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This paper deals with unknown input interval observers for discrete-time linear switched systems. A new structure of interval observer is used to overcome the design difficulty of coordinate transformation often used in such context. The interval observer gains are computed by solving Linear Matrix Inequalities (LMI) derived from multiple quadratic Lyapunov functions (MQLF) under average dwell time switching signals.

I. INTRODUCTION

Interval observers present a potentiel solution to deal with systems affected by various types of disturbances and measurement noise. They rely on the design of a dynamic structure with two outputs giving an upper and a lower of the actual state [START_REF] Dinh | Interval observer and Positive observer[END_REF]. Note that this cutting-edge class of observers requires the knowledge of bounds of the initial state values as well as bounds of measurement noise and disturbances. In return for these requirements which are generally satisfied in reallife applications, interval estimation addresses weak points of classical observers which give only asymptotic estimates in the absence of disturbances. That is why the technique originating in [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF] has been developed in many directions, e.g., a family of linear systems [START_REF] Efimov | On Interval Observers for Time-Varying Discrete-Time Systems[END_REF], [START_REF] Mazenc | Interval Observers for linear time-invariant systems with disturbances[END_REF], [START_REF] Mazenc | Interval Observers For Discretetime Systems[END_REF], some classes of nonliear systems [START_REF] Raïssi | Interval State Estimation for a Class of Nonlinear Systems[END_REF], fuzzy systems [START_REF] Garbouj | Optimal interval observer for switched Takagi-Sugeno systems: an application to interval fault estimation[END_REF] and other conerns such as monitoring, fault detection and control purposes [START_REF] Efimov | Control of nonlinear and LPV systems: Interval observer-based framework[END_REF], [START_REF] Xu | Actuatorfault detection and isolation based on set-theoretic approaches[END_REF] etc.

Many of the dynamical systems encountered in practice are of hybrid nature. Recently, framers and interval observers design for switched systems which consist of a finite number of subsystems governed by switching signals have received a great interest [START_REF] Marouani | Interval observers design for discrete-time linear switched systems[END_REF], [START_REF] Ethabet | Interval estimation for continuous-time switched linear systems[END_REF], [START_REF] Otsuka | Interval Switched Positive Observers for Continuous-Time Switched Positive Systems under Arbitrary Switching[END_REF], [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF], [START_REF] Wang | Construction of hybrid interval observers for switched linear systems[END_REF]. Usually, it is not very difficult to achieve the framer property, which is the notion of providing intervals in which state variables stay, if one does not care about the length of estimated intervals (i.e., the stability property). For switched systems, the most challenging step in interval observer designs is to ensure this last property. Most of the above works are based on the positivity of the estimation errors after a coordinate transformation which may cause conservatisms: indeed, it is often hard to design simultaneously observer gains and changes of coordinates ensuring at the same time the positivity property and good estimation accuracy.

Note that in addition to noise and disturbances, real systems are often subject to unknown inputs. Such a case has been already investigated for non switched systems (the reader can for instance refer to [START_REF] Robinson | Interval observer design for unknown input estimation of linear time invariant discrete-time systems[END_REF], [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF], [START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L∞-gain criteria[END_REF], [START_REF] Li | Interval estimation of state and unknown input for linear discrete-time systems[END_REF]). Furthermore, some works attempted to consider the case of continuous-time switched systems with unknown inputs [START_REF] Ethabet | Interval observer design for continuous-time switched systems under known switching and unknown inputs[END_REF], [START_REF] Ifqir | Robust interval observer for switched systems with unknown inputs: Application to vehicle dynamics estimation[END_REF]. However, to the best of the authors' knowledge, the case of interval observers design for discrete-time switched systems subject to unknown inputs have not yet been fully considered in the literature. It is worth pointing out that the estimators proposed in the present work are not derived directly because changing the system from continuous to discrete time not only raises changes of stability properties but also requires the estimation procedure of the unknown input to be properly adjusted.

Moreover, inspired by [START_REF] Wang | Interval observer design for uncertain discrete time linear systems[END_REF], a new structure providing more design degrees of freedom than existing works in the literature is introduced. This study has three main contributions: first, a new observer structure, that not only provides more design degrees of freedom but also relaxes the design conditions, is developed. Second, the construction simultaneously returns interval estimates of states and unknown inputs for a class of uncertain discrete-time linear switched systems. Finally, the method takes into account the effects of process disturbances and measurement noise by incorporating H ∞ technique to attenuate uncertainties in order to obtain accurate interval estimation.

The remainder of this paper is organized as follows. Some preliminaries are introduced in Section II. Section III introduces the structure of an interval observer allowing the estimation of the state and the reconstruction of the unknown input based on the use of H ∞ formalism. Section IV draws simulation results to illustrate the different steps of the proposed design. Section V gives the conclusion and perspectives.

II. PRELIMINARIES

A. Notation, definitions, basic result

The set of natural numbers, integers and real numbers are denoted by N, Z and R, respectively. The set of nonnegative real numbers and nonnegative integers are denoted by R + = {τ ∈ R : τ ≥ 0} and Z + = Z ∩ R + , respectively. The Euclidean norm of a vector x ∈ R n is denoted by |x|, and for a measurable and locally essentially bounded input u :

Z → R, the symbol u [t0,t1] denotes its L ∞ norm, u [t0,t1] = sup{|u|, t ∈ [t 0 , t 1 ]}. If t 1 = ∞
then we will simply write u . We denote L ∞ as the set of all inputs u with the property u < ∞. We denote the sequence of integers 1, . . . , N as 1, N . Inequalities must be understood component-wise, i.e., for x a = [x a,1 , ..., x a,n ] ∈ R n and x b = [x b,1 , ..., x b,n ] ∈ R n , x a ≤ x b if and only if, for all i ∈ 1, N , x a,i ≤ x b,i . For a square matrix Q ∈ R n×n , let the matrix Q + ∈ R n×n denote Q + = (max{q i,j , 0}) n,n i,j=1,1 , where the notation Q = (q i,j ) n,n i,j=1,1 is used. Let Q -∈ R n×n be defined by Q -= Q + -Q and the matrix of absolute values of all elements be defined by |Q| = Q + + Q -, the superscripts + andfor other purposes are defined appropriately when they appear. The asterisk denotes the symmetric term in a symmetric matrix. A square matrix Q ∈ R n×n is said to be nonnegative if all its entries are nonnegative. 0 and I are respectively the zero and identity matrix of appropriate dimensions. A positive (res. negative) (semi) definte matrix P ∈ R n×n is denoted as P ( ) 0 (resp. P ≺ ( ) 0). For a non-square matrix B, its left pseudo-inverse is

B † = (B T B) -1 B T . Lemma 1. [2] Consider a vector x ∈ R n such that x ≤ x ≤ x and a constant matrix A ∈ R n×n , then A + x -A -x ≤ Ax ≤ A + x -A -x, (1) 
with

A + = max{0, A}, A -= A + -A. Lemma 2. [16] A system described by x(k + 1) = Ax(k) + u(k), with x(k) ∈ R n and A ∈ R n×n , is nonnegative if and only if the matrix A is elementwise nonnegative, u(k) ≥ 0 and x(k 0 ) ≥ 0.
In this case, the system is also called cooperative.

Lemma 3. [1] Given matrices Ξ ∈ R a×b , Ψ ∈ R b×c and Υ ∈ R a×c with rank(Ψ) = c. The general solution Ξ of the equation ΞΨ = Υ is Ξ = ΥΨ † + S I -ΨΨ † (2)
where S ∈ R a×b is an arbitrary matrix.

B. Average dwell time

Definition 1.

[10] For a switching signal σ and any 0 ≤

k l ≤ k s , let N σ (k l , k s ) denote the number of discontinuities of σ on the interval [k l , k s ).
If there exist a scalar τ a > 0 and an integer N 0 ≥ 0, such that

N σ (k l , k s ) ≤ N 0 + k s -k l τ a (3) 
holds for all k l and k s , then the scalar τ a > 0 is called an average dwell time (ADT) and N 0 the chatter bound. In this paper, we assume that N 0 = 0 for simplicity as commonly used in the literature.

C. Input to state stability Lemma 4. [START_REF] Zhu | Robust MPC under eventtriggerd mechanism and Round-Robin protocol: An average dwell-time approach[END_REF] Consider the discrete-time switched system

x(k +1) = f σ(k) (ξ(k), η(k)), σ(k) ∈ 1, N . Suppose that there exists C 1 functions V σ(k) : R n -→ R + , class K ∞ functions α 1 , α 2 , γ and constants 0 < α < 1, µ ≥ 1 such that ∀ξ ∈ R n , η ∈ R l we have α 1 ( ξ ) ≤ V σ(k) (ξ) ≤ α 2 ( ξ ), (4) 
V σ(k) (ξ(k+1))-V σ(k) (ξ(k)) ≤ -αV σ(k) (ξ(k))+ ( η ), (5) 
and for each switching instant k l , l = 0, 1 2, 3, . . .,

V σ(k l ) (ξ(k)) ≤ µV σ(k l -1) (ξ(k)). (6) 
Then the system x(k

+ 1) = f σ(k) (ξ(k), η(k)), σ(k) ∈ 1, N is Input-to-State Stable (ISS)
for any switching signal satisfying the average dwell time

τ a ≥ τ * a = - ln(µ) ln(1 -α) . (7) 

III. MAIN RESULTS

Consider the following discrete-time linear switched system Assumption 1. The switching signal σ(k) is assumed to be known.

x(k + 1) = A σ k x(k) + B σ k u(k) + D σ k d(k) + ω(k), y(k) = C σ k x(k) + v(k), σ k ∈ 1, N , N ∈ N. (8) with x ∈ R n is the state vector, u ∈ R m is the input, y ∈ R p is the output, ω ∈ R n and v ∈ R
Assumption 2. The initial condition, the disturbances and the measurement noise are assumed to be bounded such that

x 0 ≤ x(0) ≤ x 0 , ∀k ≥ 0, (9) 
-ω ≤ ω(k) ≤ ω, ∀k ≥ 0, (10) 
-v ≤ v(k) ≤ v, ∀k ≥ 0, (11) 
where x 0 , x 0 , ω ∈ R n and v ∈ R p are known vectors. Interval observers overcome weak points of classical observers. They can cope with large disturbances and give componentwise information on the range of the possible solutions at any time instant at the cost of restrictive assumptions. Indeed, the interval property requires error systems to be positive. Although some relaxing techniques are available, securing the positivity at some point during the design process remains the key. Motivated by [START_REF] Wang | Interval observer design for uncertain discrete time linear systems[END_REF], this paper looks for better tricks in achieving the positivity without employing changes of coordinates frequently employed in the literature. We introduce new matrices to relax design conditions after decoupling the unknown input from the studied system (8) by considering it as an auxiliary state. In fact, ( 8) can be rewritten as

Assumption 3. ∀ σ k ∈ 1, N , N ∈ N,
E σ k x(k + 1) = Ãσ k x(k) + Bσ k u(k) + Ĩω(k), y(k) = Cσ k x(k) + v(k), (12) 
where

x(k + 1) = x(k + 1) d(k) , x(0) = x(0) 0 , E σ k = I -D σ k 0 0 , Ĩ = I 0 Ãσ k = A σ k 0 0 0 , Bσ k = B σ k 0 , Cσ k = C σ k 0 .
By designing the interval observer of the augmented state x(k + 1), i.e., two bounds x(k), x(k) such that

x(k) ≤ x(k) ≤ x(k), ∀k ∈ Z + , (13) 
one can immediately deduce the bounds that enclose the state and the unknown input.

Remark 1. By augmenting unknown input d(k) as a part of the state vector x(k + 1), the structural conditions for decoupling unknown input in [START_REF] Robinson | Interval observer design for unknown input estimation of linear time invariant discrete-time systems[END_REF], [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF] are relaxed. Subsequently, the proposed method possesses a wider application scope than the above-mentioned works.

In the sequel, a new framer candidate is introduced for the augmented state [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF] and a sufficient condition is given such that the framer becomes an interval observer.

A. Framer design

As a solution to [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF], the following framer candidate is considered

               ξ(k + 1) = T σ k Ãσ k x(k) + T σ k Bσ k u(k) +L σ k (y(k) -Cσ k x(k)) + ∆ x(k) = ξ(k) + N σ k y(k) ξ(k + 1) = T σ k Ãσ k x(k) + T σ k Bσ k u(k) +L σ k (y(k) -Cσ k x(k)) -∆ x(k) = ξ(k) + N σ k y(k) (14) 
with

∆ = |T σ k Ĩ|ω + |L σ k |v + |N σ k |v (15) 
where L σ k is an appropriate observer gain associated to the σ k -subsystem with σ k ∈ 1, N to be computed later.

The matrices T σ k , N σ k , with σ k ∈ 1, N , are computed satisfying the following condition

T σ k E σ k + N σ k Cσ k+1 = I (16) 
Theorem 1. Let Assumptions 1-3 hold, the lower bound x(k) and upper bound x(k) for the state x(k) given by ( 14) satisfy [START_REF] Ellero | An unknown input interval observer for LPV systems under L 2 -gain and L∞-gain criteria[END_REF], if [START_REF] Dinh | Interval observer and Positive observer[END_REF] hold and

(T σ k Ãσ k -L σ k Cσ k ) ≥ 0, ∀ σ k ∈ 1, N provided that x0 := x(0) 0 ≤ x(0) ≤ x0 := x(0) 0 . Proof. Let e(k) = x(k) -x(k) and e(k) = x(k) -x(k)
be the upper observation and the lower observation errors, respectively. The aim is to prove that e(k) and e(k) are nonnegative. Bearing in mind [START_REF] Dinh | Interval observer and Positive observer[END_REF], the dynamic of the upper error follows

e(k + 1) = (T σ k Ãσ k -L σ k Cσ k )e(k) + ∆ -T σ k Ĩω(k) + L σ k v(k) + N σ k v(k + 1). (17) 
Similarly, the dynamic of the lower error is described by

e(k + 1) = (T σ k Ãσ k -L σ k Cσ k )e(k) + ∆ +T σ k Ĩω(k) -L σ k v(k) -N σ k v(k + 1) (18) 
Taking in consideration Lemma 1, we have

∆ -T σ k Ĩω(k) + L σ k v(k) + N σ k v(k + 1) ≥ 0 (19) ∆ + T σ k Ĩω(k) -L σ k v(k) -N σ k v(k + 1) ≥ 0 (20) 
From the fact that e(0) = x(0) -x(0) ≥ 0 and e(0) = x(0)x(0) ≥ 0, it follows that, for all k ∈ Z + , e(k) ≥ 0 and e(k) ≥ 0. This ends the proof.

Remark 2. The main difference between the approach used in literature and the one presented in [START_REF] Otsuka | Interval Switched Positive Observers for Continuous-Time Switched Positive Systems under Arbitrary Switching[END_REF] is the introduction of additional parameters T σ k , N σ k in the framer structure. If we choose T σ k = I and N σ k = 0 for all σ k ∈ 1, N , (13) reduces to the interval observer presented in [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF].

B. Interval observer design using H ∞ performance

This part is devoted to the computation of gains L σ k using a Multiple Quadratic Lyapunov function such that the framer (13) becomes an interval observer. In order to optimize the width of the interval estimation, a γperformance is introduced.

Let us define the estimation error as follows

e(k) = e(k) -e(k) (21) 
Thus,

e(k + 1) = (T σ k Ãσ k -L σ k Cσ k )e(k) + Φ σ k δ(k) (22) 
with

δ(k) =   -T σ k Ĩω(k) v(k) v(k + 1)   (23) 
and

Φ σ k = 2 I L σ k N σ k (24) 
Theorem 2 gives a formulation to select the gains L σ k for [START_REF] Otsuka | Interval Switched Positive Observers for Continuous-Time Switched Positive Systems under Arbitrary Switching[END_REF] such that e(k) is ISS in the sense of Lemma 4.

Theorem 2. Assume that all assumptions of Theorem 1 hold. For given scalars γ > 0 and 0 < α < 1, if there exist positive scalars α 2 > α 1 > 0, a diagonal matrix

P σ k ∈ R n×n such that P σ k 0, W σ k ∈ R n×n , G σ k ∈ R n×p and H σ k ∈ R n×(n+p) such that P σ k Θ † σ k λ 1 Ãσ k + H σ k ψ σ k λ 1 Ãσ k -G σ k Cσ k ≥ 0, ∀σ k ∈ 1, N (25) α 1 I ≤ P σ k ≤ α 2 I, ∀σ k ∈ 1, N (26) 
W σ l P σ k P σ k P σ k 0 (27)       -(1 -α)P σ k 0 -γ 2 I 0 0 -γ 2 I 0 0 0 -γ 2 I κ 1σ k 2P σ k 2G σ k 2κ 2σ k -P σ k       0, ( 28 
) with Wσ l = µPσ l , Gσ k = Pσ k Lσ k , Hσ k = Pσ k Sσ k , ∀σ k , σ l ∈ 1, N κ1σ k = Pσ k Θ † σ k λ1 Ãσ k + Hσ k ψσ k λ1 Ãσ k -Gσ k Cσ k κ2σ k = Pσ k Θ † σ k λ2 + Hσ k ψσ k λ2, ∀σ k ∈ 1, N and 
Θσ k = Eσ k Cσ k+1 , λ1 = I 0 , ψσ k = I -Θσ k Θ † σ k , ∀σ k ∈ 1, N
Then, ( 14) is an interval observer for [START_REF] Ethabet | Interval estimation for continuous-time switched linear systems[END_REF]. Moreover, the optimal observer gain matrix

Lσ k = P -1 Gσ k , ∀σ k ∈ 1, N (29) 
is computed via the solution of the following constrained minimization problem minimize

Pσ k ,Gσ k ,Hσ k βµ + (1 -β) γ, σ k = 1, . . . , N
subject to (25), ( 27), ( 28).

(30)

Proof. Assumption ( 16) can be rewritten as

T σ k N σ k E σ k Cσ k+1 = I (31)
Let Lemma 3 hold, then one can deduce that the matrices T σ k , N σ k are given as

T σ k N σ k = I E σ k Cσ k+1 † +S σ k I - E σ k Cσ k+1 E σ k Cσ k+1 † (32)
with S σ k is an arbitrary matrix. Therefore, we have

T σ k = Θ † σ k λ 1 + S σ k ψ σ k λ 1 , ∀σ k ∈ 1, N (33) 
and

N σ k = Θ † σ k λ 2 + S σ k ψ σ k λ 2 , ∀σ k ∈ 1, N (34) 
Let Theorem 1 hold, the computed gains L σ k must satisfy the positivity of the matrix T σ k Ãσ k -L σ k Cσ k which is the essential condition to ensure that ( 14) becomes an interval observer for [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF]. The fact that P σ k are both diagonal and positive definite matrices implies that P σ k > 0 for all σ k ∈ 1, N . In addition,

T σ k Ãσ k -L σ k Cσ k ≥ 0 for all σ k ∈ 1, N then, P σ k T σ k Ãσ k -L σ k Cσ k ≥ 0 (35) 
Replace (33) in (35) so (25) is verified. Consider the multiple Lyapunov function

V (k) = e T (k)P σ k e(k) (36) 
where P σ k are diagonal positive definite matrices for all σ k ∈ 1, N . The increment of the Lyapunov function (36) is

∆V σ k (e) = V σ k (e(k + 1)) -V σ k (e(k)) = e T (k + 1)P σ k e(k + 1) -e T (k)P σ k e(k) = e T (k)Π T σ k P σ k Π σ k e(k) -e T (k)P σ k e(k) +δ T (k)Φ T σ k P σ k Φ σ k δ(k) +e T (k)Π T σ k P σ k Φ σ k δ(k) +δ T (k)Φ T σ k P σ k Π σ k e(k) (37) with 
Π σ k = T σ k Ãσ k -L σ k Cσ k
By adding to and subtracting from (37) the terms αe T (k)P σ k e(k) and γ 2 δ T (k)δ(k), we get

∆V σ k (e(k)) = e T (k) Π T σ k P σ k Π σ k -(1 -α) P σ k e(k) +δ T (k)Φ T σ k P σ k Φ σ k δ(k) +e T (k)Π T σ k P σ k Φ σ k δ(k) + δ T (k)Φ T σ k P σ k Π σ k e(k) -αe T (k)P σ k e(k) + γ 2 δ T (k)δ(k) -γ 2 δ T (k)δ(k) (38) 
Therefore (38) can be rewritten as

∆V σ k (e(k)) = e(k) δ(k) T Λ σ k e(k) δ(k) -αe T (k)P σ k e(k) + γ 2 δ T (k)δ(k) (39) 
where

Λσ k = Π T σ k Pσ k Πσ k -(1 -α) Pσ k Π T σ k Pσ k Φσ k Φ T σ k Pσ k Πσ k Φ T σ k Pσ k Φσ k -γ 2 I
(40) which can be reformulated as

Λσ k = -(1 -α) Pσ k 0 0 -γ 2 I + Π T σ k Φ T σ k Pσ k Πσ k Φσ k (41) 
Using the Schur complement, (41) can be seen as

  -(1 -α)Pσ k 0 0 -γ 2 I Φ T σ k Pσ k Pσ k Tσ k Ãσ k -Pσ k Lσ k Cσ k Pσ k Φσ k -Pσ k   0, (42) 
Let equations ( 33)-( 34) and ( 24) hold, so one can deduce (28). Hence, ( 5) is ensured such that

V σ(k) (e(k + 1)) -Vσ k (e(k)) ≤ -αVσ k (e(k)) + γ 2 δ(k) 2 2 (43 
) One highlights that the tightness of the interval width can be evaluated. Thus, the estimation accuracy can be assessed in the presence of disturbances and uncertainties. Let the inequality (43) holds for k ∈ [k0, k), which implies that

Vσ k (e(k)) < (1 -α) (k-k 0 ) Vσ k (e(k0)) + k-k 0 -1 m=0 (1 -α) m γ 2 δ(k) 2 2 (44)
Using ( 4), (44) yields

e T (k)e(k) ≤ 1 α1 (1 -α) (k-k 0 ) Vσ k (e(k0)) + γ 2 α δ(k) 2 ∞ (45) Consequently, e(k) ≤ 1 √ α1 (1 -α) (k-k 0 ) Vσ k (e(k0)) + γ 2 α δ(k) 2 ∞ 1 2 (46) When k → ∞, lim k-→∞ e(k) 2 < γ √ α1α sup( δ(k) ∞) (47) 
which shows that the tightness of the interval error width is bounded by γ √ α1α sup( δ(k) ∞). The latter depends only on γ for given α1 and α. Consequently, optimizing γ improves the estimation accuracy.

By making a recursion for (5) over the interval [k l , k), we get

Vσ i (e(k)) ≤ (1 -α) k-k l Vσ i (e(k l )), ∀ σi ∈ 1, N (48) 
Bearing in mind [START_REF] Mazenc | Interval Observers for linear time-invariant systems with disturbances[END_REF], then for all σi, σj ∈ 1, N , such that σi = σj

Vσ i (e(k)) ≤ (1 -α) k-k l Vσ i (e(k l )) Vσ j (e(k l )) Vσ j (e(k l )) ≤ (1 -α) k-k l e T (k l )Pσ i e(k l ) e T (k l )Pσ j e(k l ) e T (k l )Pσ j e(k l ) (49) Let (4) hold, then e T (k l )Pσ i e(k l ) e T (k l )Pσ j e(k l ) ≤ α2 α1 (50) 
Thereafter, (49) is equivalent to

Vσ i (e(k)) ≤ α2 α1 (1 -α) k-k l Vσ j (e(k l )) (51) 
At switching time k = k l , we have

Vσ i (e(k l )) ≤ α2 α1 Vσ j (e(k l )) ≤ µVσ j (e(k l )) (52) 
As α1 ≤ α2, it is trivial that µ = α 2 α 1 > 1. Furthermore, the stability at the switching instants is guaranteed based on [START_REF] Mazenc | Interval Observers for linear time-invariant systems with disturbances[END_REF] Wσ l = µPσ l . An optimum average dwell time is fulfilled by defining an objective function added to the LMI conditions. This optimum is ensured by minimizing µ in the following objective function

βµ + (1 -β) γ, β ∈ [0 1] (55) 
The ISS conditions presented in Lemma 4 are verified for the estimation error e = e -e, hence one can deduce that ( 14) is an interval observer for [START_REF] Gucik-Derigny | A note on interval observer design for unknown input estimation[END_REF].

IV. NUMERICAL SIMULATIONS Given the system (8) with two modes (N = 2) where To satisfy the assumptions of Theorems 1 and 2, the parameters T σ k and N σ k are determined as follows For α = 0.9 and α1 = 0.1, we get

T 1 =     0.
P1 =    0.1248 0 0 0 0 0.1 0 0 0 0 0.1 0 0 0 0 0.1    , P2 =    0.1 0 0 0 0 0.1 0 0 0 0 0.106 0 0 0 0 0.1   
The interval observer gains are computed by 

Lσ k = P -1 σ k Gσ k with L1 =    0.

V. CONCLUSION

A simultaneous input and state interval observer is investigated in this paper for uncertain discrete-time switched systems. The effect of unknown disturbances and measurement noise is also considered and an H∞ formalism is employed to attenuate this effect. Interval observer based on the introduction of new matrices providing more degrees of freedom is designed. Simulation results illustrate the effectiveness of the present method. The L∞ norm based design method in the same spirit and the extension to Linear-Parameter Varying switched systems are promising directions for future works. 
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