ 1, N , (13)
reduces to the interval observer presented in [15].



B. Interval observer design using H∞ performance

This part is devoted to the computation of gains Lσk
using a Multiple Quadratic Lyapunov function such that the
framer (13) becomes an interval observer. In order to optimize
the width of the interval estimation, a γ − performance is
introduced.

Let us define the estimation error as follows

e(k) = e(k)− e(k) (21)

Thus,

e(k + 1) = (TσkÃσk − Lσk C̃σk)e(k) + Φσkδ(k) (22)

with

δ(k) =

 −Tσk Ĩω(k)
v(k)

v(k + 1)

 (23)

and

Φσk = 2
[
I Lσk Nσk

]
(24)

Theorem 2 gives a formulation to select the gains Lσk for (14)
such that e(k) is ISS in the sense of Lemma 4.

Theorem 2. Assume that all assumptions of Theorem 1 hold.
For given scalars γ > 0 and 0 < α < 1, if there exist positive
scalars α2 > α1 > 0, a diagonal matrix Pσk ∈ Rn×n
such that Pσk � 0, Wσk ∈ Rn×n, Gσk ∈ Rn×p and
Hσk ∈ Rn×(n+p) such that

Pσk Θ†σkλ1Ãσk +Hσkψσkλ1Ãσk −Gσk C̃σk ≥ 0, ∀σk ∈ 1, N
(25)

α1I ≤ Pσk ≤ α2I, ∀σk ∈ 1, N (26)[
Wσl Pσk
Pσk Pσk

]
� 0 (27)

−(1− α)Pσk ? ? ? ?
0 −γ2I ? ? ?
0 0 −γ2I ? ?
0 0 0 −γ2I ?

κ1σk 2Pσk 2Gσk 2κ2σk −Pσk

 4 0,

(28)
with

Wσl = µPσl , Gσk = PσkLσk , Hσk = PσkSσk , ∀σk, σl ∈ 1, N

κ1σk = Pσk Θ†σkλ1Ãσk +Hσkψσkλ1Ãσk −Gσk C̃σk
κ2σk = Pσk Θ†σkλ2 +Hσkψσkλ2, ∀σk ∈ 1, N

and

Θσk =

[
Eσk
C̃σk+1

]
, λ1 =

[
I
0

]
,

ψσk = I −ΘσkΘ†σk , ∀σk ∈ 1, N

Then, (14) is an interval observer for (8). Moreover, the optimal
observer gain matrix

Lσk = P−1Gσk , ∀σk ∈ 1, N (29)

is computed via the solution of the following constrained minimiza-
tion problem

minimize
Pσk ,Gσk ,Hσk

βµ+ (1− β) γ, σk = 1, . . . , N

subject to (25), (27), (28).
(30)

Proof. Assumption (16) can be rewritten as[
Tσk Nσk

] [ Eσk
C̃σk+1

]
= I (31)

Let Lemma 3 hold, then one can deduce that the matrices Tσk ,
Nσk are given as[

Tσk Nσk
]

= I

[
Eσk
C̃σk+1

]†
+Sσk

(
I −

[
Eσk
C̃σk+1

] [
Eσk
C̃σk+1

]†)
(32)

with Sσk is an arbitrary matrix. Therefore, we have

Tσk = Θ†σkλ1 + Sσkψσkλ1, ∀σk ∈ 1, N (33)

and
Nσk = Θ†σkλ2 + Sσkψσkλ2, ∀σk ∈ 1, N (34)

Let Theorem 1 hold, the computed gains Lσk must satisfy
the positivity of the matrix TσkÃσk − Lσk C̃σk which is the
essential condition to ensure that (14) becomes an interval
observer for (12).

The fact that Pσk are both diagonal and positive definite
matrices implies that Pσk > 0 for all σk ∈ 1, N . In addition,
TσkÃσk − Lσk C̃σk ≥ 0 for all σk ∈ 1, N then,

Pσk

(
TσkÃσk − Lσk C̃σk

)
≥ 0 (35)

Replace (33) in (35) so (25) is verified.
Consider the multiple Lyapunov function

V (k) = eT (k)Pσke(k) (36)

where Pσk are diagonal positive definite matrices for all σk ∈
1, N . The increment of the Lyapunov function (36) is

∆Vσk(e) = Vσk(e(k + 1))− Vσk(e(k))
= eT (k + 1)Pσke(k + 1)− eT (k)Pσke(k)
= eT (k)ΠT

σk
PσkΠσke(k)− eT (k)Pσke(k)

+δT (k)ΦTσkPσkΦσkδ(k)
+eT (k)ΠT

σk
PσkΦσkδ(k)

+δT (k)ΦTσkPσkΠσke(k)
(37)

with

Πσk = TσkÃσk − Lσk C̃σk
By adding to and subtracting from (37) the terms
αeT (k)Pσke(k) and γ2δT (k)δ(k), we get

∆Vσk(e(k)) = eT (k)
[
ΠT
σk
PσkΠσk − (1− α)Pσk

]
e(k)

+δT (k)ΦTσkPσkΦσkδ(k)
+eT (k)ΠT

σk
PσkΦσkδ(k) + δT (k)ΦTσkPσkΠσke(k)

−αeT (k)Pσke(k) + γ2δT (k)δ(k)− γ2δT (k)δ(k)
(38)



Therefore (38) can be rewritten as

∆Vσk(e(k)) =
[
e(k) δ(k)

]T
Λσk

[
e(k) δ(k)

]
−αeT (k)Pσke(k) + γ2δT (k)δ(k)

(39)
where

Λσk =

[
ΠT
σkPσkΠσk − (1− α)Pσk ΠT

σkPσkΦσk
ΦTσkPσkΠσk ΦTσkPσkΦσk − γ

2I

]
(40)

which can be reformulated as

Λσk =

[
− (1− α)Pσk 0

0 −γ2I

]
+[

ΠT
σk

ΦTσk

]
Pσk

[
Πσk Φσk

]
(41)

Using the Schur complement, (41) can be seen as −(1− α)Pσk 0 ?
0 −γ2I ΦTσkPσk
PσkTσk Ãσk − PσkLσk C̃σk PσkΦσk −Pσk

 4 0, (42)

Let equations (33)-(34) and (24) hold, so one can deduce (28). Hence,
(5) is ensured such that

Vσ(k)(e(k + 1))− Vσk (e(k)) ≤ −αVσk (e(k)) + γ2‖δ(k)‖22 (43)

One highlights that the tightness of the interval width can be evalu-
ated. Thus, the estimation accuracy can be assessed in the presence
of disturbances and uncertainties. Let the inequality (43) holds for
k ∈ [k0, k), which implies that

Vσk (e(k)) < (1− α)(k−k0)Vσk (e(k0))

+

k−k0−1∑
m=0

(1− α)mγ2 ‖ δ(k) ‖22
(44)

Using (4), (44) yields

eT (k)e(k) ≤ 1

α1

(
(1− α)(k−k0)Vσk (e(k0)) +

γ2

α
‖ δ(k) ‖2∞

)
(45)

Consequently,

‖e(k)‖ ≤ 1√
α1

(
(1− α)(k−k0)Vσk (e(k0)) +

γ2

α
‖ δ(k) ‖2∞

) 1
2

(46)
When k →∞,

lim
k−→∞

‖ e(k) ‖2 <
γ√
α1α

sup(‖ δ(k) ‖∞) (47)

which shows that the tightness of the interval error width is bounded
by

γ√
α1α

sup(‖ δ(k) ‖∞). The latter depends only on γ for

given α1 and α. Consequently, optimizing γ improves the estimation
accuracy.

By making a recursion for (5) over the interval [kl, k), we get

Vσi(e(k)) ≤ (1− α)k−klVσi(e(kl)), ∀ σi ∈ 1, N (48)

Bearing in mind (6), then for all σi, σj ∈ 1, N , such that σi 6= σj

Vσi(e(k)) ≤ (1− α)k−kl
Vσi(e(kl))

Vσj (e(kl))
Vσj (e(kl))

≤ (1− α)k−kl
eT (kl)Pσie(kl)

eT (kl)Pσj e(kl)
eT (kl)Pσj e(kl)

(49)
Let (4) hold, then

eT (kl)Pσie(kl)

eT (kl)Pσj e(kl)
≤ α2

α1
(50)

Thereafter, (49) is equivalent to

Vσi(e(k)) ≤ α2

α1
(1− α)k−klVσj (e(kl)) (51)

At switching time k = kl, we have

Vσi(e(kl)) ≤ α2

α1
Vσj (e(kl))

≤ µVσj (e(kl))
(52)

As α1 ≤ α2, it is trivial that µ = α2
α1

> 1.
Furthermore, the stability at the switching instants is guaranteed

based on (6) which yields

µPσl − Pσk � 0 (53)

By appying the Schur complement, we obtain[
µPσl I
I P−1

σk

]
� 0 (54)

Let us multiply the both sides by
[
I 0
0 Pσk

]
, we get (27) with

Wσl = µPσl .
An optimum average dwell time is fulfilled by defining an objec-

tive function added to the LMI conditions. This optimum is ensured
by minimizing µ in the following objective function

βµ+ (1− β) γ, β ∈ [0 1] (55)

The ISS conditions presented in Lemma 4 are verified for the
estimation error e = e − e, hence one can deduce that (14) is an
interval observer for (12).

IV. NUMERICAL SIMULATIONS

Given the system (8) with two modes (N = 2) where

A1 =

 0.55 0.5 0.7
0 0.8 0.5
0 0 0.4

 , B1 =

 0
0.5
0.7

 ,

C1 =

[
0 0.2 0

0.2 0 0.2

]
, D1 =

 1
2
1



A2 =

 0.238 −0.119 0.119
0 0.476 0.238
0 0 0.119

 , B2 =

 0.4
0.3
0

 ,

C2 =

[
0.101 0 0.1
0.1 0.1 0.1

]
, D2 =

 1
0

4.73


w(k) and v(k) are respectively the disturbances and the
measurement noise which are uniformly bounded such that
| w(k) |≤ w with w =

[
0.06 0.06 0.06

]
, and | v(k) |≤ v

with v =
[

0.06 0.06
]
. The unknown input is given as

d(k) = 0.3 sin(0.5k).
To satisfy the assumptions of Theorems 1 and 2, the

parameters Tσk and Nσk are determined as follows

T1 =


0.7182 −0.2182 −0.2818 0
−0.2765 0.2765 −0.2765 0
−0.9931 0.4931 0.0069 0
−0.0388 −0.4612 −0.0388 0

 ,



T2 =


0.8249 −0.1021 −0.1744 0
0.0017 0.7896 −0.0004 0
−0.8286 −0.443 0.1752 0
−0.1771 0.1365 −0.174 0

 ,

N1 =

 1.0910 1.4090
3.6175 1.3825
−2.4654 4.9654
2.3061 0.1939

 , N2 =

 0.7229 1.021
−2.1002 2.1039
3.8185 4.4296
3.1049 −1.3652

 ,
For α = 0.9 and α1 = 0.1, we get

P1 =

 0.1248 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

 ,

P2 =

 0.1 0 0 0
0 0.1 0 0
0 0 0.106 0
0 0 0 0.1


The interval observer gains are computed by Lσk = P−1

σk Gσk with

L1 =

 0.9227 1.4046
0.4147 −0.8295
−0.5104 −2.7310
−1.9418 −1.3664

 , L2 =

 1.5188 −1.4676
−2.5563 2.586
−0.8413 −1.1224
−1.2693 0.8605

 ,
µ = 1.2476 leads to an average dwell time τa > 0.0961 and
γ = 4.189. For the simulation, the switched signal σk verifying
the average dwell time is plotted in Figure 1. The intervals that

5 10 15 20 25 30 35 40
Time(s)

1

2

switching signal

Fig. 1: The switching signal

enclose the various components of the state by using the H∞ norm
are depicted in Figure 2 where solid and dashed lines represent
respectively the state and the estimated bounds. The reconstruction of
the unknown input d(k) is drawn in Figure 3. The interval observer
simultaneously returns both state and unknown input estimates as
expected.

V. CONCLUSION

A simultaneous input and state interval observer is investigated in
this paper for uncertain discrete-time switched systems. The effect
of unknown disturbances and measurement noise is also considered
and an H∞ formalism is employed to attenuate this effect. Interval
observer based on the introduction of new matrices providing more
degrees of freedom is designed. Simulation results illustrate the
effectiveness of the present method. The L∞ norm based design
method in the same spirit and the extension to Linear-Parameter
Varying switched systems are promising directions for future works.
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