Sparse Divisive Feature Clustering
Résumé
We propose an approach based on a divisive algorithm for clustering variables in order to identify in a large data table underlying dimensions that are not necessarily orthogonal. The number of clusters does not have to be defined in advance. The clusters, which are as unidimensional as possible, are then represented in a parsimonious way by a small number of variables or components.
Origine | Accord explicite pour ce dépôt |
---|