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ABSTRACT

Various controls over the generated data can be extracted from the latent space of a pre-trained GAN,
as it implicitly encodes the semantics of the training data. The discovered controls allow to vary
semantic attributes in the generated images but usually lead to entangled edits that affect multiple
attributes at the same time. Supervised approaches typically sample and annotate a collection of latent
codes, then train classifiers in the latent space to identify the controls. Since the data generated by
GANs reflects the biases of the original dataset, so do the resulting semantic controls. We propose to
address disentanglement by subsampling the generated data to remove over-represented co-occuring
attributes thus balancing the semantics of the dataset before training the classifiers. We demonstrate
the effectiveness of this approach by extracting disentangled linear directions for face manipulation
on two popular GAN architectures, PGGAN and StyleGAN, and two datasets, CelebAHQ and FFHQ.
We show that this approach outperforms state-of-the-art classifier-based methods while avoiding the
need for disentanglement-enforcing post-processing.

1 Introduction

Generative Adversarial Networks (GANs) [1] produce high-resolution and photorealistic images by learning a mapping
between a latent space, modelled by a random distribution, and the real image space. New images can then be obtained
by randomly sampling in the latent space and feeding the latent codes to the generator. While it is easy to generate an
image, its semantic properties might not be the desired ones. In applications such as data augmentation, it could be very
useful to finely control the semantic properties of a generated image, especially to synthesize images that are difficult to
capture in practice.

Recent research aim at leveraging pre-trained unconditional GANs and exploring their latent space to uncover the
controls they can provide over the generated data. In particular, some methods find linear directions that can be
interpreted as variations of some semantic attributes across the latent space [2, 3, 4, 5, 6, 7, 8, 9]. However, the
discovered directions often do not allow disentangled edits, affecting multiple attributes instead of solely altering the
desired one. Learning-based supervised methods commonly rely on a three-stages pipeline that consists in sampling a
set of latent codes, then labelling the latent codes from the corresponding images using pre-trained image classifiers and
finally, extracting the directions. As GANs learn to approximate the real data distribution that carries different kinds of
biases, the sampling stage leads to generating biased datasets that can, in turn, affect the semantic directions. The third
stage is often performed by training a linear classifier to separate latent codes corresponding to images with a desired
attribute (positive set) from latent codes corresponding to images without the desired attribute (negative set). The
direction controlling the attribute is then taken as the vector orthogonal to the classifier’s decision boundary [10, 5, 7].
Existing correlations among attributes in the generated data may cause the positive and negative sets of a target attribute
to be strongly imbalanced in respect to other attributes, thus biasing the direction towards those attributes.

This paper is currently under consideration at Pattern Recognition Letters.
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Inspired by this observation, we propose to enforce disentanglement by learning the semantic directions on datasets that
are free from bias. Specifically, after sampling and labelling the latent codes, we subsample the dataset to balance the
attributes joint distributions and remove correlations.

We apply our method in the latent space of GANs trained for face synthesis to identify semantic directions corresponding
to facial attributes. We conduct experiments on two types of GAN architectures: PGGAN [11] and StyleGAN [12],
respectively pre-trained on CelebAHQ [13] and FFHQ [12]. We provide a quantitative and qualitative comparison with
the popular framework InterFaceGAN [5]. We show that our approach leads to directions that are naturally disentangled
whereas InterFaceGAN requires a post-processing step to reduce entanglement. We also show that, instead of relying
on linear classifiers, directly using the direction connecting class centroids can give meaningful attribute controls for
well-balanced data.

2 Related work

Early works on GANs uncovered some level of semantic structure in the latent space e.g. by applying vector arithmetic
on the latent codes [14]. Subsequent works focused on finding global directions in latent space corresponding to specific
factors of variation ranging from geometric transformations (e.g. position, scale) [4, 3, 15], memorability [16] to facial
attributes [5, 17, 2, 9, 15, 6, 8]. By varying the latent codes towards those directions, the corresponding semantic
properties of a generated image can be modified. Recent proposals argue that semantics distribute non-linearly and
locally [18, 19, 20] but such methods are more expensive as they require to compute a specific manipulation for each
input.

Unsupervised methods. Some works attempt to find semantic directions with self-supervised learning [9], unsupervised
approaches in latent space such as PCA [2], or by leveraging the internal representation of GANs to derive closed-form
solutions [8, 15]. However, since the semantics associated with each direction have to be manually identified afterwards,
the discovery of the directions of interest is not guaranteed. In contrast, supervised methods aim to find directions
corresponding to specific transformations a priori.

Supervised methods. These methods typically sample a large number of latent codes, then annotate the corresponding
synthesized images with semantic labels using pre-trained image classifiers [5, 10, 7, 20, 19, 18] to obtain a set of pairs
(latent code, semantic labels). This set can be employed to train linear classifiers and each semantic direction is defined
as the normal vector to the classifier decision boundary [10, 5, 7]. The latent codes are sampled according to the latent
space prior (usually a multivariate Gaussian), which transfers to the semantic directions the bias of the dataset used to
train the generator. In contrast, we propose a subsampling method to obtain a collection of latent codes that is balanced
w.r.t. multiple attributes and doesn’t carry strong correlations, thus mitigating the propagation of bias.

Disentanglement of semantics. Ideally, each of the discovered directions should control a single semantic property of
the images. But very often the relation between directions and semantic properties is not one-to-one, i.e. one direction
has an impact on several properties; one speaks of entanglement. To reduce entanglement, some propose to refine the
semantic directions afterwards, by enforcing an orthogonality constraint for the new directions. This post-processing
step is referred to as “conditional manipulation” in [5, 20]. Spingarn et al. [15] introduce more constrained nonlinear
paths that are defined as small circles on a sphere. Other works argue that entanglement is reduced if the transformations
are learned together [6, 18]. For style-based GAN architectures, Hou et al. [19] propose to learn an attention mechanism
to manipulate the latent code for a particular layer. Differently from previous work, our method addresses entanglement
a priori by debiasing the data employed to discover the directions. Hence, we argue that it can be complementary to
previous proposals.

3 Balanced sampling and direction estimation

Let us consider a pre-trained generator G(.) that maps a latent code z sampled from a d-dimensional latent space
Z ⊆ Rd to an image I = G(z) in image space I ⊆ RH×W×C . Suppose the images are described by a set of binary
attributes A = {aj , 1 ≤ j ≤ m}. For each attribute aj we aim to find a global linear direction in the latent space,
defined by unit vector uj ∈ Rd, that allows to modify attribute aj , and only attribute aj , in a generated image by
translating the corresponding latent code z in that direction, z′ = z + αuj , α ∈ R being the moving step.

To find the directions, the procedure put forward in [17, 7] is: (i) train a multi-attribute image classifier FI on the
ground truth provided with the database (e.g. CelebA [13]); (ii) generate N latent codes and corresponding images
{(zi, G(zi))

N
i=1}; (iii) label every image with the classifier and associate the labels to the latent codes to produce

S = {(zi, FI(G(zi)))
N
i=1}; (iv) for each attribute j, train a linear classifier Ψj in latent space on the S+j and S−j sets

obtained from S by only considering the positive and respectively negative labels for attribute j. The direction in latent
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(a) CelebAHQ vs. generated data with
PGGAN CelebAHQ.

(b) Positives vs. negatives w.r.t.
“Glasses” for random sampling.

(c) Positives vs. negatives w.r.t.
“Glasses” for our sampling.

Figure 1: Joint distributions for three binary facial attributes “Age” (‘O’: Old, ‘Y’: Young), “Gender” (‘M’: Male, ‘F’:
Female) and “Smile” (‘S’: Smile, ‘NS’: No Smile). In (b), the positive set contains a majority of old males while the
negative set contains a majority of young females, leading to bias the direction “glasses” toward the attributes “age” and
“gender”.

space allowing to control attribute j is then defined by uj the unit vector that is orthogonal to the decision boundary of
the linear classifier Ψj .

3.1 Multi-attribute balanced sampling

The distribution of the binary attributes for a set of data can be represented in an m-dimensional contingency table
(one dimension per attribute) where each of the 2m cells contains the number of samples that have the corresponding
combination of values for the m attributes. If there are strong correlations between attributes in the GAN training
data then the contingency table for that data is strongly imbalanced. The data in S, generated by the trained GAN, is
expected to show similar correlations. The example in Fig. 1 (a) reveals that three attributes in the CelebA [13] dataset
are strongly correlated (some combinations are much more frequent than others) and this reflects well in the random
sample generated by the GAN1. For an attribute aj , the sets S+j and S−j employed for training a classifier in the latent
space mirror the imbalance in S . If we consider the attribute “Glasses” in CelebA, Fig. 1 (b) shows how imbalanced the
associated S+j and S−j sets are with respect to the three attributes in Fig. 1 (a). It is natural to expect that the classifier
Ψj trained on such imbalanced data is influenced by the strong correlations. And, consequently, the unit vector uj that
is orthogonal to its decision boundary entangles the control of the target attribute with the most correlated attributes.

The idea of the method we propose is simple: subsample the data in S so as to obtain approximately the same number
of samples in each cell of the contingency table. By removing the correlations from this table, we expect to strongly
reduce the entanglement.

More precisely, we build a multi-attribute balanced sample B ⊂ S by iteratively selecting data from S until we reach
the total number of samples N0 ≤ N we aim to obtain. At each iteration, we first uniformly sample one combination
of attribute values (one cell of the contingency table), then we uniformly sample without replacement one data point
(z, FI(G(z))) with that combination. In this way, at the end of the sampling procedure, we expect to have a balanced
contingency table for B where each of the 2m cells contains approximately N0

2m data points, as shown in Fig. 1 (c).

The subsampling procedure works well if there is enough data in S for each combination of attribute values. For strongly
imbalanced data, we may have to address the case where there is no more data in S for one or more combinations before
reaching the desired total number of samples N0. Note that, as we show in Section 4, good results can be obtained
with moderate values for N0. The ideal solution for having a balanced B is to expand S by generating more images
with G. But this can be very expensive since, as we found, the imbalance of S reflects the imbalance of the training
dataset. Hence, we may require the generation of a very large number of images to obtain one more image with a rare
combination of attribute values.

The solution we adopt consists in simply skipping the current iteration if no more data is available for that combination.
The resulting B is no longer so well-balanced but, as we show in Section 4.2, there is a graceful decay in performance.
An alternative is to oversample the data corresponding to the rarest combinations of attribute values, i.e. random sample

1Other attributes in CelebA are also strongly correlated.
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with replacement for a combination if its cell in the contingency table of S has much less than N0

2m data points. As
shown in Section 4.2, this makes the decay in performance yet more graceful.

3.2 Direction estimation

The sampling procedure we described leads to a sample B of size N0 that is balanced w.r.t. all attributes. For each
attribute j, two sets B+j of size N+

j ≈
N0

2 and B−j of size N−j ≈
N0

2 can be readily obtained by considering the data
having positive and respectively negative labels for attribute j. To find the direction uj in latent space that allows to
control attribute j, a good solution is to train a linear classifier on B+j ∪B

−
j , then take as uj the vector orthogonal to the

decision boundary. Preference is usually given (e.g. [5]) to linear Support Vector Machines (SVMs) that are fast to train
and effective in high dimensions. To improve generalization, the value of the regularization hyperparameter could be
selected by cross-validation. But as we find later in Section 4.3, when the dataset is balanced, a stronger regularization
(larger SVM margin) tends to produce directions that allow more disentangled edits. If the linear SVM has a very large
margin, the decision boundary becomes orthogonal to the line connecting the centroids of the two classes. For attribute
aj , this direction is defined by:

uj =
1

N+
j

N+
j∑

i=1

z+i −
1

N−j

N−
j∑

i=1

z−i , z+ ∈ B+
j and z− ∈ B−j . (1)

Experiments in Section 4.3 show that entanglement is further reduced when this easy-to-compute direction is used to
control the corresponding attribute.

4 Experiments

We evaluate and compare our proposal with the state-of-the-art method InterFaceGAN [5], considering the same
attributes “glasses”, “gender”, “smile” and “age”. For InterFaceGAN, the corresponding attribute control directions
respectively produce the following effects: wearing glasses, presenting as male, smiling and getting younger. Section 4.1
provides a detailed quantitative analysis of the effect a direction has for different attributes. The impact of sample size is
evaluated in Section 4.2, while in Section 4.3 we study regularization. Identity preservation is assessed in Section 4.4.-
Finally, qualitative results are shown in Section 4.5.

Models. We conduct experiments with state-of-the-art GAN models trained on two face datasets, PGGAN Cele-
bAHQ [11] and StyleGAN FFHQ [12], generating 1024× 1024 images (experiments with StyleGAN FFHQ trained
on 256 × 256 images are shown in the supplementary material). Following [5], we train an auxiliary classifier on
CelebA [13] with a ResNet-50 [21] using multi-task learning to predict the attributes simultaneously. For each attribute,
the task is a bi-classification problem with a softmax cross-entropy loss. We ensure that the accuracy of the classifiers is
above 80% (see details in the supplementary material).

Implementations details. We synthesize N = 1M images with PGGAN CelebAHQ and N = 500K images with
StyleGAN FFHQ. We prepare a larger dataset for PGGAN as some combinations of attributes are rarer in CelebAHQ
than in FFHQ. We apply the attribute predictors to all the generated images and discard the samples having a confidence
below 0.9. For each attribute, we collect N0 = 1000 samples using our multi-attribute balanced sampling. We choose
this value depending on the number of samples in the cell with fewest samples (contingency tables are given in the
supplementary material). The semantic directions are then obtained by taking the direction defined by the centroids of
each class (see Section 3.2). For a fair comparison, we reproduce InterFaceGAN results instead of using the provided
directions as they were not computed using the same attribute prediction model2 nor the same number of samples. For
InterFaceGAN, we uniformly subsample the generated dataset then train linear SVMs with C = 1.0 3 to obtain the
semantic directions given by unit vectors. Since the dimension of the latent spaces of PGGAN and StyleGAN is 512,
these vectors are also 512d.

Metrics. As in [5], we use the re-scoring metric to quantify the desired effect and entanglement associated with a
direction. This metric measures how the attribute scores vary after manipulating the latent codes. Intuitively, a good
direction should induce an increase in the score corresponding to the target attribute while not affecting other scores.
Given a direction uj corresponding to attribute aj , the re-scoring for attribute ak is computed as:

∆sk =
1

n

n∑
i=1

[FI,k(G(zi))− FI,k(G(zi + αuj))] (2)

2The model was not made available by the authors.
3As in the code provided by the authors: https://github.com/genforce/interfacegan
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Glasse
s

Gender
Smile

Age

Glasses 0.39 0.34 -0.06 -0.29
Gender 0.09 0.50 -0.06 -0.22

Smile -0.03 -0.07 0.37 -0.02
Age -0.04 -0.31 -0.07 0.15

(a) IfGAN [5]

Glasse
s

Gender
Smile

Age

0.27 0.10 -0.02 -0.10
-0.00 0.41 -0.03 -0.02
-0.02 -0.04 0.36 -0.01
-0.02 -0.11 -0.04 0.13

(b) IfGAN + conditional [5]

Glasse
s

Gender
Smile

Age

0.32 0.07 -0.05 -0.07
0.01 0.42 -0.04 -0.05
-0.01 -0.02 0.36 -0.01
-0.02 -0.13 -0.06 0.14

(c) Our method

Table 1: Re-scoring results in Z space for PGGAN CelebAHQ. Each row shows the effect of a direction on all attributes,
each column shows the effect of all directions on an attribute. Effect (diagonal values) should be high, entanglement
(off-diagonal values) should be low.

The desired effect of direction uj is given by the re-scoring result for the target attribute aj (higher is better). The
entanglement of direction uj with another attribute ak is given by the re-scoring for that attribute (lower is better). We
also derive a metric based on re-scoring to obtain the overall entanglement associated with a direction. Similarly to
StyleSpace [22], we average the re-scoring results over the non-target attributes: 1

|A|−1
∑

i∈A\aj
|∆si|. To quantify

how the manipulations affect face identity, we employ a popular face recognition model pre-trained on VGGFace2 [23]
and compute the cosine similarity between face embeddings before and after editing, as in [6]. We extract embeddings
of dimension 2048.

Both metrics are evaluated on n = 2000 latent codes, we employ α = 0.2 for the editing and we report averages over 5
experiments.

4.1 Disentanglement analysis

PGGAN is a traditional GAN architecture where a code is sampled from a Gaussian latent space Z and fed to the
first convolutional layer. In addition to Z , StyleGAN introduces an intermediate latent spaceW whose distribution is
modelled by fully-connected layers and learned during training, leading to a less entangled space [12]. We compare our
method to InterFaceGAN before (IfGAN) and after conditional manipulation (IfGAN + conditional), the latter having
been introduced as an ad hoc disentanglement post-processing [5]. For attribute j, it consists in replacing uj by the its
projection on the subspace orthogonal to the directions found for the other attributes.

PGGAN. Table 1 (a) provides the re-scoring results for InterFaceGAN without conditional manipulation. We observe
that the diagonal scores increase after manipulating the latent codes, which shows that the directions have the desired
effect. On the other hand, some of the off-diagonal scores also increase, indicating entanglement with other attributes.
For instance, the direction “glasses” also affects the attributes “gender” and “age”. As shown in Table 1 (b), the
conditional manipulation allows to reduce the entanglement while maintaining the desired effect. According to
Table 1 (c), our approach succeeds to extract directions allowing disentangled edits without requiring conditional
manipulation. It outperforms significantly InterFaceGAN and performs slightly better than conditional manipulation.

StyleGAN. Table 2 shows the results in Z space. Compared to PGGAN there is less entanglement, probably because
FFHQ is a larger dataset and the attributes are less correlated than in CelebAHQ. Otherwise, we find similar tendencies.
In addition, the directions extracted with our approach have a stronger effect and are either on par or significantly more
disentangled than for InterFaceGAN, even with conditional manipulation. The results inW space are given in Table 3.
The W space being less entangled than Z , the results of InterfaceGAN are good (conditional manipulation is not
necessary) and those of our method are similar. At a lower resolution (StyleGAN 256× 256),W is nevertheless less
disentangled and our method significantly improves disentanglement w.r.t. InterfaceGAN (see supplementary material).

4.2 Impact of the sample size

We study the impact of the sample size on the effect of the extracted directions. For our method, we consider both
settings, i.e. sampling without replacement and sampling with replacement (oversampling). Figure 2 shows the results
in Z space for PGGAN CelebAHQ (similar results are given for StyleGAN FFHQ in the supplementary material, for
Z andW). For both our method and InterFaceGAN, we find that the effect and the entanglement increase with the
size of the sample. For moderate values of N0 the distributions are well-balanced, hence the level of entanglement
of our directions remains significantly below that of InterFaceGAN directions. However, we observe a significant
increase for N0 = 10 000, suggesting that the distributions are no longer balanced as many cells of the contingency
table have been emptied (see tables in the supplementary material). We find that oversampling allows to mitigate this
effect. Additionally, the size of the sample has a limited impact regarding direction variability between runs. Standard
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Glasse
s

Gender
Smile

Age

Glasses 0.36 0.23 -0.05 -0.19
Gender 0.16 0.37 -0.11 -0.18

Smile 0.03 -0.08 0.15 0.00
Age -0.12 -0.25 0.00 0.18

(a) IfGAN [5]

Glasse
s

Gender
Smile

Age

0.27 0.12 -0.01 -0.08
0.06 0.29 -0.07 -0.07
-0.04 -0.06 0.15 0.00
-0.07 -0.15 0.00 0.15

(b) IfGAN + conditional [5]

Glasse
s

Gender
Smile

Age

0.35 0.06 -0.02 -0.05
0.02 0.33 -0.08 -0.06
-0.01 -0.05 0.17 0.00
-0.07 -0.13 -0.01 0.17

(c) Our method

Table 2: Re-scoring results in Z space for StyleGAN FFHQ.

Glasses Gender Smile Age
Glasses 0.51 0.09 0.02 -0.09
Gender 0.08 0.39 -0.22 -0.06

Smile 0.09 -0.14 0.22 -0.03
Age -0.11 -0.11 -0.04 0.20

(a) IfGAN [5]

Glasses Gender Smile Age
Glasses 0.63 0.09 -0.07 -0.04
Gender 0.05 0.44 -0.10 -0.08

Smile 0.05 -0.06 0.22 -0.05
Age -0.09 -0.15 -0.01 0.20

(b) Our method

Table 3: Re-scoring results inW space for StyleGAN FFHQ.

deviations increase when we decrease the size of the sample but remain reasonably small. Following these observations,
we argue that a large sample size (as in [5]) is not necessary to obtain meaningful directions. Nevertheless, oversampling
allows to increase sample size for a stronger effect, while keeping a low entanglement.

4.3 SVM vs. centroids difference

For a balanced dataset obtained with the method described in Section 3.1, Fig. 3 shows for the Z space of PGGAN
CelebAHQ that a stronger regularization (smaller value of C) leads to smaller entanglement, while the effect on the
target attribute remains almost unchanged. Similar results are reported in the supplementary material for the Z and
W spaces of StyleGAN FFHQ. This observation led us to consider the case of a very large SVM margin, when the
decision boundary becomes orthogonal to the direction connecting the centroids of the two classes (see Section 3.2).
We find that this direction gives the best performances.

4.4 Identity preservation

Table 4 shows a quantitative evaluation of identity preservation. We compare our results with InterFaceGAN for the
different models. Some attributes affect the identity more than others, in particular “gender”. For InterFaceGAN, we
observe that the identity is less well-preserved when manipulating “age” and “glasses”, which might be explained by
the fact that they are entangled with “gender” (cf. Tables 1, 2). For “smile”, which is a well-disentangled attribute, we
perform slightly better or on par with InterFaceGAN for directions with similar effects (cf. Tables 1, 2, 3). This suggests
that our directions preserve the identity well. Our results in theW space of StyleGAN for the attributes “glasses” and
“age” are quite below those of InterFaceGAN, which is probably due to our directions having more effect (see e.g. Fig. 6
where we end up with quite occluding sunglasses).

Glasses Gender Smile Age

P S Z SW P S Z SW P S Z SW P S Z SW
IfGAN 0.59 ±

0.14
0.72 ±

0.13
0.70 ±

0.11
0.56 ±

0.14
0.66 ±

0.14
0.71 ±

0.13
0.74 ±

0.10
0.86 ±

0.09
0.81 ±

0.09
0.66 ±

0.15
0.70 ±

0.14
0.76 ±

0.11

Ours 0.77 ±
0.15

0.73 ±
0.13

0.63 ±
0.12

0.62 ±
0.14

0.74 ±
0.13

0.68 ±
0.13

0.79 ±
0.08

0.87 ±
0.08

0.78 ±
0.08

0.78 ±
0.10

0.73 ±
0.12

0.69 ±
0.11

Table 4: Identity preservation (higher is better) for manipulation in Z of PGGAN CelebAHQ (P) and in Z andW of
StyleGAN FFHQ (S Z resp. SW).
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Figure 2: Influence of sample size on the overall entanglement (top) and desired effect (bottom) associated with a
direction in the Z space of PGGAN CelebAHQ.

Figure 3: Influence of SVM regularization on the overall entanglement (top) and desired effect (bottom) associated with
a semantic direction in the Z space of PGGAN CelebAHQ.

4.5 Qualitative results

In Fig. 4, we show qualitative results in the Z space of PGGAN CelebAHQ and StyleGAN FFHQ. We find that the
images obtained with InterFaceGAN show significant entanglement. On par with the quantitative results, we notice
that the direction “glasses” is entangled with “age” and “gender”, the direction “gender” also affects the attributes
“age” and “glasses” and the direction “age” tends to feminize. In contrast, our directions better preserve the non-target
attributes. In Fig. 5 and Fig. 6 we show qualitative results for different amplitude values. Additional results for the
different attributes are presented in the supplementary material.

5 Discussion

While our method balances the sample to decorrelate the attributes, we observed that the resulting directions in latent
space are quasi-orthogonal (see supplementary material), which was not a priori expected. This may explain the success
of previous works that look for orthogonal directions in the latent space. For example, GANSpace [2] applies PCA
in theW space and the authors are able to assign semantic interpretations to the resulting directions (orthogonal by
definition). The conditional manipulation in InterFaceGAN [5] also enforces an orthogonality constraint among control
directions to reduce entanglement. This requirement of orthogonality did not have an a priori justification but our
results indicate that orthogonality in latent space could be a necessary condition for independent controls and, even for
unconditional GANs, the latent space does encode a significant part of the semantics. We believe that our subsampling
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Glasses Gender Smile Age Glasses Gender Smile Age

Figure 4: Qualitative results in Z space of PGGAN CelebAHQ (left) and StyleGAN FFHQ (right). First row: input
image. Second row: InterFaceGAN. Third row: our method.
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Figure 5: Continuous manipulation for the attribute “age” in Z space of PGGAN CelebAHQ.
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G

A
N

O
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s

Figure 6: Continuous manipulation for the attribute “glasses” inW space of StyleGAN FFHQ.

approach can prove beneficial to other works on GAN control that rely on sampling in the latent space. Two issues could
be raised. First, as in most works on finding supervised controls, we use pseudo-labels provided by image classifiers
that are assumed reliable. But they can also be affected by bias, with an impact on both the labelling of the training set
and the evaluation since re-scoring depends on the classifiers. However, results on FFHQ show that even classifiers
trained on smaller datasets like CelebAHQ transfer quite well. Second, using classifiers to find directions assumes that
samples can be grouped in classes. This nevertheless works surprisingly well for continuous attributes that are binarized
(e.g. “age”) and might not be a problem in practice.

6 Conclusion

We focused on the identification of linear directions in the latent space of a GAN to control semantic attributes of
the generated images. Our assumption was that the entanglement typically observed in such situations results from
strong correlations among attributes in the training data, that are transferred to the generated data. To address this

8
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issue, we proposed a simple and general method that balances the data among the different combinations of values
for the attributes. The evaluation on two popular GAN architectures and two face datasets shows that this approach
outperforms state-of-the-art classifier-based methods while avoiding the need for post-processing.
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