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Abstract

In this work, vector framework based contraction theory to design interval observers for a
class of nonlinear systems having disturbances, inputs and outputs is exploited. The main
feature is that it does not require the formulation of error dynamics to show the conver-
gence properties and need not require the construction of a Lyapunov candidate function
without any idea of the structure of the function. Specifically, it performs the convergence
analysis through a comparison system which has specified properties. Furthermore, this
theory is exploited to design dynamic output feedback control through the obtained state
bounds from the constructed interval observer and the system outputs, to make the inter-
val observer to be globally asymptotically stable. Examples with simulation outcomes are
provided to validate the theoretical results.

1 INTRODUCTION

For the purpose of feedback control, all the states of a dynam-
ical system are not measurable due to a fewer number of sen-
sors. Thus, to reproduce all the information of these systems,
that is, to estimate the unmeasured states, observers [1] are used.
Basically, there is no need of state information in transient peri-
ods for the problems of stabilisation and tracking. However, in
the case of monitoring purposes and other essential practical
applications, there is a great need of state estimation at all times.
This type of knowledge of state estimation at all times cannot be
available from classical observers like Luenberger observer [2].
Moreover, classical observers do not provide guaranteed exact
estimates in the presence of perturbations and uncertainties. To
overcome these shortcomings and provide guaranteed state esti-
mations at all times in the presence of perturbations and uncer-
tainties, there comes the notion of interval observers [3]. They
play an important role in fulfilling the practical demands. In
fact, they have a major advantage over classical observers in
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the sense that they can easily cope up with large uncertainties
and have been successfully applied in biological fields [4] where
large uncertainties are present. Moreover, in the recent years,
interval observers have also been applied for several industrial
and engineering applications [5–9]. The structure of interval
observer comprises of two dynamical equations that estimate
upper and lower bounds (interval) of the state vector at all times
when the initial conditions are unknown and there are uncer-
tainties present in the system, however, these initial conditions
and uncertainties are bounded.

In the analysis and design of interval observers, two impor-
tant conditions need to be satisfied. The first is the framer
property, and the other one is the convergence property. To
prove the framer property, one needs to have a positive dynam-
ical system, that is, for example, for the linear systems case,
the system matrix should be a Metzler matrix. This property is
necessary to ensure the partial ordering of the state trajectories.
In other words, if the initial conditions are bounded between
two values (known), then the real state trajectory is bounded by
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936 SINGH ET AL.

the trajectories originating from these bounds. Furthermore, if
the system is a non-positive system, there are various methods
available in the literature for linear systems in particular [10], in
which by using time-varying transformations, the non-positive
system gets transformed into a positive system. In ref. [11], an
internal positive realisation scheme has been used to design
interval observers. Moreover, several works were reported in
the literature for the design of interval observers for nonlinear
systems and discrete-time systems as well (see refs. [12, 14–16]).
The second important property for the design of interval
observers is the convergence property. One needs this conver-
gence property to show that the norm of the error between
the state bounds converges to zero when the disturbance acting
on the system is zero. Several researchers (see refs. [17–20])
proved this convergence property using Lyapunov stability
analysis.

But still, in these types of convergence problems, there is a
need to find the convergence of the estimated state bounds and
the real state trajectory with respect to each other rather than
their convergence to a particular point or set. To show conver-
gence of trajectories with respect to each other, a particularly
stronger theory than Lyapunov stability, known as contraction
theory [21] exists in the literature. This theory differs from Lya-
punov stability in the sense that it does not require a specific
attractor to show stability and does not require the construction
of a Lyapunov candidate function without having any knowl-
edge of its structure. This theory analyses the stability in terms
of a differential framework, that is, a system is said to be sta-
ble in some region if its final behaviour is independent of initial
conditions and temporary perturbations, and hence, state trajec-
tories converge with respect to one another, therefore, this form
of stability is called as convergence, to remove any ambiguity.

However, contraction analysis usually utilised in the litera-
ture requires a complex procedure to solve matrix measure or
largest eigenvalue of the symmetric part of the Jacobian of large-
scale nonlinear systems to show convergence, since it considers
a scalar distance function. In such cases, convergence is per-
formed through a recently developed theory, a vector based
contraction theory [22]. This theory has been exploited for the
design of controller and observer in ref. [24]. It utilises vector
valued distances (vector valued norm) and a comparison system
to show convergence analysis. It provides an advantage over
the Lyapunov stability approach, in the sense that it has well-
specified structure of the comparison system to prove conver-
gence.

In this work, an interval observer for nonlinear systems con-
sidering inputs, outputs, and disturbances is designed using a
vector framework based contraction theory. In fact, this the-
ory is utilised to prove the convergence property of the interval
observer through a comparison system with specified proper-
ties. It provides the advantage over other existing approaches in
the way that it does not require the formulation of error dynam-
ics and need not require the Lyapunov candidate function to
show convergence. In addition, this theory is exploited to design
dynamic feedback control by the bounds obtained from the
constructed interval observer and the system outputs to make
the interval observer to be globally asymptotically stable. In the

end, several examples with simulation outcomes are illustrated
to validate the developed results. It can be observed that many
practical systems such as TORA (translational oscillator rotat-
ing actuator) [25] and electromechanical system [27] belong to
the family of systems affine in the unmeasured part of the state
variables. This fact motivates us to study this class of nonlinear
systems in the present work. To the author’s best knowledge, an
interval observer has not been designed yet using a contraction
framework particularly vector based contraction.

The further part of the paper is framed as follows. The
notions and preliminaries are entitled in Section 2. Section 3
provides the main results. Examples with respective simula-
tions are presented in Section 4. Finally, the conclusions end
the paper.

2 NOTATIONS AND PRELIMINARIES

Let ℝ and ℝ+ denote the set of real numbers and non-negative
real numbers. The n−tuple vector is denoted by ℝn. A matrix
is said to be a Metzler matrix if its off-diagonal entries are non-
negative. ‖ ⋅ ‖ is known as the Euclidean norm. B ≥ 0 means
that its entries are non-negative (i.e. bi j ≥ 0, i ≠ j ), where B is a
real matrix. We define vector valued norm of z ∈ ℝn as ‖z‖
in Equation (4). We use component-wise inequality, that is,
p < q or p ≤ q, for p = [p1, p2, … , pn]⊤ and q = [q1, q2, … , qn]⊤,
if pi < qi or pi ≤ qi for each i = 1, 2, … , n. The diagonal
matrix for a vector r = [r1, r2, … , rn]⊤ ∈ ℝn is represented by
diag(r ). A vector d = [d1, d2, … , dn]⊤ ∈ ℝn can also be written
as diag(d )𝟙, where 𝟙 is the n−tuple column vector: [1, 1, … , 1]⊤.
The set of all continuous functions from L to Q is denoted
by C [L,Q], where L and Q are non-empty sets. Assume
M ⊂ ℝn and v = (v1, v2, … , vn )⊤ be the element of M , we
say 𝜓 = (𝜓1, 𝜓2, … , 𝜓n )⊤ ∈ C [M , ℝn] as quasi-monotone non-
decreasing function on M if 𝜓i is non-decreasing in v j ∀ i =
1, 2, … , j − 1, j + 1, … , n and j ∈ {1, 2, … , n} [23].

2.1 Contraction analysis

Consider a nonlinear system

Π ∶ ż = 𝔽(t , z ), z (t0) = z0, t0 ≥ 0, (1)

where 𝔽 ∶ ℝ+ × ℝ
n → ℝn is a smooth nonlinear field and z ∈

ℝn represents the state vector. Let 𝜙(t , z0) be the unique solu-
tion of Π. Taking the partial differentiation of the system Π at
fixed time t ,

𝛿ż =
𝜕𝔽(t , z )

𝜕z
𝛿z +

𝜕𝔽(t , z )

𝜕t
𝛿t

Since time t is fixed, then 𝛿t = 0, hence the virtual dynamics of
the system Π at fixed time t is

Π𝛿 ∶ 𝛿ż =
𝜕𝔽(t , 𝜙(t , z0))

𝜕z
𝛿z = (t , 𝛿z, z ), (2)
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SINGH ET AL. 937

where  ∶ ℝ+ × ℝ
n × ℝn → ℝn is a general nonlinear func-

tion and 𝛿z ∈ ℝn is the infinitesimal virtual distance between
any pair of trajectories of system Π. We denote 𝛿𝜙(t , z0, 𝛿z0)
as the solution to Equation (2) with initial condition 𝛿z0 along
𝜙(t , z0). Thus, the derivative of scalar virtual distance 𝛿z

⊤
𝛿z is

given by

d
dt

(
𝛿z

⊤
𝛿z

)
= 2𝛿z

⊤
𝛿ż = 2𝛿z

⊤ 𝜕𝔽

𝜕z
𝛿z. (3)

Then, any virtual distance ‖𝛿z‖ converges exponentially to
zero as t →∞, if 𝜎max(t , z ) is uniformly negative definite (see
ref. [21]), where 𝜎max(t , z ) is the largest eigenvalue of the sym-

metric part of the Jacobian
𝜕𝔽

𝜕z
matrix. Or in simple words, this

virtual distance converges exponentially to zero, if the Jacobian
matrix is a Hurwitz matrix. Thus, a system (1) is said to be a
contracting (convergent) system.

2.2 Vector based contraction analysis

We note that it is quite difficult to formulate the Lyapunov can-
didate function without having any knowledge of its structure
to prove stability. Moreover, the calculation of the largest eigen-
value of the symmetric part of the Jacobian matrix is quite com-
plex for large-scale nonlinear systems in the case of contraction
analysis. In such cases, convergence analysis is done through
comparison systems. We discuss vector based contraction the-
ory as follows. In this, vector valued distance ‖ ⋅ ‖ ∶ ℝn → ℝn

is defined by

‖𝛿z‖ =√
L (diag(𝛿z ))2𝟙, (4)

where L = [li j ]n×n is a non-zero matrix with all li j non-negative.
Note that for 𝛿z = (𝛿z1, 𝛿z2, … , 𝛿zn )⊤ ∈ ℝn,

(diag(𝛿z ))2 =

⎡⎢⎢⎢⎢⎢⎣

𝛿z2
1 0 ⋯ 0

0 𝛿z2
2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝛿z2
n

⎤⎥⎥⎥⎥⎥⎦
, (diag(𝛿z ))2𝟙 =

⎡⎢⎢⎢⎢⎢⎣

𝛿z2
1

𝛿z2
2

⋮

𝛿z2
n

⎤⎥⎥⎥⎥⎥⎦
Thus, explicitly, Equation (4) can be written as

‖𝛿z‖ =
⎡⎢⎢⎢⎢⎢⎢⎣

D1(𝛿z )

D2(𝛿z )

⋮

Dn(𝛿z )

⎤⎥⎥⎥⎥⎥⎥⎦
≔

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√∑n

j=1 l1 j𝛿z2
j√∑n

j=1 l2 j𝛿z2
j

⋮

√∑n

j=1 ln j𝛿z2
j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The main result of this theory is given as follows.

Lemma 1 [22]. Consider the system (1). Suppose there exists solution

𝛿𝜙(t , z0, 𝛿z0) of the system (2) such that

d

dt
‖𝛿z‖2


< 𝜓

(
t ,L(diag(𝛿𝜙))2𝟙, 𝜙

)
where L = [li j ]n×n with li j ≥ 0 for all i, j = 1, 2, … , n and 𝜓 ∈
C [ℝ+ × ℝ

n × ℝn, ℝn], (t , w, z ) → 𝜓(t , w, z ) is a quasi-monotone

non-decreasing function in w ∈ ℝn. Further, if there exists a unique solu-

tion Z (t ) of the following comparison system

ẇ = 𝜓(t , w, z ), w(t0) = w0 ≥ 0. (5)

Then, any solution 𝛿𝜙(t , z0, 𝛿z0) of (2) on t ≥ t0 satisfying

L (diag(𝛿z0))2𝟙 < w0 follows

L (diag(𝛿𝜙(t )))2𝟙 < Z (t ) for all t ≥ t0.

From above, it is concluded that

If Z (t ) → 0 as t →∞, then ‖𝛿𝜙(t )‖→ 0 as t →∞, which

implies that all solutions of the original system (1) converge to each other

as t →∞.

Remark 1. It is important to discuss that how to design the
comparison system (5). Let us see some examples. In most of
the cases, this system (5) can be intuitively selected as a linear
system (let us say ẇ = Aw) in such a way that the matrix A has
non-negative off-diagonal entries (follows the property of quasi-
monotone non-decreasing). To further prove that the solution
of the comparison system Z (t ) → 0 as t →∞ which implies
that ‖𝛿𝜙(t )‖→ 0 as t →∞ (as seen in the conclusion of the
above result), the A matrix should be a Hurwitz matrix to prove
the comparison system to be contracting. In some of the cases,
the system (5) can be selected as a nonlinear system, then for
1 ≤ i ≤ n and all 1 ≤ j ≤ n, j ≠ i, pi = qi , p j ≤ q j implies that
𝜓i (t , p, z ) ≤ 𝜓i (t , q, z ) for the ith component of 𝜓(t , ⋅) and for
each t and z to prove the function 𝜓 to be quasi-monotone non-
decreasing.

2.3 General conditions in interval observer
design

Consider a general nonlinear system

ż = f (t , z, d (t )), z (t0) = z0, y = g(z ) (6)

where z ∈ ℝn is a state vector, y ∈ ℝp is the system out-
put, d (t ) ∈ ℝl is a locally Lipschitz bounded disturbance,
that is, d (t ) ≤ d (t ) ≤ d (t ), d (t ) ∈ ℝl , d (t ) ∈ ℝl , f ∶ ℝ+ ×
ℝn × ℝl → ℝn and g ∶ ℝn → ℝp are locally Lipschitz nonlin-
ear functions. The initial condition is unknown but bounded
between two values, z (t0) ≤ z (t0) ≤ z (t0).

Now, if the following system

𝜁̇ = h(t , 𝜁(t ), y(t ), d ′(t )) (7)

 17518652, 2022, 10, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12237 by C

ochrane France, W
iley O

nline L
ibrary on [30/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



938 SINGH ET AL.

with initial condition 𝜁0 = G (t0, z0, z0
), d ′ = (d , d ) and bounds

for z : z = H (t , 𝜁), z = H (t , 𝜁) (where h,G ,H ,H are Lips-

chitz functions with appropriate dimensions), 𝜁 ∈ ℝn, follows
two conditions:

∙ Framer property: For any set of initial conditions z0, z
0

and z0

inℝn satisfying z
0
≤ z0 ≤ z0, the solutions of system (6) and

(7) follow

z (t ) = H (t , 𝜁(t )) ≤ z (t ) ≤ z (t ) = H (t , 𝜁(t )), ∀ t ≥ t0

with initial conditions z0 and G (t0, z0, z0
).

∙ Convergence property: when d (t ) = 0, then the norm of the error‖e(t )‖ = ‖z (t ) − z (t )‖ or ‖z (t ) − z (t )‖ converges exponen-
tially to zero.
Then, it is called an interval observer for the system (6).

3 MAIN RESULTS

This section provides the main results. We consider following
class of nonlinear systems for our development.

ż = A(y)z + f (y, u) + Bd (t )

y =Cz

(8)

where z ∈ ℝn represents the states, u ∈ ℝq is the control
input, y ∈ ℝp is the system output, f is a general smooth
nonlinear function, d (t ) ∈ ℝl is the unknown bounded dis-
turbance with d (t ) ≤ d (t ) ≤ d (t ) and initial conditions are also
unknown but bounded between two bounds, that is, z

0
≤

z0 ≤ z0. A(y), B and C are the matrices with appropriate
dimensions with A(y) as a Metzler matrix for all y ∈ ℝp,
B ≥ 0 and C ≥ 0. Let z (t ) be the unique solution of system
(8).

Lemma 2 (Framer design). Consider two dynamics

ż = A(y)z + K (y − y) + f (y, u) + Bd , z (t0) = z0 (9)

ż = A(y)z + K (y − y) + f (y, u) + Bd , z (t0) = z
0

(10)

where y = C z, y = C z and K is a gain matrix with appropriate dimen-

sion such that −KC ≥ 0. Let z (t ) and z (t ) be the unique solutions of

the systems (9) and (10) respectively, then z (t ) and z (t ) are the upper and

lower bounds for the state z (t ).

Proof. Let e = z − z and e = z − z be the upper observation
and lower observation errors, respectively. The aim is to prove
that e(t ) and e(t ) are non-negative. The dynamics of the upper

error follow

ė = (A(y) − KC )e + B(d − d ). (11)

Similarly, the dynamics of the lower error are described by

ė = (A(y) − KC )e + B(d − d ). (12)

Because d ≤ d ≤ d and B ≥ 0, we have B(d − d ) ≥ 0 and
B(d − d ) ≥ 0. Bearing in mind A(y) Metzler for all y ∈ ℝp and
−KC ≥ 0, we deduce that A(y) − KC Metzler for all y ∈ ℝp.
Moreover, from the fact that e0 = z0 − z0 ≥ 0 and e

0
= z0 −

z
0
≥ 0, it follows that, for all t ≥ 0, e(t ) ≥ 0 and e(t ) ≥ 0. Thus,

z (t ) ≤ z (t ) ≤ z (t ). This allows us to conclude that Equations
(9) and (10) is a framer for Equation (8). □

Remark 2. If A(y) is not a Metzler matrix, we can use a change
of coordinates or any other transformations existing in the lit-
erature to make it Metzler as shown in particular in refs. [10, 12,
13]. We illustrate the case where A(y) is not a Metzler matrix in
Example 4 of Section 4.

Usually, it is not very difficult to achieve the framer prop-
erty, which is the notion of providing intervals in which state
variables stay, if one does not care the length of estimated inter-
vals. In fact, one can use an artificial system which over-bounds
terms to secure the positivity (non-negativity, more precisely)
ensuring the framer property [28]. Therefore, tools and compo-
nent ideas of the framer design are not necessarily novel. The
framer design proposed in Lemma 2 is the same as in ref. [12]
and as in many other studies on interval observers for nonlinear
systems in the literature. The goal of this paper is to present a
reasonable convergence property of the interval, which is not
always clear. In Assumption 3 of ref. [12], the authors clarify
how they can qualify the convergence property by employing
Lyapunov stability, which requires complex and difficult com-
putations, as the authors illustrated them in the numerical exam-
ple. The approach we propose in the present paper is very dif-
ferent from ref. [12] since it is based on ideas from contraction
theory, and hardly any computation is needed to expose it.

We introduce the following theorem as guidelines for select-
ing K in Lemma 2 to make framer Equations (9) and (10)
become interval observer (i.e. framer satisfies a convergence
property) for Equation (8).

Theorem 1. Consider the system (8) without disturbance d (t ). Let us

suppose that there exists the gain matrix K in Lemma 2 such that the

vector valued distance derivative along virtual dynamics of the system (9)

follows

d

dt
‖𝛿z‖2


< 𝜓

(
L (diag(𝛿z ))2𝟙

)
, ∀ t ≥ t0

for a non-zero matrix L = [li j ]n×n with all real li j ≥ 0, function 𝜓 ∈
C [ℝn, ℝn] satisfies the quasi-monotonicity non-decreasing property, and
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SINGH ET AL. 939

the comparison system obtained from this inequality is contracting, then the

error ‖e(t )‖ = ‖z (t ) − z (t )‖ converges exponentially to zero, that is,

for some constants s > 0 and k > 0

‖e(t )‖ ≤ kes(t−t0 )‖e(t0)‖.
Proof. Consider the vector valued distance function defined by
Equation (4). The vector valued distance derivative along virtual
dynamics of the system (9) is given by

d
dt

(‖𝛿z‖2


) = 2L diag(𝛿z ) (diag𝛿ż )𝟙

The gain matrix K is designed such that the above equality trans-
forms to the following inequality

d
dt

(‖𝛿z‖2


) < 𝜓
(
L (diag(𝛿z ))2𝟙

)
∀ t ≥ t0, (13)

where 𝜓 is a quasi-monotone non-decreasing function and the
comparison system obtained from this inequality (13), let’s say,
ẇ = 𝜓(w), w ∈ ℝn is contracting. Hence, from Lemma 1, the
distance between any pair of trajectories ‖𝛿z‖ of the estimated
system (9) converges exponentially to zero since the comparison
system trajectories converge exponentially to zero (comparison
system is contracting). This means that, for some constants k >
0 and s > 0, we have

‖z1(t ) − z2(t )‖ ≤ ke−s(t−t0 )‖z1(t0) − z2(t0)‖, ∀ t ≥ t0, (14)

for any two solutions z1(t ) and z2(t ) of the system (9). Further-
more, when d (t ) = 0, z (t ) is a particular solution of the system
(9) since system (9) and Equation (8) only differ in the correc-
tion term. Hence, the correction term vanishes when z (t ) is the
solution of Equations (9). Thus, z2(t ) and z1(t ) can be replaced
by z (t ) and z (t ) respectively, therefore the above Equation (14)
becomes

‖e(t )‖ = ‖z (t ) − z (t )‖ ≤ ke−s(t−t0 )‖e(t0)‖.
Hence, it is proved that the error of estimation converges expo-
nentially to zero. This completes the proof.

In a similar way, one can prove the exponential conver-
gence of the error ‖e(t )‖ = ‖z (t ) − z (t )‖ to zero. The pro-
posed method has the advantage that it does not require
the error dynamics formulation to show that the estima-
tion error ‖e(t )‖ = ‖z (t ) − z (t )‖ = ‖z (t ) − z (t )‖ converges
exponentially to zero, when the disturbance d (t ) = 0. It only
requires the virtual dynamics of the estimation dynamics (9)
and (10) to show that the derivative of the squared vec-
tor distance along this virtual dynamics follows Equation
(13).

Now, we provide a result to design feedback control u(y, z ) to
make the interval observer (9) and (10) to be asymptotic stable
when d , d and d are zero. □

Theorem 2. Consider the system (8), (9), (10) with d (t ) = 0, d and

d = 0. Let us assume that the origin is the equilibrium point of system

(8). Suppose there exists the control u(y, z ), u(0, 0) = 0, u as a general

smooth nonlinear function, such that the derivative of vector valued distance

along virtual dynamics of the system (8) follows

d

dt
(‖𝛿z‖2


) < 𝜓

(
L (diag(𝛿z ))2𝟙, z

)
∀ t ≥ t0,

for L = [li j ]n×n, li j ≥ 0, 𝜓 ∈ C [ℝn × ℝn, ℝn] satisfies the property

of quasi-monotonicity non-decreasing, and the comparison system obtained

from this inequality is contracting. Then, the origin of the system (8)

is globally asymptotically stable. Further, an interval observer (9) and

(10) is asymptotically stable with the control u(y, z ), when d and d are

zero.

Proof. The virtual dynamics of the system (8) with the control
u(y, z ) at fixed time t is obtained as

𝛿ż =

(
𝜕A(y)

𝜕z
z + A(y) +

𝜕 f

𝜕z
+
𝜕 f

𝜕u

𝜕u

𝜕z

)
𝛿z (15)

Consider the vector valued distance function defined by Equa-
tion (4). The vector valued distance derivative along the trajec-
tories of Equation (15) is given by

d
dt

(‖𝛿z‖2


) = 2L diag(𝛿z ) (diag(
𝜕A(y)

𝜕z
z + A(y) +

𝜕 f

𝜕z

+
𝜕 f

𝜕u

𝜕u

𝜕z
)𝛿z )𝟙

Now, the control u(y, z ) is designed such that the above vector
valued distance derivative follows the inequality

d
dt

(‖𝛿z‖2


) < 𝜓
(
L (diag(𝛿z ))2𝟙, z

)
∀ t ≥ t0,

where 𝜓 is a quasi-monotone non-decreasing function and the
comparison system obtained from this inequality, let us say,
ẇ = 𝜓(w, z ), w ∈ ℝn is contracting. Thus, from the results of
Lemma 1, the distance between any pair of trajectories ‖𝛿z‖ of
the system (8) converges exponentially to zero, that is, the trajec-
tories converge indeed to an equilibrium point (origin). Hence,
it is proved that with the control u(y, z ), the origin of the system
(8) is globally asymptotically stable.

Now, the proof goes in a similar way to show that the inter-
val observer (9) and (10) is also asymptotically stable with the
control u(y, z ), when d and d are zero.

In general, one can design u(y, z ) (respectively u(y, z̄ )) using
backstepping technique [29] and vector based contraction the-
ory. In fact, each component of vector valued distance is utilised
to prove the asymptotic stability of each subsystem. This con-
trol design procedure is clearly illustrated in Example 4 of
Section 4. □
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940 SINGH ET AL.

4 SIMULATION EXAMPLES

Example 1. Consider the system

ż1 = 𝜎(z2 + z1) + d (t )

ż2 = − 𝜂z2 + sin2(z1)z3 + z2
1 sin2(z1 − z3) + d (t )

ż3 = 𝛽z3 + cos2(z1 − z3)z2 + 𝜌z1 + d (t )

(16)

with outputs y1 = z1 and y2 = z1 − z3, where z = [z1, z2, z3]⊤ ∈
ℝ3 is the state vector, d (t ) is the unknown disturbance with d ≤ d (t ) ≤

d . Parameter values are given as 𝜎 = 1, 𝜂 = 5, 𝜌 = 5 and 𝛽 = 5.

We write the above system in the form

ż = A(y) + f (y) + Bd (t ) (17)

with

A(y) =

⎡⎢⎢⎢⎣
𝜎 𝜎 0

0 −𝜂 sin2(y1)

0 cos2(y2) 𝛽

⎤⎥⎥⎥⎦
, f (y) =

⎡⎢⎢⎢⎣
0

y2
1 sin2(y2)

𝜌y1

⎤⎥⎥⎥⎦
and B = [1, 1, 1]⊤. It can be observed that A(y) is Metzler for all y1 and

y2, since cos2(y2) and sin2(y1) are always non-negative for all y1 and y2,

but it is not a Hurwitz matrix. Now, an interval observer is designed as

follows

ż = A(y)z + K (y − y) + f (y) + Bd (18)

ż = A(y)z + K (y − y) + f (y) + Bd (19)

where K =

⎡⎢⎢⎣
K1 0
0 0
0 −K2

⎤⎥⎥⎦ is the gain matrix and y = Cz, C =

[
1 0 0
1 0 −1

]
. We use vector based contraction approach with d (t ) = 0

to prove the convergence property of the designed interval observer as the con-

struction of the Lyapunov candidate is not easy for a nonlinear system and

also there is no need of any specific attractor to prove convergence. Firstly,

we consider the system (18), the virtual dynamics of the system (18) is given

by

𝛿ż1 = (𝜎 − K1)𝛿z1 + 𝜎𝛿z2

𝛿ż2 = − 𝜂𝛿z2 + sin2(y1)𝛿z3

𝛿ż3 = K2𝛿z1 + cos2(y2)𝛿z2 + (𝛽 − K2)𝛿z3

(20)

0.10 0.2 0.3 0.4 0.5
 1(a) Time(sec)

3

4

5

z 1

0.050 0.1 0.15 0.2 0.25 0.3
1(b) Time(sec)

-10

-5

0

z 2

0.050 0.1 0.15 0.2
 1(c) Time(sec)

5

10

15

20

z 3

FIGURE 1 Interval observer for system (16) (1(a)(b)(c) with disturbance)

The derivative of the vector valued distance (assuming L as diag(𝟙)) along

the trajectories of Equation (20) is given by

d

dt
(𝛿z1)2 = 2(𝜎 − K1)𝛿z

2
1 + 2𝜎𝛿z1𝛿z2

≤ (3𝜎 − 2K1)𝛿z
2
1 + 𝜎𝛿z

2
2

d

dt
(𝛿z2)2 ≤ (−2𝜂 + | sin2(y1)|)𝛿z

2
2 + | sin2(y1)|𝛿z

2
3

d

dt
(𝛿z3)2 ≤ |K2|𝛿z

2
1 + | cos2(y2)|𝛿z

2
2 + (2𝛽 − 2K2 + |K2|

+ | cos2(y2)|)𝛿z
2
3

From the above inequalities, we obtain the quasi-monotone non-decreasing

(off-diagonal entries non-negative) comparison system, ẇ = Gw, with

G =

⎡⎢⎢⎢⎣
(3𝜎 − 2K1) 𝜎 0

0 (| sin2(y1)| − 2𝜂) | sin2(y1)|
|K2| | cos2(y2)| Q

⎤⎥⎥⎥⎦
where Q = (2𝛽 − 2K2 + |K2| + | cos2(y2)|). We select the gains

K1 = 10 and K2 = 40 to make the above matrix G Hurwitz (contract-

ing) and −KC ≥ 0. Hence, the original dynamics (18) is contracting. In

a similar way, the dynamics (19) can be proved to be contracting. Thus, the

system (18) and (19) is an interval observer for the system (16). The sim-

ulation results are shown in Figures 1 and 2 with and without disturbance

respectively with values: 3 ≤ z1(0) ≤ 4.5, −10 ≤ z2(0) ≤ −5, 4 ≤
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SINGH ET AL. 941

0 0.5 1 1.5 2
2(a) Time(sec)

3

4

5

z 1

0 0.5 1 1.5 2
 2(b) Time(sec)

-15

-10

-5

0

z 2

0 0.1 0.2 0.3 0.4

 2(c) Time(sec)

0

20

40

60

z 3

FIGURE 2 Interval observer for system (16) (2(a)(b)(c) without
disturbance)

z3(0) ≤ 7, z (0) = [4, −7, 5]⊤, d (t ) = 0.25 sin(t ), d = −0.25 and

d = 0.25.

Example 2. Consider the following self-excited nonlinear oscillator

([26])

ż1 = z2 + d (t )

ż2 = − 𝜔2
1 sin(z1) − 𝜌z2 + k1 arctan(k2(z1 − z3)) + d (t )

ż3 = 𝜔2(z1 − z3) + d (t )
(21)

with outputs y1 = z1 and y2 = z1 − z3, where z = [z1, z2, z3]⊤ ∈
ℝ3 is the state vector, d (t ) is the unknown disturbance with d ≤ d (t ) ≤

d . Parameter values are given as: 𝜔1 = 𝜔2 = 40, k1 = 5, k2 = 10
and 𝜌 = 1.

We write the above system (21) in the form

ż = Az + f (y) + Bd (t ) (22)

with

A =

⎡⎢⎢⎢⎣
0 1 0

0 −𝜌 0

𝜔2 0 −𝜔2

⎤⎥⎥⎥⎦
, f (y) =

⎡⎢⎢⎢⎣
0

−𝜔2
1 sin(y1) + k1 arctan(k2y2)

0

⎤⎥⎥⎥⎦

and B = [1, 1, 1]⊤. It is observed that the system matrix A is Metzler

but not Hurwitz matrix. Now, we design an interval observer as follows:

ż = Az + K (y − y) + f (y) + Bd (23)

ż = Az + K (y − y) + f (y) + Bd (24)

where K =

⎡⎢⎢⎣
K1 0
0 0
0 −K2

⎤⎥⎥⎦ is the gain matrix and y = Cz, C =

[
1 0 0
1 0 −1

]
. In a similar way, we consider first the system (23), the

virtual dynamics of the system (23) is given by

𝛿ż1 = − K1𝛿z1 + 𝛿z2

𝛿ż2 = − 𝜌𝛿z2

𝛿ż3 = (𝜔2 + K2)𝛿z1 − (𝜔2 + K2)𝛿z3

(25)

The derivative of the vector valued distance (assuming L as diag(𝟙)) along

the trajectories of (25) is given by

d

dt
(𝛿z1)2 = − 2K1𝛿z

2
1 + 2𝛿z1𝛿z2

≤ (1 − 2K1)𝛿z
2
1 + 𝛿z

2
2

d

dt
(𝛿z2)2 ≤ − 2𝜌𝛿z

2
2

d

dt
(𝛿z3)2 ≤ |𝜔2 + K2|𝛿z

2
1 + (−2𝜔2 − 2K2 + |𝜔2 + K2|)𝛿z

2
3

From the above inequalities, we obtain the quasi-monotone non-decreasing

(off-diagonal entries non-negative) comparison system, we consider first the

system (23) and obtain the comparison system, ẇ = Gw, where

G =

⎡⎢⎢⎢⎣
(1 − 2K1) 1 0

0 −2𝜌 0

|𝜔2 + K2| 0 (−2𝜔2 − 2K2 + |𝜔2 + K2|)
⎤⎥⎥⎥⎦

We select the gains K1 = 5 and K2 = 100 to make the above

matrix G Hurwitz (contracting) and −KC ≥ 0. Hence, the orig-

inal dynamics (23) is contracting. Similarly, the dynamics (24)

can be proved to be contracting. Thus, system (23) and (24) is

an interval observer for the system (21). The simulation results

are shown in Figure 3 with 2 ≤ z1(0) ≤ 5, 1 ≤ z2(0) ≤ 4,

3 ≤ z3(0) ≤ 8, z (0) = [4, 2, 6]⊤, d (t ) = sin(t ), d = −1 and

d = 1.
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0
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40
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80

z 2

0 0.5 1 1.5 2
 Time(sec)

4

6

8

z
3

FIGURE 3 Interval observer for system (21)

Example 3. Consider the modified self-excited nonlinear oscillator

ż1 = z2 + d (t )

ż2 = − 𝜔2
1 sin(z1) − 𝜌z2 + k1 arctan(k2(z1 − z3)) + d (t )

ż3 = 𝜔2z3 + d (t )
(26)

with outputs y1 = z1 and y2 = z1 − z3, where z = [z1, z2, z3]⊤ ∈
ℝ3 is the state vector, d (t ) is the unknown disturbance with d ≤ d (t ) ≤

d . Parameter values: 𝜔1 = 𝜔2 = 40, k1 = 5, k2 = 10 and 𝜌 = 1.

We write the above system in the form

ż = Az + f (y) + Bd (t ) (27)

with

A =

⎡⎢⎢⎢⎣
0 1 0

0 −1 0

0 0 𝜔2

⎤⎥⎥⎥⎦
, f (y) =

⎡⎢⎢⎢⎣
0

−𝜔2
1 sin(y1) + k1 arctan(k2y2)

0

⎤⎥⎥⎥⎦
and B = [1, 1, 1]⊤. The system matrix A is Metzler but not Hurwitz

matrix. Now, we design interval observer as follows:

ż = A(y)z + K (y − y) + f (y) + Bd (28)

ż = A(y)z + K (y − y) + f (y) + Bd (29)

0 0.1 0.2 0.3 0.4 0.5
 Time(sec)

2

4

6

8

10

z 1

0 0.1 0.2 0.3 0.4 0.5
 Time(sec)

-50

0

50

z 2

0 0.01 0.02 0.03 0.04 0.05
 Time(sec)

0

20

40

z 3

FIGURE 4 Interval observer for system (26)

where K =

⎡⎢⎢⎣
K1 0
0 0
0 −K2

⎤⎥⎥⎦ is the gain matrix and y = Cz, C =

[
1 0 0
1 0 −1

]
. In a similar way, we consider first the system (28) and obtain

the comparison system, ẇ = Gw, where

G =

⎡⎢⎢⎢⎣
(1 − 2K1) 1 0

0 −2 0

|K2| 0 (2𝜔2 − 2K2 + |K2|)
⎤⎥⎥⎥⎦

We select the gains K1 = 5 and K2 = 100 to make the above matrix

G Hurwitz (contracting) and −KC ≥ 0. Hence, the original dynam-

ics (28) is contracting. In a similar way, the dynamics (29) can be

proved to be contracting. Thus, the system (28) and (29) is an inter-

val observer for the system (26). The simulation results are shown in

Figure 4 with 2 ≤ z1(0) ≤ 5, −20 ≤ z2(0) ≤ −5, 3 ≤ z3(0) ≤ 8,

z (0) = [4, −10, 6]⊤, d (t ) = 0.5 sin(t ), d = −0.5 and d = 0.5.

Example 4. Consider a model of an electromechanical system ([27])

ż1 = z2 + d (t )

ż2 = b1z3 − a1 sin(z1) − a2z2 + d (t )

ż3 = b0u − a3z2 − a4z3 + d (t )

(30)

with output y = z1, where z = [z1, z2, z3]⊤ ∈ ℝ3 is the state vector,

d (t ) is the unknown disturbance with d ≤ d (t ) ≤ d . Parameters values

are b0 = 40, b1 = 15, a1 = 35, a2 = 0.25, a3 = 36 and a4 = 200.
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SINGH ET AL. 943

We write the above system (30) as follows

ż = Az + f (y, u) + Bd (t ) (31)

with A =

⎡⎢⎢⎢⎣
−1 1 0

0 −0.25 15

0 −36 −200

⎤⎥⎥⎥⎦
, f (y, u) =

⎡⎢⎢⎢⎣
1

−35 sin(y)

40u

⎤⎥⎥⎥⎦
and B = [1, 1, 1]⊤. It is observed that the system matrix A is not a

Metzler matrix, but a Hurwitz matrix.

We design control u to make the system (30) to be asymptotically stable

using vector based contraction theory. To start with, consider the system (30)

with d (t ) = 0, let the input to the first subsystem be z2 = −z1 to obtain

the subsystem ż1 = −z1 to be exponentially stable. Let the deviation vari-

able be q1 = z2 + z1 to transform the system into the structure

ż1 = q1 − z1

q̇1 = b1z3 − a1 sin(z1) + 0.75q1 − 0.75z1

Let us select the control z3 =
1

b1
(a1 sin(z1) − 2.75q1 + 0.75z1) to

obtain the subsystem q̇1 = −2q1 to be exponentially stable. Let us

again select the derivation variable as q2 = z3 −
a1

b1
sin(z1) +

2.75q1

b1
−

0.75

b1
z1 to transform the system into

ż1 = q1 − z1

q̇1 = q2 − 2q1

q̇2 = b0u −

(
a3 +

6.25
b1

)
z2 − a4z3 −

a1

b1
cos(z1)z2 −

5.5
b1

z1

+
2.75
b1

q2

(32)

The derivative of the vector valued distance (assuming L as diag(𝟙)) along

the trajectories of the virtual dynamics of Equation (32) is given by

d

dt
(𝛿z1)2 ≤ − 𝛿z2

1 + 𝛿q2
1

d

dt
(𝛿q1)2 ≤ − 3𝛿q2

1 + 𝛿q2
2

d

dt
(𝛿q2)2 = 2𝛿q2

(
b0𝛿u −

(
a3 +

6.25
b1

)
𝛿z2 − a4𝛿z3 −

5.5
b1
𝛿z1

−
a1

b1
(− sin(z1)z2𝛿z1 + cos(z1)𝛿z2) +

2.75
b1

𝛿q2

)

We select

𝛿u =
1
b0

((
a3 +

6.25
b1

)
𝛿z2 + a4𝛿z3 +

5.5
b1
𝛿z1

+
a1

b1
(− sin(z1)z2𝛿z1 + cos(z1)𝛿z2) −

2.75
b1

𝛿q2 − a4q2

)

100 20 30
(a) Time(sec)

-5

0

5

z 3

100 20 30
(b) Time(sec)

-5

0

5

z 3

FIGURE 5 Interval observer for system (30) using (a) method in ref. [12]
and (b) proposed method

to obtain the following linear comparison system

ẇ1 = − w1 + w2

ẇ2 = − 3w2 + w3

ẇ3 = − 2a4w3

to be quasi-monotone non-decreasing (off-diagonal entries non-negative)

and contracting. Hence, the system (30) with d (t ) = 0 is contract-

ing and thus the system trajectories converge to indeed an equilibrium

point (origin) with the obtained control u(y, z ) (obtained by integrating

𝛿u),

u(y, z ) =
1
b0

((
a3 +

(6.25)
b1

− 36.7

)
z2 +

(
5.5
b1

− 26.69

)
z1+

2a1

b1
cos(z1)z2 +

a1

b1

(
a4 +

2.75
b1

)
sin(z1) −

2.75
b1

z3

)
.

Now, the interval observer is formulated using time-invariant transforma-

tion as discussed in ref. [12] to transform the system matrix into a Metzler

matrix. And, from Theorem 2, the formulated interval observer is asymp-

totically stable with the control u(y, z̄ ). We compare the performance of the

interval observer with the control designed in ref. [12] and the proposed

control (u(y, z )), using state bounds from the interval observer itself and

the system outputs considering d (t ) =
1

9
sin(t ), d = −

1

9
and d =

1

9
.

From the Figure 5, it can be noticed that the convergence time is less in

the case of the proposed method as compared to the method in ref. [12].

Moreover, it does not require the Lyapunov candidate function formulation

to show asymptotic stability of the interval observer.

5 CONCLUSION

An interval observer has been designed for a class of non-
linear systems by the exploitation of the recently developed
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944 SINGH ET AL.

theory known as vector based contraction theory. It provides an
amenable feature that it does not require the formulation of Lya-
punov candidate function to show stability, since there is no idea
about its formulation, and does not require the construction
of error dynamics to prove that the estimation error converges
to zero. Dynamic output feedback control has been designed
using state bounds from the constructed interval observer to
prove it to be globally asymptotic stable. In the end, examples
were illustrated to show the efficacy of the theoretical results.
The proposed methodology can be extended to design interval
observers for the systems having delays in the future.
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