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Abstract

This paper studies interval estimation for discrete-time linear systems with unknown but bounded disturbances. Inspired by
the parity space approach, we propose a point estimator with fixed-time convergence property. The estimator is combined with
the zonotope-based interval analysis to achieve fast interval estimation. The parameter matrix in the estimator is optimized
by minimizing the length of the edges of the outer box of the error zonotope. It is formulated as L1 optimization problem and
can be efficiently solved by linear programming. Comparison studies illustrate the superiority of the proposed method over
existing techniques.

Key words: Interval estimation, zonotope, fixed-time convergence, L1 optimization, linear programming.

1 Introduction

State estimation is important in many applications such
as controller design and fault diagnosis. To attenuate
the effect of uncertainties on state estimation, many ro-
bust estimation methods have been proposed (Kalman
, 1960; Xie & Souza , 1993; Hammouri et al. , 2002).
Kalman filtering and H∞ observer design are two com-
monly used robust estimation techniques. Compared
with the Gaussian noise assumption in Kalman filtering
and the energy-bounded assumption inH∞ observer de-
sign, an alternative assumption is that the uncertainties
are unknown but bounded. Based on this assumption,
interval estimation has been studied in the past decades
(Gouze et al., 2000; Mazenc & Bernard, 2011; Räıssi et
al., 2012; Wang et al., 2018).
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Interval observer is a frequently used interval estimation
method. Nevertheless, the design conditions of interval
observers are usually restrictive. To relax them, coor-
dinate transformations-based methods have been pro-
posed in (Mazenc & Bernard, 2011; Räıssi et al., 2012).
However, the coordinate transformations may cause
large conservatisms. Recently, a direct design method
based on a new interval observer structure has been
proposed in (Wang et al., 2018). Compared with the
basic interval observer, the interval observer proposed
in Wang et al. (2018) has more degrees of design free-
dom, which can be optimized to improve the estimation
accuracy.

Recently, fixed-time estimation has also attracted some
attention (Engel & Kreisselmeier , 2002; Menard et al. ,
2017; Rios & Teel , 2018). However, most existing results
focus on fixed-time point estimation for continuous-time
systems. To the best of our knowledge, only Zhang et
al. (2019), Dinh et al. (2019), and Meslem & Ramdani
(2020) have studied fixed-time interval estimation for
discrete-time systems. However, optimal design of the
estimators has not been considered in these papers.

Inspired by the parity space approach, a fixed-time inter-
val estimation method has been proposed in Wang et al.
(2020), where a Frobenius norm criterion is used to op-
timize the parameter matrix in the estimator. Although
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the method in Wang et al. (2020) is optimal in the sense
of Frobenius norm, it still has some conservatism. This
paper proposes a new parameter optimization method
based on the 1-norm criterion. With this optimization
method, the length of the edges of the outer box of the
error zonotope is minimized. The proposed design is for-
mulated as a series of L1 optimization problems, which
can be efficiently solved by linear programming.

Notations. Rn and Rm×n stand for n and m × n di-
mensional real Euclidean space, respectively. 0 is used to
denote the zero matrix with appropriate dimensions, In
denotes n×n identity matrix, and 1n is an n-dimensional
vector with all entries equal to 1. For a vector x ∈ Rn,
its L1-norm is defined as ∥x∥1 =

∑n
i=1 |xi|. For a ma-

trix M , M+ and M− are defined as M+ = max(M, 0)
and M− = M+ −M , respectively. Throughout this pa-
per, the operators ≥, ≤, | · |, and max(·) on vectors and
matrices should be understood element-wise.

2 Preliminaries and problem formulation

Definition 1.Anm-order zonotope in the n-dimensional
space is defined as

Z = ⟨p,H⟩ = {p+Hz : z ∈ Bm}

where p ∈ Rn is the center of Z, H ∈ Rn×m is the shape
matrix of Z, and Bm = [−1, 1]m is a hypercube.

Property 1 (Le et al., 2015). Consider x ∈ ⟨p,H⟩ ∈ Rn,
the smallest axis-aligned box enclosing x is

p−


∥H1∥1

...

∥Hn∥1

 ≤ x ≤ p+


∥H1∥1

...

∥Hn∥1

 (1)

where Hi denotes the ith row of the matrix H.

Consider the following system{
xk+1 = Axk +Buk +D1dk

yk = Cxk +D2dk
(2)

where xk ∈ Rnx is the state, yk ∈ Rny is the measure-
ment, uk ∈ Rnu is the known input, and dk ∈ Rnd is the
unknown input. It is assumed thatA is invertible, (C,A)
is observable, and dk is bounded as |dk| ≤ d̄, which is
equivalent to dk ∈ ⟨0,Wd⟩, where Wd = diag

(
d̄
)
. Note

that d̄ ∈ Rnd is a known vector.

The aim of this paper is to achieve fast interval estima-
tion of xk, which consists of two aspects: First, in the
disturbance-free situation, the estimation converges to
the state in fixed time. Second, a box containing the true
state can be obtained in the presence of unknown input.

3 Main results

Since A is invertible, the system in (2) is equivalent to
the following backward propagation representation{

xk−1 = Ãxk + B̃uk−1 + D̃1dk−1

yk = Cxk +D2dk
(3)

where Ã = A−1, B̃ = −A−1B, and D̃1 = −A−1D1.

Based on (3), it is easy to obtain the following relation

yk = Mxxk +Muuk +Mddk (4)

where

yk =


yk
...

yk−s

 , uk =


uk

...

uk−s

 , dk =


dk
...

dk−s

 ,

Mx =


C

CÃ
...

CÃs

 ,Mu =


0 0 · · · 0

0 CB̃ · · · 0
...

...
. . .

...

0 CÃs−1B̃ · · · CB̃

 ,

Md =


D2 0 · · · 0

0 CD̃1 +D2 · · · 0
...

...
. . .

...

0 CÃs−1D̃1 · · · CD̃1 +D2

 .

Herein, s is referred to as the order of the estimator.

Based on (4), we propose the following point estimator

x̂k = T (yk −Muuk), k ≥ s (5)

where T ∈ Rnx×(s+1)ny should satisfy

TMx = Inx (6)

In the disturbance-free case, (4) becomes

yk = Mxxk +Muuk (7)

Substituting (6) and (7) to (5), we have

x̂k = xk, k ≥ s. (8)

Therefore, x̂k equals to xk after s steps in the
disturbance-free case.
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In the presence of unknown input dk, the state estima-
tion x̂k is not exactly equal to xk. In this situation, we
aim to estimate an axis-aligned box containing xk.

By substituting (4) and (6) into (5), we have

x̂k = xk + TMddk

which implies that

xk ∈ ⟨x̂k,H⟩ (9)

with H ∈ R(s+1)nx×(s+1)nd given by

H = −TMdWd = −TMd


Wd · · · 0
...

. . .
...

0 · · · Wd

 .

Based on (9) and Property 1, we can obtain

x̂k −


∥H1∥1

...

∥Hnx∥1

 ≤ xk ≤ x̂k +


∥H1∥1

...

∥Hnx∥1

 . (10)

In (10), Hi ∈ R1×(s+1)nd denotes the ith row of H.

From (10), it is known that the estimation accuracy can
be measured by ∥H1∥1, · · · , ∥Hnx∥1, which denote the
length of the edges of the outer box of the error zonotope.
A possible way to optimize the matrix T is minimizing
∥H1∥1, · · · , ∥Hnx∥1. To this end, an L1 optimization
method is proposed in the paper.

Matrix T can be written in the following form

T =
[
t1 · · · tnx

]T
(11)

Then, (6) and (10) become
tT1 Mx = eT1

...

tTnx
Mx = eTnx

(12)


x̂1,k − ∥H1∥1 ≤ x1,k ≤ x̂1,k + ∥H1∥1

...

x̂nx,k − ∥Hnx∥1 ≤ xnx,k ≤ x̂nx,k + ∥Hnx∥1

(13)

where ei ∈ Rnx denotes the ith column of Inx and Hi

has the following form

Hi = −tTi MdWd (14)

Tomake ∥Hi∥1 as small as possible, ti should be designed
by solving the following L1 optimization problem

min
ti

∥ − tTi MdWd∥1

s.t. tTi Mx = eTi

(15)

The L1 optimization in (15) is a basis pursuit problem
(Tillmann , 2015). Motivated by the solution approach
used in the basis pursuit, the following theorem is pro-
posed to solve the problem in (15).

Theorem 1 The solution to the L1 optimization prob-
lem in (15) can be obtained by solving the following linear
programming problem

min
ti,z1,z2

1T
(s+1)nd

(z1 + z2)

s.t.


MT

x ti = ei

z1 − z2 = −(MdWd)
T ti

z1 ≥ 0

z2 ≥ 0

(16)

PROOF. The problem in (15) is equivalent to

min
ti

∥ − (MdWd)
T ti∥1

s.t. MT
x ti = ei

(17)

By letting

z1 = (−(MdWd)
T ti)

+, z2 = (−(MdWd)
T ti)

− (18)

we have
z1 + z2 = | − (MdWd)

T ti| (19)

z1 − z2 = −(MdWd)
T ti (20)

z1 ≥ 0 (21)

z2 ≥ 0 (22)

Based on the definition of 1-norm, we have

∥ − (MdWd)
T ti∥1 = 1T

(s+1)nd
| − (MdWd)

T ti| (23)

Substituting (19) in (23) yields

∥ − (MdWd)
T ti∥1 = 1T

(s+1)nd
(z1 + z2) (24)

Now the objective function is transformed to 1T
(s+1)nd

(z1+

z2). Then, by combining (20), (21), (22) and MT
x ti = ei,

the original problem in (15) can be transformed to the
linear programming problem in (16). 2

To analyze the influence of s on the performance of the
proposed method, we propose the following theorem.
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Theorem 2 The accuracy of the interval estimation
method does not decrease with increasing s.

PROOF. We use Ts and Ts+1 to denote the parameter
matrices in sth order estimator and (s+1)th order esti-
mator, respectively. Note that Ts is an nx× (s+1)ny di-
mensional matrix while Ts+1 is an nx× (s+2)ny dimen-
sional matrix. The (s + 1)th order estimator has more
parameters to be optimized than the sth order one.

Suppose that T ∗
s is the optimal parameter matrix for the

sth order estimator. If we choose Ts+1 =
[
T ∗
s 0

]
, the

(s+1)th order estimator reduces to the optimal sth order
estimator. That is, the optimal sth order estimator is a
special case of the (s+ 1)th order estimator. Therefore,
the accuracy of the optimal (s + 1)th order estimator
is better or equal to that of the optimal sth order one,
which implies that the accuracy of the proposed method
does not decrease with increasing s. 2

4 Simulation results

A numerical example adapted from Meslem & Ramdani
(2020) is used to compare the proposed method with
two existing approaches. The system has the form of (2)
with the following parameters

A =


2.548 −2.5165 0.9484

1 0 0

0 1 0

 , B =


0

0

1

 , C =

[
1 0 2

0 1 0

]
,

D1 =


1 0 0 0 0

0 1 0 0 0

0 0 0.1 0 0

 , D2 =

[
0 0 0 0.8 0

0 0 0 0 0.8

]
,

x0 =
[
3 −2 0

]T
, uk = cos(100k2), dk ∈ [−1, 1]5.

Considering s = 2 and using the proposed method, we
obtain

T =


1 0 0 −2 0 0

0 1 0 0 0 0

0 0 0 1 0 0

 .

If the optimization method proposed in Wang et al.
(2020) is used, we have

T =


0.9552 0.0634 −0.2475 −1.4044 0.1415 −0.2133

0.1321 0.6788 −0.001 0.0385 −0.0068 −0.0871

−0.0235 0.0344 0.1696 0.689 −0.0683 0.0457

.

Using the method presented in Meslem & Ramdani
(2020), we can obtain the following interval estimator

x̂k = Ay


yk

yk−1

yk−2

+Au


uk

uk−1

uk−2


x̄k = x̂k + w̄

xk = x̂k +w

where

Ay =


0.3666 −0.5056 −0.618 −0.5078 0.7847 0.3933

−0.0463 −0.0894 −0.0053 −0.0142 0.3648 0.1736

−0.1706 0.1855 0.3568 0.2573 0.0068 −0.0142

 ,

Au =


1.4401 −1.5695 0

−0.3353 −0.7296 0

−0.72 0.9864 0

 , w̄ =


5.8269

2.1530

2.0907

 , w = −w̄.

The interval estimation results obtained by the above-
mentioned methods are depicted in Figiures 1-3. Note
that parameter optimization is not used in the method
presented in Meslem & Ramdani (2020). As a result,
both the optimization-based interval estimation meth-
ods provide more accurate estimation results than that
presented in Meslem & Ramdani (2020). Figures 1-3
also show that the interval estimations obtained by the
proposed method are more accurate than the method
presented in Wang et al. (2020). Moreover, the volume
of the error zonotope obtained by the proposed method
is 3.584, while that obtained by the method in Wang et
al. (2020) is 10.6128. This also shows the superiority of
the proposed method.

In addition, the values of ∥H1∥1, ∥H2∥1, ∥H3∥1 with
different choices of s by the proposed method are given
in Table 1. It can be seen that the accuracy of the interval
estimation method does not decrease with increasing s.

Table 1
∥H1∥1, ∥H2∥1, ∥H3∥1 with different choices of s by the pro-
posed method

s = 2 s = 3 s = 4

∥H1∥1 2.6 2.6 2.6

∥H2∥1 0.8 0.8 0.8

∥H3∥1 0.9 0.9 0.9

5 Conclusion

This paper proposes a fixed-time interval estimation
method for discrete-time linear systems. The proposed
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Fig. 1. The interval estimation results of x1,k.
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Fig. 2. The interval estimation results of x2,k.
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Fig. 3. The interval estimation results of x3,k.

method is based on a point estimator and zonotope-
based interval analysis. To improve the accuracy of
estimation, an L1 optimization method is proposed to
design the parameter matrix in the estimator. The op-
timization problem can be converted to linear program-
ming, which can be efficiently solved. Simulation results
show that the proposed method can achieve more accu-
rate interval estimation than two existing approaches.
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