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This paper studies interval estimation for discrete-time linear systems with unknown but bounded disturbances. Inspired by the parity space approach, we propose a point estimator with fixed-time convergence property. The estimator is combined with the zonotope-based interval analysis to achieve fast interval estimation. The parameter matrix in the estimator is optimized by minimizing the length of the edges of the outer box of the error zonotope. It is formulated as L1 optimization problem and can be efficiently solved by linear programming. Comparison studies illustrate the superiority of the proposed method over existing techniques.

Introduction

State estimation is important in many applications such as controller design and fault diagnosis. To attenuate the effect of uncertainties on state estimation, many robust estimation methods have been proposed [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF][START_REF] Xie | H ∞ state estimation for linear periodic systems[END_REF][START_REF] Hammouri | High-gain observer based on a triangular structure[END_REF]. Kalman filtering and H ∞ observer design are two commonly used robust estimation techniques. Compared with the Gaussian noise assumption in Kalman filtering and the energy-bounded assumption in H ∞ observer design, an alternative assumption is that the uncertainties are unknown but bounded. Based on this assumption, interval estimation has been studied in the past decades [START_REF] Gouze | Interval observers for uncertain biological systems[END_REF][START_REF] Mazenc | Interval observer for linear timeinvariant systems with disturbances[END_REF][START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF][START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF].

Interval observer is a frequently used interval estimation method. Nevertheless, the design conditions of interval observers are usually restrictive. To relax them, coordinate transformations-based methods have been proposed in [START_REF] Mazenc | Interval observer for linear timeinvariant systems with disturbances[END_REF][START_REF] Raïssi | Interval state estimation for a class of nonlinear systems[END_REF]. However, the coordinate transformations may cause large conservatisms. Recently, a direct design method based on a new interval observer structure has been proposed in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF]. Compared with the basic interval observer, the interval observer proposed in [START_REF] Wang | Interval observer design for uncertain discrete-time linear systems[END_REF] has more degrees of design freedom, which can be optimized to improve the estimation accuracy.

Recently, fixed-time estimation has also attracted some attention [START_REF] Engel | A continuous-time observer which converges in finite time[END_REF]Menard et al. , 2017;[START_REF] Rios | A hybrid fixed-time observer for state estimation of linear systems[END_REF]. However, most existing results focus on fixed-time point estimation for continuous-time systems. To the best of our knowledge, only [START_REF] Zhang | A fixed-time observer for discrete-time singular systems with unknown inputs[END_REF], [START_REF] Dinh | Finite-time guaranteed state estimation for discrete-time systems with disturbances[END_REF], and [START_REF] Meslem | A new approach to design setmembership state estimators for discrete-time linear systems based on the observability matrix[END_REF] have studied fixed-time interval estimation for discrete-time systems. However, optimal design of the estimators has not been considered in these papers.

Inspired by the parity space approach, a fixed-time interval estimation method has been proposed in [START_REF] Wang | Fast interval estimation for discrete-time systems based on fixed-time convergence[END_REF], where a Frobenius norm criterion is used to optimize the parameter matrix in the estimator. Although the method in [START_REF] Wang | Fast interval estimation for discrete-time systems based on fixed-time convergence[END_REF] is optimal in the sense of Frobenius norm, it still has some conservatism. This paper proposes a new parameter optimization method based on the 1-norm criterion. With this optimization method, the length of the edges of the outer box of the error zonotope is minimized. The proposed design is formulated as a series of L 1 optimization problems, which can be efficiently solved by linear programming.

Notations. R n and R m×n stand for n and m × n dimensional real Euclidean space, respectively. 0 is used to denote the zero matrix with appropriate dimensions, I n denotes n×n identity matrix, and 1 n is an n-dimensional vector with all entries equal to 1. For a vector x ∈ R n , its L 1 -norm is defined as

∥x∥ 1 = ∑ n i=1 |x i |.
For a matrix M , M + and M -are defined as M + = max(M, 0) and M -= M + -M , respectively. Throughout this paper, the operators ≥, ≤, | • |, and max(•) on vectors and matrices should be understood element-wise.

Preliminaries and problem formulation

Definition 1. An m-order zonotope in the n-dimensional space is defined as

Z = ⟨p, H⟩ = {p + Hz : z ∈ B m } where p ∈ R n is the center of Z, H ∈ R n×m is the shape matrix of Z, and B m = [-1, 1] m is a hypercube.
Property 1 (Le et al., 2015).

Consider x ∈ ⟨p, H⟩ ∈ R n , the smallest axis-aligned box enclosing x is p -      ∥H 1 ∥ 1 . . . ∥H n ∥ 1      ≤ x ≤ p +      ∥H 1 ∥ 1 . . . ∥H n ∥ 1      (1) 
where H i denotes the ith row of the matrix H.

Consider the following system

{ x k+1 = Ax k + Bu k + D 1 d k y k = Cx k + D 2 d k (2)
where

x k ∈ R nx is the state, y k ∈ R ny is the measure- ment, u k ∈ R nu is the known input, and d k ∈ R n d is the unknown input. It is assumed that A is invertible, (C, A) is observable, and d k is bounded as |d k | ≤ d, which is equivalent to d k ∈ ⟨0, W d ⟩, where W d = diag ( d) . Note that d ∈ R n d is a known vector.
The aim of this paper is to achieve fast interval estimation of x k , which consists of two aspects: First, in the disturbance-free situation, the estimation converges to the state in fixed time. Second, a box containing the true state can be obtained in the presence of unknown input.

Main results

Since A is invertible, the system in ( 2) is equivalent to the following backward propagation representation

{ x k-1 = Ãx k + Bu k-1 + D1 d k-1 y k = Cx k + D 2 d k (3) where à = A -1 , B = -A -1 B, and D1 = -A -1 D 1 .
Based on (3), it is easy to obtain the following relation

y k = M x x k + M u u k + M d d k (4)
where

y k =      y k . . . y k-s      , u k =      u k . . . u k-s      , d k =      d k . . . d k-s      , M x =        C C Ã . . . C Ãs        , M u =        0 0 • • • 0 0 C B • • • 0 . . . . . . . . . . . . 0 C Ãs-1 B • • • C B       , M d =        D 2 0 • • • 0 0 C D1 + D 2 • • • 0 . . . . . . . . . . . . 0 C Ãs-1 D1 • • • C D1 + D 2        .
Herein, s is referred to as the order of the estimator.

Based on (4), we propose the following point estimator

xk = T (y k -M u u k ), k ≥ s (5)
where T ∈ R nx×(s+1)ny should satisfy

T M x = I nx (6)
In the disturbance-free case, (4) becomes

y k = M x x k + M u u k (7)
Substituting ( 6) and ( 7) to (5), we have

xk = x k , k ≥ s. ( 8 
)
Therefore, xk equals to x k after s steps in the disturbance-free case.

In the presence of unknown input d k , the state estimation xk is not exactly equal to x k . In this situation, we aim to estimate an axis-aligned box containing x k .

By substituting ( 4) and ( 6) into (5), we have

xk = x k + T M d d k which implies that x k ∈ ⟨x k , H⟩ (9) 
with H ∈ R (s+1)nx×(s+1)n d given by

H = -T M d W d = -T M d      W d • • • 0 . . . . . . . . . 0 • • • W d      .
Based on (9) and Property 1, we can obtain

xk -      ∥H 1 ∥ 1 . . . ∥H nx ∥ 1      ≤ x k ≤ xk +      ∥H 1 ∥ 1 . . . ∥H nx ∥ 1      . ( 10 
)
In ( 10),

H i ∈ R 1×(s+1)n d denotes the ith row of H.
From (10), it is known that the estimation accuracy can be measured by

∥H 1 ∥ 1 , • • • , ∥H nx ∥ 1
, which denote the length of the edges of the outer box of the error zonotope.

A possible way to optimize the matrix T is minimizing

∥H 1 ∥ 1 , • • • , ∥H nx ∥ 1 .
To this end, an L 1 optimization method is proposed in the paper.

Matrix T can be written in the following form

T = [ t 1 • • • t nx ] T (11)
Then, ( 6) and ( 10) become

         t T 1 M x = e T 1 . . . t T nx M x = e T nx ( 12 
)          x1,k -∥H 1 ∥ 1 ≤ x 1,k ≤ x1,k + ∥H 1 ∥ 1 . . . xnx,k -∥H nx ∥ 1 ≤ x nx,k ≤ xnx,k + ∥H nx ∥ 1 (13)
where e i ∈ R nx denotes the ith column of I nx and H i has the following form

H i = -t T i M d W d (14)
To make ∥H i ∥ 1 as small as possible, t i should be designed by solving the following L 1 optimization problem

min ti ∥ -t T i M d W d ∥ 1 s.t. t T i M x = e T i ( 15 
)
The L 1 optimization in ( 15) is a basis pursuit problem [START_REF] Tillmann | Equivalence of linear programming and basis pursuit[END_REF]. Motivated by the solution approach used in the basis pursuit, the following theorem is proposed to solve the problem in (15).

Theorem 1

The solution to the L 1 optimization problem in (15) can be obtained by solving the following linear programming problem

min ti,z1,z2 1 T (s+1)n d (z 1 + z 2 ) s.t.              M T x t i = e i z 1 -z 2 = -(M d W d ) T t i z 1 ≥ 0 z 2 ≥ 0 (16) PROOF. The problem in (15) is equivalent to min ti ∥ -(M d W d ) T t i ∥ 1 s.t. M T x t i = e i ( 17 
)
By letting

z 1 = (-(M d W d ) T t i ) + , z 2 = (-(M d W d ) T t i ) -(18)
we have

z 1 + z 2 = | -(M d W d ) T t i | (19) z 1 -z 2 = -(M d W d ) T t i (20) z 1 ≥ 0 (21) z 2 ≥ 0 (22) Based on the definition of 1-norm, we have ∥ -(M d W d ) T t i ∥ 1 = 1 T (s+1)n d | -(M d W d ) T t i | (23)
Substituting ( 19) in ( 23) yields

∥ -(M d W d ) T t i ∥ 1 = 1 T (s+1)n d (z 1 + z 2 ) (24)
Now the objective function is transformed to 1 T (s+1)n d (z 1 + z 2 ). Then, by combining ( 20), ( 21), ( 22) and M T x t i = e i , the original problem in (15) can be transformed to the linear programming problem in ( 16). 2To analyze the influence of s on the performance of the proposed method, we propose the following theorem.

Theorem 2 The accuracy of the interval estimation method does not decrease with increasing s.

PROOF. We use T s and T s+1 to denote the parameter matrices in sth order estimator and (s + 1)th order estimator, respectively. Note that T s is an n x × (s + 1)n y dimensional matrix while T s+1 is an n x × (s + 2)n y dimensional matrix. The (s + 1)th order estimator has more parameters to be optimized than the sth order one.

Suppose that T * s is the optimal parameter matrix for the sth order estimator. If we choose

T s+1 = [ T * s 0 ]
, the (s+1)th order estimator reduces to the optimal sth order estimator. That is, the optimal sth order estimator is a special case of the (s + 1)th order estimator. Therefore, the accuracy of the optimal (s + 1)th order estimator is better or equal to that of the optimal sth order one, which implies that the accuracy of the proposed method does not decrease with increasing s. 2

Simulation results

A numerical example adapted from [START_REF] Meslem | A new approach to design setmembership state estimators for discrete-time linear systems based on the observability matrix[END_REF] is used to compare the proposed method with two existing approaches. The system has the form of (2) with the following parameters

A =     2.548 -2.5165 0.9484 1 0 0 0 1 0     , B =     0 0 1     , C = [ 1 0 2 0 1 0 ] , D 1 =     1 0 0 0 0 0 1 0 0 0 0 0 0.1 0 0     , D 2 = [ 0 0 0 0.8 0 0 0 0 0 0.8 ] , x 0 = [ 3 -2 0 ] T , u k = cos(100k 2 ), d k ∈ [-1, 1] 5 .
Considering s = 2 and using the proposed method, we obtain

T =     1 0 0 -2 0 0 0 1 0 0 0 0 0 0 0 1 0 0     .
If the optimization method proposed in Wang et al. Using the method presented in [START_REF] Meslem | A new approach to design setmembership state estimators for discrete-time linear systems based on the observability matrix[END_REF], we can obtain the following interval estimator

xk = A y     y k y k-1 y k-2     + A u     u k u k-1 u k-2     xk = xk + w x k = xk + w
where 

A y =     0.
    , w = -w.
The interval estimation results obtained by the abovementioned methods are depicted in Figiures 1-3. Note that parameter optimization is not used in the method presented in [START_REF] Meslem | A new approach to design setmembership state estimators for discrete-time linear systems based on the observability matrix[END_REF]. As a result, both the optimization-based interval estimation methods provide more accurate estimation results than that presented in [START_REF] Meslem | A new approach to design setmembership state estimators for discrete-time linear systems based on the observability matrix[END_REF]. Figures 1-3 also show that the interval estimations obtained by the proposed method are more accurate than the method presented in [START_REF] Wang | Fast interval estimation for discrete-time systems based on fixed-time convergence[END_REF]. Moreover, the volume of the error zonotope obtained by the proposed method is 3.584, while that obtained by the method in [START_REF] Wang | Fast interval estimation for discrete-time systems based on fixed-time convergence[END_REF] is 10.6128. This also shows the superiority of the proposed method.

In addition, the values of ∥H 1 ∥ 1 , ∥H 2 ∥ 1 , ∥H 3 ∥ 1 with different choices of s by the proposed method are given in Table 1. It can be seen that the accuracy of the interval estimation method does not decrease with increasing s. 

Conclusion

This paper proposes a fixed-time interval estimation method for discrete-time linear systems. The proposed method is based on a point estimator and zonotopebased interval analysis. To improve the accuracy of estimation, an L 1 optimization method is proposed to design the parameter matrix in the estimator. The optimization problem can be converted to linear programming, which can be efficiently solved. Simulation results show that the proposed method can achieve more accurate interval estimation than two existing approaches.
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