N

N

"2vQM/ 6B bi@P /2  IM+2 i BMiv 1biBK iB(
1pB/2MiB HJQ/2Hb 7Q°  PT2M@qQ H/ 2+
*2 "H2b *Q #B "2-J "+ G 7QM- LB+QH b h?QK2-J ii?B

hQ +Bi2 i?Bb p2 ' bBQM,

*?2 “H2b *Q #B 2-J "+ G 7TQM- LB+QH b h?QK2- J ii?B2m *Q /- S i"B+F
IM+2 i BMiv 1biBK iBQM rBi? 1pB/2MiB HJQ/2Hb 7Q  PT2M@qQ H/ _2+
QM IM+2i BMiv M/ _Q#mbiM2bb BM .22T G2 "MBM:- a2T kykR- 0B im H

> G A/, 2 H@yjj9dek3
2iiTh,ff+M KX? HXb+B2M+2f? H@yjj9dek3pR
am#KBii2/ QM Rd a2T kykR

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://cnam.hal.science/hal-03347628v1
https://hal.archives-ouvertes.fr

Beyond First-Order Uncertainty Estimation
with Evidential Models for Open-World Recognition

Charles Corbierel2 Marc Lafon ! Nicolas Thome! Matthieu Cord 23 Patrick Pérez?

Abstract

In this paper, we tackle the challenge of jointly
guantifying in-distribution and out-of-distribution
(OOD) uncertainties. We introduckLoS a
KL-divergence measure de ned on the class-
probability simplex. By leveraging the second-
order uncertainty representation provided by evi-
dential models, KLoS captures more than existing
rst-order uncertainty measures such as predic-
tive entropy. We design an auxiliary neural net-
work, KLoSNetto learn a re ned measure directly
aligned with the evidential training objective. Ex- MCP = 0:50, entropy= 0:97, KLoS = 104:71
periments show that KLoSNet acts as a class-wise  Figure 1.Limitations of 1st-order uncertainty measures (a) In-
density estimator and outperforms current uncer-  distribution image with con icting evidence. (b) OOD image with
tainty measures in the realistic context where no same class confusion is supposed to have larger total uncertainty,
OOD data is available during training. We also re- which is correctly re ected by its KLoS score.
port comparisons in the presence of OOD training
samples, which shed a new light on the impact of  dential models capture different sources of uncertainty. First-
the vicinity of this data with OOD test data. order uncertainty relates to the expectation of the Dirichlet
distribution and is caused by con icting evidence, e.g., class
. confusion. Second-order uncertainty expresses the lack of
1. Introduction evidence in a prediction (Shi et al., 2020), which is character-
ized by the spread of the Dirichlet distribution. For instance,
huskies share lots of features with wolves although being

Obtaining reliable predictive uncertainty estimates is crucial
to safely deploy models in open-world conditions (Ben- _ .
dale & Boult, 2015). Notable progress has been made wit/? breed of dog, Wh'_Ch I(_aads to a largfsorder uncertalnty_
the renewal of Bayesian neural networks (MacKay, 19925jue to class gonfusmn n [_:'g' la. In presence .Of a drawing
and ensembling (Lakshminarayanan et al., 2017). Thes%]c a husky, Fig. 1b, a S|m|Iar class confuspn 1S e_xpectgd,
techniques describe an implicit probability density over thebut a lower amount of evidence due to the distribution shift.
predictive categorical distribution obtained from sampling Surprisingly, previous works do not leverage the distribution
A recent class of models, coinedidential(Sensoy et al., over probabilities on the simplex to derive such a joint mea-
2018; Malinin & Gales, 2019; Joo et al., 2020), proposessure of the two sources of uncertainty. Some methods focus
instead to explicitly learn the concentration parameters of @n OOD detection by characterizing only the distribution
Dirichlet distribution over output probabilities. They have spread, e.g., using mutual information (Malinin & Gales,
been shown to improve generalisation (Joo et al., 2020) and019). Approaches targeting total uncertainty actually re-
OOD detection (Nandy et al., 2020) duce probability distributions on the simplex to their ex-
pected value and compute rst-order uncertainty measures,
e.g., predictive entropy (Sensoy et al., 2018). However,

1CEDRIC, Conservatoire National des Arts etétitrs, these measures are invariant to the spread of the distribution
Paris, Francévaleo.ai, Paris, FrancdIP6, Sorbonne Uni- (Fig. 1), whereas uncertainty caused by class confusion and
versity, Paris, France. Correspondence to: Charles @@bi |50k of evidence should be cumulative, a property naturally
< charles.corbiere@valeo.com .. . . . .

ful lled by the predictive variance in Bayesian regression

Presented at the ICML 2021 Workshop on Uncertainty and RobustMurphy, 2012). In addition, some methods for evidential
ness in Deep LearningCopyright 2021 by the author(s). models use auxiliary data during training to enforce higher

Based on the subjective logic framework (Josang, 2016), ev
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distribution spread on OOD inputs. But when deprived ac-
cess to OOD training data, the low-dispersion behavior is not
guaranteed for all OOD examples (Charpentier et al., 2020;
Sensoy et al., 2020) ar@f%order uncertainty measures
struggle to discriminate them from in-distribution examples.

Contributions. We introduceKLoS a KL-divergence mea-
sure on the simplex based on the Dirichlet distribution

o

Figure 2.lllustration of KLoS behavior in absence of uncertainty
(&), with class confusion (b) and with lack of evidence (c).

8 Dir(zlys) 0
Dir(z|a) o

KLoS provides richer estimates than standard rst-order
measures by considering both 1st-order and 2nd-order Upsgds:

certainties. Noting that KLoS naturally re ects the training
objective used in evidential models, we propose to learn 1 X
an auxiliary modelKLoSNet to regress the values of this
objective for training samples and to improve uncertainty
estimation. Experiments on simultaneous detection of mis-

Lva( ;D)= N(X;y)zD ( y) ( o)

+ KL Dir( j )kDir( j1) ; (2

classi cations and OOD samples show the bene ts of KLoS-

Net thanks to its class-wise density estimator behaviour, ahere

is the digamma function and with hyperparameter

crucial property in the absence of OOD training data. We > 0. In particular, minimizing this loss enforces training
also shed a new light on the impact of the type of OODsample's precision o to remain close t€ + 1= .

training samples for existing measures.

2. Capturing 15-- and 2"4-Order Uncertainties
2.1. Background: Evidential Neural Networks

Let us consider a training datagetcomposed oN i.i.d.
sampleqx;y) drawn from an unknown joint distribution
p(x;y). We denote =( 1; ; ¢) thejrandom vari-
able over categorical probabilities, wheref:1 c = 1,
and which lives on the (C-1)-dimensional simplex 1.

2.2. A KL-Divergence Measure on the Simplex

By explicitly learning a distribution of the categorical proba-
bilities , evidential models can distinguish rst-order from
second-order uncertainty on the simplex. Inputs with large
rst-order uncertainty due to class confusion will have a
distribution closer to the simplex center. Conversely, inputs
with large second-order uncertainty are expected to present
at distributions, re ecting the lack of evidence of the model
on these points. To encompass both types of uncertainty, an

Bayesian models and ensemble approaches approximate tbecient measure needs to encapsulate both the sharpness

posterior predictive distributiop(yj ;x) by marginalizing
over a network's parametersvia Monte-Carlo sampling or

explicit ensembling. But this comes at the cost of multiple
forward passes. Evidential Neural Networks (ENN) propos
instead to model explicitly the posterior distribution over

categorical probabilities by a Dirichlet distribution,

=ic( 0) \6 CC 1;

jx)= Dir j
q( jx)=Dir j S (D

@)

whose concentration parameters= expf(x; ) are
output by a networkf wigl cparameters ; is the

Gamma function and ¢ = w1 c- Precision o con-

e

of the distribution and its location on the simplex.

We introduce a novel measure, nant€idoSfor “KL on
Simplex”, that computes the KL divergence between the
model's output and a sharp Dirichlet distribution with con-
centrations ¢ focused on th@redictedclassy:

KLoS(x), KL Dir j kDir

ey 3

where = expf(x; ) are model's output andy =

eters except for the predicted class witk 1= +1.

The lower KLoS is, the more certain the prediction is. Cor-

trols the Sharpness of the density with more mass Cor{eCt prediCtionS will have Dirichlet distributions close to

centrating around the mean ag grows. By conjugate
property, the predictive distribution for a new poixt

; = Ay - ) - expfe(x ;) .
is P(y cx ;D) Eq ( jx )l c]. ‘%&1 expfr(x 1)
which is the output of a network with softmax activation.

the posterior distribution and will thus be associated with a
low uncertainty measure (Fig. 2a). Samples with high class
confusion will present concentration parameters closer to
simplex’s center than the target Dirichlet objective, resulting

in a higher KLoS measure (Fig. 2b). KLoS also penalizes

ENN training is formulated as a variational approximation samples having a different precisiog than the precision

to minimize the KL divergence between the distribution =

g ( jx) and the true posterigr( jx;y). Following Joo

+C 1ofthe target y. For instance, samples with
lacking evidence, i.e., having smaller precision thgn

et al. (2020), we use the non-informative uniform prior (Fig. 2c), receive a larger KLoS score. Since in-distribution

p( jx)= Dir

j1 . The evidential training objective thus samples are enforced to have precision close,tduring
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training, KLoS will be effective to detect various types of
OOD samples whose precision is far frory, and acts as

a class-wise density estimator (see also Section 3.1). In |
contrast, second-order uncertainty measures, such as the &+ = oo ——
mutual information, assume that OOD samples have smaller (a) Toy data (b) Entropy (c) Mut.Inf.  (d) KLoS

0, & property dif cult to ful Il for models trained only with
in-distribution samples (see Section 3.3). Figure 4.Visualisation of different uncertainty measures on a toy

dataset. Yellow (resp. purple) indicates high (resp. low) certainty.

2.3. Improving First-Order Uncertainty

Representation with Con dence Learning (mutual information fut. Inf), differential entropy Diff.
) ) Ent) and expected pairwise KL-divergendeRKL)), post-
Whe_n the model m_|scla55| €s an exam- training methods for OOD detectio®DIN (Liang et al.,
ple, Le., the predicted clags differs 2018) andMahalanobis(Lee et al., 2018)) and for mis-
from the gr_ound trutty, KLoS mea- , classi cation detection@on dNet(Corbiere et al., 2019)).
sures the distance betweef‘ the ENN's Uncertainty measures are derived from the same evidential
output and .the wrongly es'gmated pos- model trained with =10 2. We rely on the learned classi-
te_:norp( X 9). Measuring ms_tea_ld the Figure 3.KLoS* er to train our auxiliary con dence model KLoSNet, using
distance to the true posterior distribution the same training set. Except in Section 3.3, we consider

p( jx;y) (greenregion in Fig. 3) would more likely yield a o415 \where no OOD data is available for training. Al
greater value, re ecting the fact that the classi er made antraining details are available in Appendix A

error. Thus, a better measure for misclassi cation detection

would be: 3.1. Synthetic Experiment

KLoS (x;y) , KL Dir j  kDir jy 5 (4  we analyse the behavior of the KLoS measure and the limi-

) ) tations of existing rst- and second-order uncertainty met-
where corresponc_is to the uniform concentrations exCePlics on a 2D synthetic dataset composed of three Gaussian-
forthetrueclassy with  =1= +1. distributed classes with equidistant means and identical
Connecting KLoS with evidential training objec- isotropic variance (Fig. 4). OOD samples are drawn from
tive. Choosing such value for results inKLoS matching @ ring around the in-distribution dataset and are only used
the objective function in Eq. (2). This means tiatoS for evaluation. Fig. 4b shows that Entropy correctly as-
is explicitly minimized during training for in-distribution  signs large uncertainty along decision boundaries, which
samples and re ects the fact that the model is con dentisS convenient to detect misclassi cations, but yields low
about its prediction if its score is close to zero. uncertainty for points far from the distribution. Surpris-

byiouslv. th | ¢ _ iiable wh ingly, Mut. Inf. (Fig. 4c) decreases when moving away from
Obviously, the true class of an output is not available wheny, training data. This behavior is due to the linear nature

Esl,_'urgat;)ng_con gen.ce on test ;igmples. \c/ive propose tlo IearBf the toy dataset where models assign higher concentra-
Ok y 'n;roKLug:Ig an ‘_"‘EX' lary cog enﬁehneura et tion parameters far from decision boundaries, hence smaller
workK, terme oSNet, with parametelrs which outputs spread on the simplex, as also noted by Charpentier et al.

a con dence predictior©(x;! ). KLoSNet consists of & 5050y additionally, Mut. Inf. does not re ect the un-
small decoder, composed of several dense layers attamed&%rtainty caused by class confusion along decision bound-

the penultimate layer of the original classi cation network. 5 jog |y contrast, KLoS allows discriminating both misclas-

During training, we 'sele.k such thatC(x;! ) is close to si cations and OOD samples from correct predictions as
KLoS (x;Y), by minimizing uncertainty increases far from in-distribution samples for
1 2 each class (Fig. 4d). By measuring a distance between the
Lkrosned! ;D) = < C(x;!) KLoS (x;y) ©  model's output and a class-wise target distribution, we can
(x3y)2D 5) observe that KLoS acts as a density estimator for each class.
At test time, we now directly use KLoSNet's scalar output3.2. Comparative Experiments
C(x;! ) as our uncertainty estimate.
When jointly detecting in-distribution misclassi cations and
3. Experiments QOD samples, _corrgct preqlicti(_)ns are considered as posi-
tive samples while misclassi ed inputs and OOD examples
We evaluate our approach against various baselifi®s: constitute negative samples. Following standard practices
order uncertainty metrics (Maximum Class probability (Hendrycks & Gimpel, 2017), we use the area under the

(MCP) and predictive entropyEntropy)), 2"%-order metrics ROC curve (AUROC) to evaluate threshold-independent



Beyond First-Order Uncertainty Estimation with Evidential Models for Open-World Recognition

Table 1.Comparative experiments on CIFAR-10. Misclassi cation (Mis.), OD and simultaneous (Mis+OOD) detection results (mean %
AUROC and std. over 5 runs). Bold type indicates signi cantly best performgmee@:05) according to paired t-test.

LSUN TinylmageNet STL-10
Method Mis. 00D Mis+tOOD| OOD Mis+OOD| OOD Mis+OOD

MCP (Hendrycks & Gimpel, 2017) 87.6 16 | 79.7 1.1 849 11 | 80.3 1.5 85.2 15 | 60.3 1:2 752 14
Entropy (Sensoy et al., 2018) 835 241|838 03 879 02 | 823 04 872 04 | 60.1 1.2 750 14
Con dNet (Corbere etal., 2019) | 90.2 08 | 82.1 1.5 87.6 11 | 835 06 88.3 07 | 615 16 772 11
Mut. Inf. (Malinin & Gales, 2019) | 84.1 15| 84.6 06 85.1 1.0 | 80.6 0:8 834 11 | 61.3 08 650 25
Diff. Ent. (Malinin & Gales, 2018)| 86.8 1:0 | 85.6 05 87.2 0:7 | 82.7 07 858 08 | 620 1.0 754 13

CIFAR-10
VGG-16

EPKL (Malinin, 2019) 839 15| 845 07 851 1.0 | 804 08 832 1.2 |61.3 08 738 11
ODIN (Liang et al., 2018) 86.0 20| 795 1:2 838 15 | 796 1.9 84.0 20 | 547 15 65.0 26
Mahalanobis (Lee et al., 2018) 91.2 03889 02 913 01 | 8.4 02 90.2 01 | 63.4 02 788 03
KLoSNet (Ours) 925 06| 87.6 009 91.7 09 | 86.6 09 912 08 67.7 14 818 09

(b) LSUN (c) CIFAR-100
T

g8 8 8
888

>
AU-ROC (%)

g 8
AU-ROC (%)

Density
Density

“
\ ' [ CAR100 STLT0 LU Suim mione

* etsona = * Semtsona (a) Mis. (b) OOD (c) Mis.+O0D

CIFAR-100 STL-10 LSUN SVHN  None

Figure 5.Effect of OOD training data on precisiory. Figure 6.Comparative results with varying OOD training datasets.

performance. Experiments are conducted with VGG-16.g., CIFAR-100 for models trained on CIFAR-10. In Fig. 6,
(Simonyan & Zisserman, 2015) architectures on CIFAR-10we vary the OOD training set used to train an evidential
(Krizhevsky, 2009). We also report experiments on CIFAR-model with the reverse KL-divergence loss (Malinin &
100 and with ResNet-18 (He et al., 2016) architecture inGales, 2019) and evaluate performances using Tinylma-
Appendix B.1. Along with simultaneous detection results,geNet as OOD test set. As expected, using CIFAR-100 as
we also provide separate results for misclassi cations dete@®OD training data improves performance for every measure
tion and OOD detection respectively in Table 1. (MCP, Mut. Inf. and KLoS). However, the boost provided by

. . AT raining with OOD samples depends highly on the chosen
On OOD detection, density estimation-based methods Suchataset: The performance of Mut. Inf. decreases from 92.6%

%Scll\lf;?]alggd?glzgnggi‘;srel\lset I%Létgséfofror? s?é?t(iar: QiEZ?ZAUC with CIFAR-100 to 82.9% when switching to LSUN,
9 . ' 9 fi\nd even becomes worse with SVHN (78.5%) compared

OOD training data is not available, there is no guarantee thato using no OOD data (80.6%). We also note that KLoS

every OOD sample will result in lower pr_edlcted Concemrabutperforms or is on par with MCP and Mut. Inf. in every
tion parameters as shown by the density plot of precision

o in Fig. 5a. This stresses the importance of class-wis setting. Most importantly, using KLoS on models without

density estimation. While Mahalanobis may sometimes bZOOD training data yields better detection performance than

slightly better than KLoSNet for OOD detection, it performs Other measures taken f“’”? models trained with inappropri-
2 S I . ate OOD samples, here being every OOD dataset other than
signi cantly less well in misclassi cation detection. As a

result, KLoSNet appears to be the best measure in every s(F-IFAR'loo‘

multaneous detection benchmark. For instance, for CIFAR- )
10/STL-10 benchmark, KLoSNet achiev@s8% AUROC 4. Discussion
while the second best, Mahalanobis, scat&8%. We also
observe that KLoSNet improves signi cantly misclassi ca-
tion detection, even compared to dedicated methods such
Con dNet. In Appendix B.2, we provide a detailed ablation
study to evaluate the impact of con dence learning.

We propose KLoSNet, an auxiliary model to estimate the
uncertainty of a classi er for both in-domain and out-of-
omain inputs. Experiments demonstrate its effectiveness
on simultaneous detection of misclassi cations and of OOD
samples, and reveal its class-wise density estimation be-
- . havior. Far from being the panacea, using training OOD
3.3. Effect of Training with OOD Samples samples depends critically on the choice of these samples for
The literature on evidential models only deals with an OODeXisting uncertainty measures. Conversely, KLoS is more
training set somewhat related to the in-distribution dataset0bust to this choice and can alleviate their use altogether.
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Synthetic Data. The training dataset (Fig. 4a) consists 5e4. The learning rate is initialized at 0.1 and reduced
of 1,000 samples$x;y) from a distributionp(x;y) over by a factor of 10 at 50% and 75% of the training progress.
R? f 1;2;3gde ned as: Images are randomly horizontally ipped and shifted by
1 pixels as a form of data augmentation.

P(x = xiy =y)= SN (x = X]j ’l2);  (6)

p_ p_ Balancing Misclassi ca- : | CIFAR-10 _ CIFAR-100

where 1 = (0; 3=2), 2 =( 1 3%2), 3 = tionand OOD Detection  [ran| 990 o1 912 02
(1; " 3=2)and =4.The marginal distribution of isa  The models used in the tu | eon ua 100 o2
Gaussian mixture with three equally weighted componentgxperiments present high

having equidistant centers and equal spherical covarianggredictive performances Table 2Mean accuracies (%)
matrices. as shown in Table 2. Most and std. over ve runs.

The test dataset consists of 1,000 other samples from thRften, there are much fewer misclassi cations in the test set.
distribution. Finally, we construct an out-of-distribution Hence, joint detection performances might be dominated
(OOD) dataset following Malinin & Gales (2019), by sam- by the (_avaluatlon of the quality of OOD dgtectlon. To miti-
pling 100 points inR? such that they form a “ring’ with gate this unbalance, we propose to consider the following
large noise around the training points. Some OOD sample$cheéme based on oversampling. Bgj be the subset of
will be close to the in-distribution while others will be very in-distribution test examples that are misclassi ed by the
far (see Fig. 3 of the paper). The number of OOD sample§Pserved model anklo the set of OOD test samples. We
has been carefully chosen so that it amounts approximatendomly sample jAoj points inAy, with = 1. Sup-

to the number of test points misclassi ed by the classi er.PoSiNgjAoj A wj, this corresponds to oversampling

Classi cation is performed by a simple logistic regression. the set of misclassi cations. This over-sar_npled setis then
added to the OOD set to form the negative examples for

A set of ve models is trained for 200 epochs using the detection training. The set of correct predictions remains
evidential training objective (Eq. 7 of the paper) with reg-the same. We observed that the variance in AUROC due to

ularization parameter = 5e-2 and Adam optimizer with  thjs sampling is negligible and we report only the mean.
learning rateD:02. Uncertainty metrics — MCP, Entropy,

Mut. Inf., Malahanobis and KLoS — are computed from
these models.

KLoSNet. We start from the pre-trained evidential model
described above. As detailed in Section 2.3, KLoSNet con-
sists of a small decoder attached to the penultimate layer

Image Classication Datasets. Experiments are . : .
conducted using CIFAR-10 and CIFAR-100 datasetsOf the main network. In CIFAR experiments, this corre-

(Krizhevsky, 2009). They consist B2 32 natural images sponds to VGG_16‘s fcl layer of size 512. This auxiliary
featuring 10 object classes for CIFAR-10 and 100 class,egeural network is composed of ve fully-connected layers

for CIFAR-100. Both datasets are composed with 50,00(5)f size 4,00’ e_xcept for the !ast layer obviously. KLpSNet
gecoders weightd are trained for 100 epochs with

training samples and 10,000 test samples. We furth . . : C
randomly split the training set to create a validation set O‘joss (Eqg. 11 in the main paper) and with Adam optimizer

: with learning ratele4. As KLoS ranges from zero to
10,000 images. large positive values>1000), one may encounter some
OOD datasets are TinylmageNeta subset of ImageNet issues when training KLoSNet. Consequently, we apply
(10,000 test images with 200 classes) —, LSUN (Yu et al.a sigmoid function, (x) = =, after computing the
2015) — a scene classi cation dataset (10,000 test images ®L-divergence between NN's output angl. To prevent
10 scenes) — and STL-10 — a dataset similar to CIFAR-1@ver- tting, training is stopped when validation AUC metric
but with different classes. We downsample each image ofor misclassi cation detection starts decreasing. Then, a
TinylmageNet, LSUN and STL-10to si&2 32 second training step is performed by initializing new en-

coderE%such that go = g and by optimizing weights
Training Details. We implemented in PyTorch (Paszke ( go;! ) for 30 epochs with Adam optimizer with learning
et al., 2019) a VGG-16 architecture (Simonyan & Zisserratele-6. We stop training once again based on validation
man, 2015) in line with the previous works of (Malinin & AUC metric.
Gales, 2019; Charpentier et al., 2020; Nandy et al., 2020),
with fqlly-connected layers reduged to 512 units. In bOt,hB. Additional Results
experiments, the models are trained for 200 epochs with
a batch size of 128 images, using a stochastic gradient dB-1. Results on CIFAR-100 and with ResNet-18

scent with Nesterov momentum 619 and weight decay . . .
In Table 3, we extend our comparative experiments on si-

Yhttps://tiny-imagenet.herokuapp.com/ multaneous detection to CIFAR-100 dataset and to mod-
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served bene tto make in-distribution and out-of-distribution
samples more separable. The tuning of the adversarial

with ResNet-18 architectures. Misclassi cation (Mis.), out-of- =" itude d d h | dooD d |
distribution (OOD) and simultaneous (Mis+OOD) detection resultsnp'sesmagnltu e depends on the evaluate ata. In

(mean % AUROC and std. over 5 runs). Bold type indicatesFigure 7a, we plot the AUC of each detection task with
signi cantly best performancep(< 0:05) according to paired different values of perturbation magnitutievith ODIN,

Table 3.Comparative experiments on CIFAR-10 and CIFAR-100

t-test Mahalanobis and our criterion KLoS, using SVHN as OOD
LSUN TinylmageNet STL-10 1 1 H
veod | wis | oop" " Mssoon| oon " mereon| o0op wsroon dataset. Even though there exists a particular noise value for
McP 849 08796 10 830 09 |77.2 07 BL8 07 | 585 L2 725 04 improved OOD detection (Fig. 7a, middle), increasing noise
Entropy 84.6 08| 79.6 11 828 09 | 77.2 0.7 8l6 07 | 584 L2 722 04 . _ . N N R
o® CondNet 90.7 0:4 | 846 11 886 06 | 835 L1 880 06 | 632 12 77.9 05 magmtude deteriorates performances in misclassi cation
T8 Mutinf 806 06 | 770 12 79.4 09 | 743 08 780 07 | 564 1.0 69.1 02 d A . | f‘[ f h h d | h
$Z Diff. Ent 827 06| 783 12 811 09 | 759 0:8 799 07 | 575 1.1 708 03 ion (Fig. 7 r m . B r n
%5 EPKL 80.2 06| 76.8 1.3 79.0 09 | 741 08 77.7 07 | 56.2 10 68.9 03 eteCto ( g a' e ) O eac . et O ) eSt ESU ts O t e
ODIN 83.7 07| 789 10 819 09 | 765 07 80.7 07 | 57.9 12 715 04
Mahalanobis 91.2 04 | 90.7 04 918 03 | 87.6 0.4 90.3 04 | 66.8 05 80.0 0:3 SImUItaneous deteCtlon taSk (Flg 7a’ rlght) Correspond to
KLoSNet (Ours)| 93.9 0:4 | 931 11 944 0:3 906 06 932 02 | 685 03 823 02 "= 0 as done in pTE‘ViOUS experiments
, .
MCP 829 08| 628 1.3 77.6 09 | 720 05 818 07 | 69.7 07 80.9 07
Entropy 82.2 08| 632 14 77.2 1:0 | 725 06 815 08 | 70.1 0:8 80.6 07
Seo Con dNet 844 06| 653 20 80.0 1:3 |73.8 06 837 07 | 71.5 0.6 827 03
i< Mut.Inf. 789 08| 656 07 762 09 |71.8 02 79.1 04 | 70.1 06 785 06
gg Diff. Ent. 80.2 08 | 656 09 77.2 08 | 727 03 804 04 | 71.0 05 79.7 05
&L> EPKL 788 08652 1.0 761 09 |71.6 02 789 04 | 70.0 0.6 783 0:6
o ODIN 82.1 08| 629 14 771 1.0 | 719 06 813 08 | 69.6 0:8 80.3 07
Mahalanobis 840 02| 711 1.0 824 05 |77.0 05 849 03 | 754 03 84.3 05
KLoSNet (Ours)| 86.7 0:4 | 68.4 1.1 83.0 06 764 04 864 04 | 750 05 86.0 0:4
MCP 84.0 04 | 704 09 81.0 03 | 76.6 05 83.6 04 | 754 05 83.1 02
Entropy 83.7 0:4| 704 09 80.8 03 | 769 05 835 03 | 757 05 830 03
83 Con dNet 87.1 02| 73.0 14 845 06 | 79.1 03 86.8 0:3 | 785 08 86.6 05
< Mut. Inf 826 04| 702 1:1 80.0 04 | 764 06 826 03 | 751 05 821 03
%% Diff. Ent 83.0 04| 70.1 11 80.2 04 | 76.8 0.5 83.0 03 | 75.6 05 825 03
%gg EPKL 825 04| 702 11 80.0 0:4 | 76.3 06 825 0:3 | 75.0 05 82.0 0:2
ODIN 83.7 0:4 | 70.3 09 80.8 03 | 76.6 0:5 835 03 | 754 05 83.0 03 (a) CIFAR-10/ SVHN
Mahalanobis 859 04| 752 06 845 01 | 784 05 859 03 | 77.5 0.4 856 03

KLoSNet (Ours)| 86.9 0:3 | 73.1 0:4 844 01 80.8 02 873 02 | 79.0 02 86.7 03

Table 4.Impact of con dence learning. Comparison of detection
performances between KLoS and KLoSNet for CIFAR-10 and
CIFAR-100 experiments with VGG-16 architecture.

LSUN TinylmageNet STL-10
Method Mis. 00D Mis+OOD [e]e]>} Mis+OOD [e]e]>} Mis+O0D
CIFAR-10  KLoS

921 03 ‘ 865 03 91.2 02 ‘85.4 03 904 02 ‘64.1 03 796 03 (b) CIFAR-10/LSUN

925 0:6 | 87.6 09 91.7 09 | 866 09 91.2 08 | 67.7 1.4 818 09

85.4 0:2]651 11 813 06 | 745 0:4 854 04 | 727 0:3 84.8 04
86.7 0:4 | 684 11 830 06 | 76.4 0:4 86.4 04 | 750 05 86.0 0:4

VGG-16  KLoSNet

CIFAR-100 KLoS
VGG-16  KLoSNet

els with ResNet-18 architecture. We can observe that den-
sity estimation-based methods, Mahalanobis and KLoSNet,
still outperform second-order measures in OOD detection.
KLoSNet improves also misclassi cation detection, even
compared to dedicated methods such as Con dNet. These
results con rm that simultaneous detection of misclassi ca-
tions and OOD samples can be signi cantly improved by
KLoSNet in settings without OOD training data.

(c) CIFAR-10/ TinylmageNet

B.2. Impact of Con dence Learning
) (d) CIFAR-10/ STL-10
To evaluate the effect of the uncertainty measure KLoS and

of the auxiliary con dence network KLoSNet, we report Figure 7 Effect of inverse adversarial perturbations on OOD-
a detailed ablation study in Table 4. We can notice thatlesigned measures and KLoS for misclassi cation detection, OOD
KLoSNet improves misclassi cation over KLoS but also detection and simultaneous detection with VGG16 architecture.

OOD detection in every benchmark. We intuit that learning ) ) ]
to improve misclassi cation detection also helps to spotVorse, except with SVHN, adversarial perturbations are
some OOD inputs that share similar characteristics. detrimental even to OOD detection. We report the AUC

results of varying adversarial perturbations on CIFAR-10
dataset when using LSUN (Fig. 7b), TinylmageNet (Fig. 7c)
and STL-10 (Fig. 7d) as OOD datasets. Best results on each
In the original papers, ODIN and Mahalanobis preprocessonsidered task correspond'te 0 and KLoS outperforms
inputs by adding small inverse adversarial perturbations tdboth Mahalanobis and ODIN. As opposed to results with
reinforce networks in their prediction; this has also the obSVHN as OOD dataset, we did not observe improvements

B.3. Impact of Adversarial Perturbations
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on any method (ODIN, Mahalanobis and KLoS) whenusing log (1+1 =) log (C 1+1=) log (C) does
inverse adversarial perturbations for OOD detection withnot depend on the model parameters
LSUN, TinylmageNet and STL-10 datasets. Similar resultsln summary. minimizing the evidential training obiective
are observed in (Liang et al., 2018) (Appendix B, Fig. 8) ) ry, mir g the evide g 0ol

. X : : Lyva( ;D) is equivalent to minimizing th&LoS value of
when using WideResNet architectures. Regarding Mahagach training boink
lanobis (Lee et al., 2018), the authors only provided ablation gp '

for SVHN dataset.

C. Link between KLoS* and Evidential
Training Objective
Let us remind the de nition of KLoS as a KL divergence be-

tween the model's output and a sharp Dirichlet distribution
with concentrations y focused on th@redictedclassy:

KLoS (x;y), KL Dir j jibir jy ; (7)
where = expf(x; ) is model's output and , =
(2;:::;1; ; 1;:::; 1) are the uniform concentration param-

eters except for the true class witle 1= +1.

The KL-divergence between two Dirichlet distributions can
be obtained in closed form and KLoS* can be calculated as:

KLoS (x;y)= KL Dir j jjDir j, (8)
=log ( o) log(C 1+1=)

X
+log (1+1 =) log ( ¢)

X c=1
+ ¢ 1 (o (o

c6y

y (@+1=) (y) (o):
C)

On the other hand, the KL-divergence between the model's
output and a uniform Dirichlet distributioRir  j1 reads:

+

KL Dir j (x; ) jiDir j1

x
=log (o) log (C) log (<)
c=1
x
+ ¢ 1 (o (o) (10)

c=1

Hence, KLoS* can be written as:

KLoS (V)= = () (o)
+ KL Dir( j )jj Dir( j1)
+ log (1+1=) log(C 1+1=)
log (C) : (11)

P
Let us decomposkq( ;D) = Ni (x:y)2D lvar(X;y; ).

We retrieve thakLoS (x) / lva(X;y; )+ r wherer =



