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Abstract An electromechanical model for beam-like piezoelectric energy harvesters based on Reissner’s
beam theory is developed in this paper. The proposed model captures first-order shear deformation and large
displacement/rotation, which distinguishes this model from other models reported in the literature. All gov-
erning equations are presented in detail, making the associated framework extensible to investigate various
piezoelectric energy harvesters. The weak formulation is then derived to obtain the approximate solution to
the governing equations by the finite element method. This solution scheme is completely coupled, and thus
allows for two-way interaction between mechanical and electrical fields. To validate this model, extensive
numerical examples are implemented in the linear and nonlinear regime. In the linear limit, this model pro-
duces results in excellent agreement with reference data. In the nonlinear regime, the large amplitude response
of the piezoelectric beam induced by strong base excitation or fluid flow is considered, and the comparison of
results with literature data is encouraging. The ability of this nonlinear model to predict limit cycle oscillations
in axial flow is demonstrated.

1 Introduction

The growing demand for small-sized and low-power electronic devices has led to a focused research effort
on the technology of energy harvesting, by which a permanent and autonomous power generator is possible
due to the extraction of a usable form of energy from ambient energy sources. The locally available energy
sources include mechanical, thermal, solar energy, and so forth. They can be converted to electrical energy
by a particular transduction mechanism of either fundamental physical interactions (e.g., Faraday’s law, from
magnetic to electric) or material properties (e.g., piezoelectric media, from mechanical to electrical).

The interest of this study is piezoelectric energy harvesters (PEHs). One of the commonly investigated
configurations of PEHs is a cantilevered beam made of a flexible and conducting material as a substrate
layer with one (unimorph) or two (bimorph) piezoelectric layer(s) and a harvesting circuit attached. Similar
laminated piezoelectric structures may also be used as sensors/actuators [1,2], if the main focus is on control
applications. For energy harvesting applications, the external excitation source can be a vibrating host structure
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[3–5] or fluid flow [4,6–9]. In the latter case, significant attention has been paid to PEHs in axial flow [8,10],
where the effective and sustained extraction of flow energy is expected from limit cycle oscillations (LCOs).
LCOs are large-amplitude self-excited and self-limiting vibrations resulting from, e.g., aeroelastic nonlinearity
[10].

Accurate mathematical modeling is crucial to the design and optimization of PEHs. To date, lumped
parameter [11] and distributed parameter [12]models have been developed in literature, and detailed discussion
of issues and corrections of these models can be found in [13]. Among distributed parameter beam models,
Euler–Bernoulli beam assumptions together with small displacement/rotation are most commonly used. It is
well known that Euler–Bernoulli beam theory works perfectly for thin beams. However, for thick beams with
low length-to-thickness aspect ratio, which leads to non-negligible rotary inertia effects and shear deformation
[14], the Timoshenko beam theory would be a better choice. In 2010, Dietl et al. [15] proposed a Timoshenko
beam model for a cantilevered bimorph PEH using the methodology of force and moment balance. Based
on this paper, Zhu et al. [16] performed a more concrete analysis of the difference between the two PEH
models. It is reported that at low length-to-thickness aspect ratio, the Euler–Bernoulli model tends to over
predict the resonance frequency as well as the electrical output of the energy harvester. Energy methods are
also adopted to build a Timoshenko beam model for PEHs, such as the work by Erturk [14]. More recently,
Zhao et al. [17] also presented a Timoshenko beammodel for a unimorph PEH. The unique contribution of this
investigation consists in the solution: The steady-state Green’s function method and Laplace transformmethod
are firstly used to obtain the closed-form solution to the electromechanical PEH model. All these models are
geometrically linear and thus only feasible in small deformation regimes.

When it comes to large deformation regimes, for instance, harvesting energy from LCOs, as mentioned
above, geometrical nonlinearity of the structure must be taken into account. The most popular nonlinear
structural model in this field is the inextensible beam model [8,10,18,19]. This model is derived from Euler–
Bernoulli beam assumptions [20]. Therefore, it also suffers from the limitations indicated above in [16].
Further, since the above investigations [14–17] were only performed in the linear regime, more efforts are
needed to explore the difference between PEHmodels based on Euler–Bernoulli assumptions and Timoshenko
assumptions in the nonlinear regime.

Apart from analytic approaches with closed-form solutions generally used in the aforementioned research,
the approximate solutions using the finite element (FE) method are also proposed, e.g., models based on Euler–
Bernoulli assumptions by [6,21,22], a linear three-dimensional (3D) model by [23]. Finite element modeling
is particularly valuable when studying the electromechanical behavior of complex PEHs because closed-form
solutions are only available to PEHs with simple configurations [23].

This paper presents a nonlinear model of PEHs based on the geometrically exact beam theory [24]. With
exact kinematic relations, this model incorporates first-order shear deformation and allows for large displace-
ment/rotation. These two benefits are validated in the linear regime and the nonlinear regime, respectively.

2 General governing equations

In this Section, the equations governing the electromechanical behavior of a beam-like PEH are presented. For
the sake of brevity, only a symmetric bimorph with a parallel-connection circuit is considered, but the basic
idea of this method can be extended to consider PEHs in other configurations, as seen in the various numerical
examples in Sect. 4 and the discussion on partial coverage of electrodes in Sect. 2.3.

2.1 Strong form equations

The geometrically exact beam theory dealing with the plane deformation of an originally straight beam [24]
is used. The plane deformation may be stretching, bending, and shearing, which is linked to the axial strain
ε, curvature κ , and shear strain γ , respectively. The cross section of the composite beam is rectangular and
assumed to perform only rigid body motions during the deformation.

The electrodes are assumed to continuously cover the entire top and bottom surfaces of the upper and lower
piezoelectric layers. In this case, the electric potential on each surface does not change in the axial direction
of the beam, which is also called the equipotential condition [23]. The mechanical effects and the resistance
of the electrodes are negligible.

A global Cartesian coordinate system O − XY Z is used to describe beam deformation, and the reference
configuration A is for the undeformed beam while the current configuration A∗ is for the deformed beam.
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Fig. 1 Configurations and unknown fields of the model (shown in orange) (color figure online)

Directions 1 − 2 − 3 − 4 − 5 − 6 are introduced to facilitate the definition of direction-relevant quantities in
what follows. The initially straight bimorph of interest is placed in the X Z -plane, and the piezoelectric layers
are initially poled in 3-direction. o− xyz is the local coordinate system associated with the undeformed beam.
For each layer, the axis through the geometric center of the cross section is selected as the x-axis. The position
of an arbitrary point P on each layer after deformation is determined by the axial displacement u, the transverse
displacement w, and the rotation angle of the beam cross section ψ , as seen in Fig. 1a. The voltage output of
the PEH, denoted by electric potential φ, is the voltage across the resistive load R in the circuit, as seen in
Fig. 1b.

The mechanical variables u, w, ψ are spatially and temporally dependent while the electric variable φ is
only temporally dependent due to the equipotential condition. From the perspective of mechanics, on account
of the feature that the bimorph has only one dominant dimension, it is advantageous with little loss of precision
to use the fiber aligned with the x-axis to represent the corresponding layer. Accordingly, the variation of
mechanical quantities along the beam thickness is not considered unless otherwise specified. As a result, a set
of 10 variables is under consideration: nine mechanical unknowns Um = {ui (x, t), wi (x, t), ψi (x, t)} with
∀i ∈ {u, s, l} and one electric unknownUe = {φ(t)}, where and hereafter the subscripts (·)u, (·)s, (·)l indicate
quantities related to the upper piezoelectric layer, the substrate structure, and the lower piezoelectric layer,
respectively. When there is no need to distinguish the upper and lower piezoelectric layers, the subscripts (·)u
and (·)l can be reduced to (·)p.

The three layers of the bimorph have the same length L and width b, and the thickness is denoted by
hu, hs, hl (hu = hl = h p due to the symmetry). Both the piezoelectric and the substrate materials are assumed
to have homogeneous mechanical properties with density ρu, ρs, ρl (ρu = ρl = ρp due to the symmetry). For
this symmetric bimorph, the x-axis of the substrate structure coincides with the neutral axis of the composite
beam.

2.1.1 Kinematic relations

According to the geometrically exact beam theory, the apparent deformation-induced strains (also called beam
strain measures in classical beam theories [25], or more specifically, Reissner’s generalized strains [26]) in the
reference configuration are

ε(x, z) = (1 + u′) cosψ − w′ sinψ + zψ ′ − 1, (1)

γ (x, z) = (1 + u′) sinψ + w′ cosψ, (2)

κ(x, z) = ψ ′, (3)

where (·)′ refers to the differential with respect to (w.r.t.) the local coordinate x . Because the fiber aligned with
the x-axis of each layer is employed as the representative of the corresponding layer and thus z = 0, the beam
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strain measures of interest can be written as

εi = (1 + u′
i ) cosψi − w′

i sinψi − 1, (4)

γi = (1 + u′
i ) sinψi + w′

i cosψi , (5)

κi = ψi
′, (6)

for ∀i ∈ {u, s, l}. In the above expressions, no assumptions are made for the rotation angle ψi in addition to
that the beam cross section itself is rigid (equivalent to a first-order shear deformation theory).

For the piezoelectric layers, the non-negligible electric field E3 can be seen as the electric counterpart to
the mechanical strain. E3 is assumed to be uniform across the thickness of the piezoelectric layers and is given
in terms of φ [15] as

E3,u = − φ

hu
, E3,l = φ

hl
. (7)

It is pertinent to mention here that the relations between the electric field and the output voltage are dependent
on the specific configurations of PEHs, see, e.g., for more details on the expression of E3 in [3] for the series
connection case. Another point worth attention is that, as indicated in [27], Maxwell’s equations governing
the electrodynamic behavior of a continuum usually refer to its current configuration, in which the physical
quantities are measured. It means, Eq. (7) is stated w.r.t. the current configuration.

2.1.2 Constitutive relations

Linear material laws are used in this part to build the relations between the strain measures and the resultant
loads for the PEH. For the substrate layer, the following linear relations in the reference configuration are
commonly used [28]:

Ns = cY,s Asεs, Vs = νcG,s Asγs, Ms = cY,s Isκs, (8)

where the stress resultants Ns , Vs , and Ms are the normal force, shear force, and bending moment at the beam
cross section, respectively; cY,s and cG,s are Young’s modulus or shear modulus; ν is the shear correction
factor; As is the area of the beam cross section; Is is the second area moment.

For the piezoelectric layer, using the stress-electric displacement form of the linear constitutive equations
for an X Z -plane Timoshenko beam model with the initial poling axis in 3-direction [29], the stress resultants
in the reference configuration can be expressed as

Ni = Ai

(
cEY,iεi − e31,i E3,i

)
, Vi = νcEG,i Aiγi , Mi = cEY,i Iiκi , (9)

and additionally, the non-negligible electric displacement, D3, can be regarded as the electric counterpart to
the mechanical force, given by

D3,i = e31,iεi + εS33,i E3,i , (10)

for ∀i ∈ {u, l}. In Eqs. (9), (10), cEY,i , c
E
G,i , εS33,i , e31,i are material constants, and the superscripts (·)E , (·)S

denote that the constants are evaluated at constant electric field and constant strain, respectively. Using Eq. (7)
to replace E3,i in Eqs. (9), (10) by φ, the stress resultants

{
Ni , Vi , Mi , D3,i

}
in the reference configuration

w.r.t. variables {εi , γi , κi , φ} with ∀i ∈ {u, l} can be formulated. It is noteworthy that Eq. (7) is defined on the
current configuration while Eqs. (9), (10) on the reference configuration, so the above naive replacement leads
to inconsistency in the configurations. This inconsistency is inconsequential in small deformation settings,
and may not matter even in some large deformation cases, which can be inferred from [8,22], where this
inconsistency is ignored in the theoretical model but good agreement with the experimental results is still
achieved by the theoretical prediction results. To eliminate this inconsistency, one can refer to [27] to transform
the electric quantities from the current configuration to the reference configuration.

Following the principle of virtual work as in [26], for ∀i ∈ {u, s, l}, the mechanical stress resultants in the
current configuration are

N∗
i = (1 + εi )Ni + κi Mi , V ∗

i = γi Ni + Vi , M∗
i = (1 + εi )Mi . (11)

If the linear constitutive models are not appropriate (e.g., when dealing with large strains), one can select
other constitutive models such as examples given in [25,26,30].



Geometrically nonlinear model for energy harvesters 4851

2.1.3 Equilibrium relations

The equilibrium relations are established at the deformed segment (the current configuration) by the force
balance in 1- and 3-directions as well as the moment balance about the segment center point, which are (see
[24])

0 = (+N∗
i cosψi + V ∗

i sinψi )
′ + f1,i − ρi Ai üi , (12)

0 = (−N∗
i sinψi + V ∗

i cosψi )
′ + f3,i − ρi Ai ẅi , (13)

0 = M∗
i

′ + γi N
∗
i − (1 + εi )V

∗
i + m5,i − ρi Ii ψ̈i , (14)

with ∀i ∈ {u, s, l} in the dynamic context. In Eqs. (12), (14), f1,i , f3,i , and m5,i are external distributed loads
w.r.t. 1-, 3-, and 5-direction, respectively; the superscript ¨(·) means the second-order derivative w.r.t. time t ,
and (·)′ is still the derivative w.r.t. x .

For the piezoelectric layer, according to the differential form of Gauss’ law, the following equation:

0 = dD3,i

dz
(15)

holds for ∀i ∈ {u, l} also in the current configuration. The area of the upper and lower surfaces of the
piezoelectric layers after deformation is assumed to be identical to the initial area when integration of D3,i is
involved.

2.1.4 Boundary conditions

In line with the physical significance, the Dirichlet and the Neumann boundary conditions are called the
kinematic and dynamic boundary conditions hereinafter, respectively. The mechanical kinematic boundary
conditions are given by

0 = Ūm −Um on 
m, (16)

where Ūm is a prescribed displacement or rotation angle in different directions as shown in Fig. 2a, and 
m
is the corresponding kinematic boundary. The electric counterpart to the mechanical displacement, namely φ
used in this work, is actually the difference between the electric potential (but not the electric potential itself)
of the upper and lower electrodes attached on each piezoelectric layer, so no boundary values can be prescribed
for φ, meaning there is no electric kinematic boundary condition.

The mechanical dynamic equilibrium boundary conditions are

0 = F̄1,i − (+N∗
i cosψi + V ∗

i sinψi ) − ¯[m]i üi on 
1
i , (17)

0 = F̄3,i − (−N∗
i sinψi + V ∗

i cosψi ) − ¯[m]i ẅi on 
3
i , (18)

0 = M̄5,i − M∗
i − ¯[J ]i ψ̈i on 
5

i , (19)

for ∀i ∈ {u, s, l}, where F̄1, F̄3, M̄5 are prescribed external force or bending moment in different directions,¯[m] and ¯[J ] are the mass and the mass moment of inertia on the corresponding boundaries 
1
i , 
3

i , and 
5
i ,

respectively, as depicted in Fig. 2b.
The electric equilibrium boundary conditions are

0 = q̄i − D3,i on 

q
i , (20)

for ∀i ∈ {u, l}, where q̄ is the prescribed free charge per unit electrode surface area.

2.1.5 Initial conditions

The mechanical and electric initial conditions are given as the zeroth-, first-, and second-order time derivatives
of Um and Ue: {

Um, U̇m, Üm
}
t=0 = {

αO(x), αI(x), αII(x)
}
, (21)

{
Ue, U̇e, Üe

}
t=0 = {

βO, βI, βII} , (22)

where α(x), β with the superscripts (·)O, (·)I, (·)II are a set of known time-independent functions. Only two
time derivatives of Um and Ue are required as the initial conditions for each unknown variable.
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Fig. 2 Boundary conditions for piezoelectric layers

2.2 Coupling conditions

The three layers of thePEHare independent hitherto, and ten unknowns are concerned.By enforcingproper cou-
pling conditions between them, the tenunknowns canbe reduced to four:U = {us(x, t), ws(x, t), ψs(x, t), φ(t)}.

For the beam model under consideration, only the axial strain varies in the beam thickness direction as
indicated by Eq. (1). Assuming that all strains at interfaces are continuous and the cross section of the whole
laminate beam remains rigid during deformation, the following relations between mechanical unknowns of
each layer can be obtained using Eqs. (1)–(3):

uu = us − hs + h p

2
sinψs + C1, (23)

wu = ws − hs + h p

2
cosψs + C2, (24)

ψu = ψs, (25)

ul = us + hs + h p

2
sinψs + C3, (26)

wl = ws + hs + h p

2
cosψs + C4, (27)

ψl = ψs, (28)

where Ck with ∀k ∈ {1, 2, 3, 4} are integration constants. Not knowing the values of Ck is not problematic
because only derivatives will be used in the final weak formulation. It should be noted that by this coupling the
continuity of transverse shear stresses at interfaces computed from the constitutive laws is not satisfied. This
issue may be alleviated by layerwise theories or zig-zag theories [31]. However, for thin and moderately thick
laminated structures, the model resulting from the above coupling conditions is still able to predict adequately
accurate global results, which is discussed further in Appendix A.

From Gauss’ law, the net charge in a parallel-connection circuit [15] is

Q =
∫ L

0
D3,ub dx −

∫ L

0
D3,lb dx . (29)

According to the definition of electric current and Ohm’s law, the current in the PEH circuit, IC , has two
different expressions as below,

IC = Q̇, IC = φ

R
. (30)
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Combining them, the coupling condition of the circuit is

0 = Q̇ − φ

R
. (31)

2.3 Discussion on partial coverage of electrodes

For simplicity, in above derivation, full coverage of the electrodes is assumed. On account that the power output
of PEHs is highly relevant to the electrode configuration due to the effect of strain nodes [32], it is beneficial
here to make the above governing equations applicable to partially covered PEHs to track the state-of-the-art
investigations [5,8].

With the help of Eqs. (1), (10), and (15), the following exact expression of E3 can be formulated:

E3(x, z) = −e31κ(x)

εS33

z + C5, (32)

where C5 is the integration constant. Assuming that the coordinate of the interface between the covered and
uncovered part is x = xp and the value of E3 at the covered part is E3 = Ep, then the electric field E3 of the

interface is E3 = Ep =
(

− e31κ(x)
εS33

z + C5

)
‖x=xp,z=0, thus C5 = Ep. If we stick to use the fiber aligned with

the x-axis as the representative of the corresponding piezoelectric layer, which means z = 0 in Eq. (32), E3
is still spatially independent, and the value of E3 is identical to the value in the full coverage case. Therefore,
all governing relations proposed above are still valid and only the integration interval has to be adapted to
match the new length of the piezoelectric layer and the electrodes when deriving the weak formulation, which
is presented in Sect. 3. This conclusion is consistent with the method used in other literature such as [5], where
only the integration interval in the electrical equation is adapted when considering a bimorph with partial
electrode coverage.

Another interesting point of the exact expression E3(x, z) is that the distribution of E3 is not uniform
throughout the thickness of the piezoelectric layer, which is in contrast to the assumption about the electric
field in the previous text (this assumption is commonly used in literature, such as [3,5,15]). If the variation
of E3 in the thickness direction is taken into account, the bending moment of the piezoelectric layer is

Mp = cEY,p Ipκp + e231
εS33

Ipκp, so clearly the bending moment has one more term associated with the electric

property of the material when compared with the simplified bending moment expression Eq. (9). Actually, if
more complete constitutive laws for the piezoelectric materials are employed, as seen in paper [33], where the
electric displacement in 1-direction is also involved, another term related to e15 will also be present. The two
terms including e31 and e15 together are called the induced electric bending moment, and may not be neglected
in some special cases [33].

2.4 Summary

In this Section, a unified framework including kinematic, constitutive, equilibrium relations aswell as boundary
conditions and initial conditions is applied separately to the different layers of a beam-like PEH; in particular,
for the piezoelectric layers, the electric quantities are treated as electric counterparts to mechanical quantities.
The different layers of a PEH and the attached circuit finally form one interdependent whole by the coupling
conditions. For convenience, the governing equations presented in this Section are simplified to a certain extent,
which, in addition tomaking the electromechanicalmodel simpler, also provides the space to improve themodel
precision in the future. As indicated above, the potential directions include: to select appropriate constitutive
laws when large strains exist; to make the reference/current configuration of electric quantities consistent; to
fulfill the continuity condition of transverse shear stresses at interfaces; to incorporate the bending moment
contributed by the electric property. Nonlinearities activated by physical excitation phenomena [34,35] (the
structural models of both are based on the Euler–Bernoulli assumptions) can be accounted for in the presented
framework in order to study the overall behavior and performance of associated beam-like PEH systems.
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3 Finite element model

Applying themethod of weighted residuals to the equilibrium equations (12)–(15) and the boundary conditions
(17)–(20), also introducing the electric coupling equation (31), with test functionsmatchedwith virtual work as
{δεi , δγi , δκi , δφ}, for ∀i ∈ {u, s, l}, yields the weak formulation of the electromechanical system as follows:

0 =
∑

i∈{u,s,l}

{∫ L

0
(N∗

i δεi + V ∗
i δγi + M∗

i δκi ) dx (33a)

+
∫ L

0
(ρi Ai üiδui + ρi Ai ẅiδwi + ρi Ii ψ̈iδψi ) dx (33b)

−
∫ L

0
( f1,iδui + f3,iδwi + m5,iδψi ) dx (33c)

−
∫


1
i

F̄1,iδui d
 −
∫


3
i

F̄3,iδwi d
 −
∫


5
i

M̄5,iδψi d
 (33d)

+
∫


1
i

¯[m]i üiδui d
 +
∫


3
i

¯[m]i ẅiδwi d
 +
∫


5
i

¯[J ]i ψ̈iδψi d


}
(33e)

−
∫ L

0
(D3,ub − D3,lb) δφ dx (33f)

+
∫



q
u

q̄uδφ d
 −
∫



q
l

q̄lδφ d
 (33g)

+
(
Q̇ − φ

R

)
δφ ∀δus, δws, δψs, δφ. (33h)

Equation (33) is consistent with the principle of virtual work (in the form of the principle of virtual
displacement) with lines (33a–33e) devoted to the mechanical virtual work and lines (33f–33g) devoted
to the electric virtual work. Line (33h) can be regarded as the method of Lagrange multipliers applied
to Eq. (31). The last step to formulate the final weak formulation exclusively expressed with unknowns
U = {us(x, t), ws(x, t), ψs(x, t), φ(t)} is to impose the mechanical coupling conditions Eqs. (23)–(28) on
Eq. (33). The final weak formulation is not given in this paper, considering it is only concerned with simple
mathematical substitution. Hereafter, the subscript (·)s linked to the displacement variables is omitted for
convenience.

To obtain the approximate solution, the trial function for any unknown variable a(x, t) is introduced:

a(x, t) =
nN∑
j=1

Saj (x)q
a
j (t). (34)

In Eq. (34), nN is the number of ansatz functions, Saj (x) are ansatz functions of local or global support and fulfill
the Dirichlet boundary conditions, qaj (t) are the associated displacement/voltage degrees of freedom, which
are functions of time and are to be determined. In this work, the finite element (FE) method is employed, i.e.,
using ansatz functions of local support to discretize the electromechanical system in space. The semi-discrete
matrix form can be written as:

Mlinq̈ + Clin q̇ + Klinq + Fnl(q̈, q̇,q) = f, (35)

where q is the vector of displacement/voltage unknowns, q = (qu, qw, qψ, qφ)T ; Mlin , Clin , and Klin are
the mass matrix, damping matrix, and stiffness matrix associated with linear terms in Eq. (33), respectively;
Fnl(q̈, q̇,q) is associated with nonlinear terms, and q̈, q̇ in Fnl are induced by the coupling equations (23)–
(28); f is the vector of externally applied load. Nonlinearity associated with q̈, q̇ can normally be neglected,
because these terms include a factor hs+h p

2 , which, for typical beam structures, is much smaller than other
length measurements.



Geometrically nonlinear model for energy harvesters 4855

4 Model validation

This section is devoted to validate the model proposed in Sect. 3. All numerical simulations are implemented
using theFEniCS framework [36,37]. The choice of function space is: continuousGalerkin of degree 2 for Suj (x)

and Sw
j (x), continuous Galerkin of degree 1 for Sψ

j (x), and Sφ
j (x) = 1. By this choice, shear locking effects

are avoided [38]. The mass-proportional damping [23] is used in simulations when needed. The convergence
of simulation results w.r.t. the number of finite elements and time step (in nonlinear problems) is examined for
every example. All geometric and material parameters are given in Appendix B.

4.1 Linear regime

In this part, the linearizedweak formulation of themodel proposed in Sect. 3 is derived to facilitate the frequency
domain analysis. Considering the main objective is to capture shear deformation effects, a numerical example
aiming at thick beams (non-symmetric unimorph) given by [17] is implemented in addition to an experimentally
validated example of thin beams (symmetric bimorph) given by [3].

4.1.1 Linearized weak formulation

If small deformation is concerned, the linear weak formulation of a symmetric bimorph in a parallel configura-
tion can be achieved by linearizing the nonlinear kinematic relations Eqs. (4)–(6) and the coupling conditions
Eqs. (23)–(28), and additionally, approximating the stress resultants {N∗, V ∗, M∗} to {N , V, M}:

0 = +
∫ L

0
(E A)eu

′δu′ dx +
∫ L

0
(E I )eψ

′δψ ′ dx +
∫ L

0
ν(GA)e(ψ + w′)δ(ψ + w′) dx (36a)

+
∫ L

0
(ρA)eüδu dx +

∫ L

0
(ρA)eẅδw dx +

∫ L

0
(ρ I )eψ̈δψ dx (36b)

−
∫ L

0
(ϑψ ′ − C0

L
φ)δφ dx +

∫ L

0
ϑφδψ ′ dx +

∫ L

0
(ϑψ̇ ′ − C0

L
φ̇ − φ

RL
)δφ dx

∀δu, δw, δψ, δφ, (36c)

with equivalent parameters being

(E A)e = cY,s As + 2cEY,p Ap, (37)

(E I )e = cY,s Is + 2cEY,p Ip + 2cEY,p Ap

(
hs + h p

2

)2

, (38)

(GA)e = cG,s As + 2cEG,p Ap, (39)

(ρ I )e = ρs Is + 2ρp Ip + 2ρp Ap

(
hs + h p

2

)2

, (40)

(ρA)e = ρs As + 2ρp Ap, (41)

ϑ = −e31b(hs + h p), C0 = 2bLεS33

h p
. (42)

In Eq. (36), the terms of boundary conditions and external loads are omitted for convenience. It can be found
that the equivalent parameters Eqs. (38)–(42) are the same as those presented in [15], while Eq. (37) is special
to the present formulation.

The expanded matrix form with sub-matrices resulting from FE discretization is
⎡
⎢⎣
Muu 0 0 0
0 Mww 0 0
0 0 Mψψ 0
0 0 0 0

⎤
⎥⎦

⎡
⎢⎣
q̈u
q̈w

q̈ψ

q̈φ

⎤
⎥⎦ +

⎡
⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 Cψφ Cφφ

⎤
⎥⎦

⎡
⎢⎣
q̇u
q̇w

q̇ψ

q̇φ

⎤
⎥⎦
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+
⎡
⎢⎣
Kuu 0 0 0
0 Kww Kψw 0
0 Kwψ Kψψ Kφψ

0 0 Kψφ Kφφ

⎤
⎥⎦

⎡
⎢⎣
qu
qw

qψ

qφ

⎤
⎥⎦ =

⎡
⎢⎣

fu
fw
fψ
fφ

⎤
⎥⎦ . (43)

Equation (43) is a linear second-order ordinary differential equation (ODE) system that can be solved in
frequency or time domain.

4.1.2 Numerical examples

Thin bimorph This example is from [3], where the single-mode electromechanical frequency response func-
tions (FRFs) that relate the voltage output to translational base excitation are presented for a bimorph with a tip
mass both in series and parallel configurations. All physical parameters in the numerical simulations are kept
the same as the setup given in [3]. The thickness-to-length aspect ratio of the bimorph is (2h p+hs)/L = 1.3%.

The response of voltage output φ in the frequency domain for 3 different resistive load values (R = 1 k�,
R = 33 k�, R = 470 k�) is computed and then compared with the analytic results, as shown in Fig. 3, where
the results of both parallel and series (in this case, ϑ = − 1

2e31b(hs + h p), C0 = 1
2ε

S
33bL/h p) configurations

are given.
From Fig. 3, it can be seen that the numerical FRFs agree well with the analytic FRFs. Furthermore, the

precise values of voltage output for different resistive loads at their respective resonant excitation frequencies
are also compared, as shown in Table 1. Although discrepancies are observed between the voltage output from
the present work and the experimental results from [3], the present work obtains almost the same results as
that from the single-mode FRF given by [3] and the fully three-dimensional finite element model proposed by
[23]. The fully three-dimensional model is apparently powerful when dealing with complicated PEHs, but the
current beam model is particularly suitable for thin-walled PEHs because it saves much more computational
resource compared to the three-dimensional model.

Thick unimorph
This example is from [17], where the first natural frequencies of a Timoshenko beam model-based unimorph
are computed using the Green’s function method and Laplace transform technique. The equivalent parameters
of a unimorph can be obtained either directly from [12] or derived following the procedure presented in Sect. 2
with the neutral axis of the composite beam as the x-axis of the substrate structure.

Table 2 shows the comparison of the first natural frequencies when the unimorph is moderately thick with
different thickness-to-length aspect ratio under short-circuit (R = 1×102 �) and open-circuit (R = 1×106 �)
conditions. The analytic solutions are the closed-form solutions based on the steady-state Green’s function
method and Laplace transform technology presented in [17], where data are available only under the short-
circuit condition. The 1D FE data are obtained from the linear beam model Eq. (36), while the 3D FE data are
obtained from a continuum-based three dimensional model. It can be seen that good agreement is achieved in
all comparative cases. Therefore, at this point, it is persuasive to say that the current electromechanical beam
model is capable of capturing shear deformation effects.

(a) (b)

Fig. 3 Numerical and analytic voltage FRFs in parallel and series configurations
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Table 1 Acceleration-normalized voltage output of a cantilevered bimorph in series configuration

Resistive
load k�

Present Study exp [3] Study [23] Error [3] Error [23]

Model V s2 m−1 Exp Vs2 m−1 Model Vs2 m−1 Model Vs2 m−1 Exp % Model % Model %

1.0 1.56 1.57 1.56 1.56 0.6 0.0 0.0
37.27 30.7 – 30.7 30 – 0.0 2.3
83.4 46.3 40.6 46.3 – 14 0.0 –
470 93.4 84 95.2 92.3 11 1.9 1.2

Normalization uses gravitational acceleration g. Model voltage data of Study [3] are calculated from the single-mode FRF, while
all other reference voltage data are from [3,23]. Unavailable reference data are indicated by –

Table 2 First natural frequency of a moderately thick cantilevered unimorph

(hs + h p)/L h p/hs Resistive load 1 × 102 � Resistive load 1 × 106 �

% – 1D FE Hz 3D FE Hz Analytic [17] Hz 1D FE Hz 3D FE Hz

6 0.5 321.6 321.3 322.5 328.2 325.0
2.0 314.1 315.6 315.0 318.3 318.0

8 0.5 427.9 426.5 430.0 436.6 431.5
2.0 417.7 419.0 420.0 423.4 422.0

4.2 Nonlinear regime

In this part, two large deformation examples are implemented based on the nonlinear model proposed in
Sect. 3. The first example is a highly flexible unimorph with a tip mass under strong base excitation that
leads to an extreme deflection of the beam. The second example is a preliminary examination of [8], where
encouraging prediction of the voltage output is achieved from a flow-driven bimorph although the fluid model
is highly simplified. The generalized-α scheme with parameters ensuring unconditional stability and second-
order accuracy [39] is used to update fields in the dynamic system over time, and the nonlinear equations are
solved by the Newton–Raphson method.

4.2.1 PEH under strong base excitation

This example is from [22], where the computational model is based on the Euler–Bernoulli assumptions under
small strains and large deflections, and a decoupled solution scheme is employed, namely, solving the structural
model firstly in a commercial FE program (ABAQUS) and then substituting the structural results into the circuit
equation to obtain electric results. According to the specific circuit equation used in [22] and the circuit model
of a unimorph with a resistive load R in [40], the circuit equation Eq. (31) in simulations is adapted to be

0 = φ

R
+ Cp(φ̇ − φ̇oc), (44)

where Cp is the piezoelectric capacitance, φoc is the open-circuit voltage across the piezoelectric layer, given
by [22]

φoc = e31h p(2hc − h p)ψ(L p)

2L pε
S
33

, (45)

where L p is the length of the piezoelectric layer (L p = 31mm), hc is the distance of the top of the piezoelectric
layer from the neutral axis of the composite beam, and ψ(L p) is the rotation angle of the beam at L p.

In the numerical simulations, all parameters of the setup are from Table 1 in Ref. [22]. Figure 4 shows
the transverse displacement and the voltage at different excitation frequencies in the range 4.0–5.4Hz when
the base acceleration is 4ms−2. The reference data are taken from Fig. 9 in Ref. [22] (only data in the range
4.0–4.9Hz are given), and the predicted data are the maximum steady responses in the simulations. Although
there is a small phase shift between the reference and computed resonant frequency, i.e., from 4.64Hz to
5.0Hz, the values of both simulated tip displacement and voltage output coincide well with the reference data.
The maximum tip displacement is about 25mm, nearly 80% of the beam length (L = 32mm). As for the
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Fig. 4 Comparison of reference and simulated displacement and voltage at different excitation frequencies

voltage, the maximum value in simulations is 62V, 7.5% lower than the reference voltage (67V). This voltage
discrepancy could be attributed to the different solution schemes used in our simulations and the reference
paper [22]. When large deformation is concerned, the electromechanical models are normally highly nonlinear
and thus difficult to obtain solutions, so decoupled solution schemes are commonly used, such as [8,22,41]
(all of them use Euler–Bernoulli assumptions). In all numerical simulations of the present work, a completely
coupled solution scheme is employed, i.e., solving the mechanical and electric unknowns simultaneously. By
a numerical comparison, paper [22] indicates that the coupled scheme tends to predict lower voltage output
than the decoupled scheme, especially when the electromechanical coupling is strong.

The dynamic response of this PEH at the resonant excitation frequency is shown in Fig. 5. The small
saddles in Fig. 5c are caused by bending backward, which can be clearly seen from the deformed shapes of the
unimorph (Fig. 5d). The unique bending backward phenomenon captured by nonlinear models in extremely
large deflection cases is also reported recently in [41,42].

Additionally, a numerical test is made to show the difference between the electromechanical results pre-
dicted by the linear model Eq. (36) and the nonlinear model Eq. (33) under the base excitation condition. The
thin bimorph in a parallel configuration presented in Sect. 4.1.2 is used. To ensure this PEH appropriately flex-
ible to undergo large displacement/rotation, the thickness of the substrate structure and the piezoelectric layers
is reduced by half. All other parameters, including the damping ratio, remain the same. In this test, the resistive
load is 33 k�, and the frequency of the base excitation is the linear resonant frequency when R = 33 k�
(17.2Hz). The comparison is given in Fig. 6, where the normalized tip displacement (NTD) is the percentage
of the maximum steady tip displacement over the beam length. It can be seen that when the tip displacement
is about 20% of the beam length, the linear displacement prediction starts to deviate from the nonlinear pre-
diction; as to the power output, the deviation point presented by NTD is about 30%. Fig. 6 illustrates that for
a PEH operating in a large deformation regime, e.g., in this particular example, when the NTD is larger than
30%, it is necessary to employ a geometrically nonlinear model to obtain accurate electromechanical response.

4.2.2 PEH harvesting energy from axial air flow

In principle, to validate the proposed nonlinearmodel for flow-driven PEHs, e.g., harvesting energy fromLCOs,
an accurate fluid model for the axial flow is essential. Although considerable work has been accomplished in
this area, as evident from the introduction sections of [8,43], it remains difficult to mathematically express
and to numerically compute the fluid force acting on the deforming structure. Hence, detailed fluid modeling
is excluded from the scope of the current paper.

Considering that the electric output of PEHs is directly related to the structural deformation, the electric
output can be determined for a given deformation pattern of the piezoelectric beam, no matter what (external
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(a) (b)

(c)

(d)

Fig. 5 Dynamic response of the PEH when the excitation frequency is 5Hz and acceleration magnitude is 4ms−2

force) induces this deformation pattern. Accordingly, the basic idea of the model validation in this case is
to manufacture the deformation pattern present in [8] and then compare the voltage output. Reproducing the
deformation pattern to a highly precise extent is only possible in a limited way due to the absence of a proper
fluid model as well as other physical parameters. However, effective comparison can still be expected if the
main characteristics of the deformation pattern are preserved.

It is reported in [8] that the modal content of the LCOs of the specimen is predominantly comprised of the
first and second vibration modes; and the transverse displacement at 80% of the length from the clamped end
is approximately 0.012m (namely, w|x=0.8L = 0.012m) when the airflow speed is 34ms−1 (data estimated
from Fig. 7c in Ref. [8]). These two points are taken as the main characteristics of the deformation pattern to
be reproduced. A simplified linear fluid model [43] is employed to manufacture the above deformation pattern,
which reads

�p = −1

4
πbρair (ẅ + 2U∞ẇ′ +U 2∞w′′), (46)

where �p is the fluid pressure, ρair is the airflow density, and U∞ is the free-stream velocity in x-direction.
A bimorph of continuous piezoelectric layer coverage in a series configuration with the same parameters

as in [8] is used in the numerical simulations. Epoxy layers between the substrate and each piezoelectric layer
are neglected. The external force model Eq. (46) is integrated in the nonlinear model Eq. (33), and an artificial
initial velocity in the transverse direction ẇ|t=0 = 0.1x is applied to start the simulations. Figure 7 shows the
electromechanical response of this bimorph when U∞ = 40 ms−1 and R = 10 M�. At this flow velocity,
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Fig. 6 Comparison of linear and nonlinear PEH models under base excitation

the flutter amplitude at x = 0.8L is 11.9mm (Fig. 7a), the modal form involves mainly the second-order
vibration modes (Fig. 7c), and the maximum voltage output in LCOs is 47.0 V (Fig. 7b). When R = 100
M�, the corresponding voltage is 50.9V. In [8], the voltage output of the specimen is between 30 V and 40
V (data estimated from Fig. 8c of Ref. [8]) when w|x=0.8L ≈ 0.012m, R ∈ [10M�, 100M�]. Therefore, the
identical magnitude of voltage to the reference data is predicted by the present model. The difference between
the exact values can be explained by the roughness of the fluid model used in the current simulations. With
such a simplified fluid model, the manufactured deformation pattern is not the same as that in [8].

In this flutter case, the solution convergence of Eq. (33) is observed to deteriorate severely with the
longitudinal inertia term ρi Ai üiδui . Since the motion in this direction is not of interest, this term is omitted
in the above numerical simulations. It is also noteworthy that no physical damping (e.g., material viscous
damping) or numerical damping from the generalized-α scheme [39] is introduced into the above simulations.
Therefore, the nonlinear restoring force, which is necessary to keep solutions bounded in time in the post-
critical regime [44], as seen in Fig. 7, is due to the geometrical nonlinearity of the structural model. Contrasting
this with a linear structural model such as Eq. (36), if the same linear fluid model Eq. (46) is used, the dynamic
response of the system will be unbounded in time, and thus leading to non-physical results (Fig. 8).

Remark In the strict sense, the above validation is rather rough since the fluid model is highly simplified,
but it is still clear that the proposed model has the potential to predict reasonable electromechanical response
for a fluid-driven PEH. What’s more, the significance of introducing nonlinearity in the structural model for
the fluttering case is elucidated by the comparison with a linear model for the same setup.

5 Conclusions

The beam-like configuration is commonly used in piezoelectric energy harvesting devices. This article pro-
poses a model for PEHs based on the geometrically exact beam theory and appropriate solutions to the
governing equations using the finite element method. With the help of the exact kinematics, this model is able
to capture both shear deformation and large displacement/rotation. Various numerical examples covering the
symmetric bimorph/non-symmetric unimorph, series/parallel configuration, thin/thick beams, and (strongly)
base-excited/flow-driven PEHs are implemented, and good results are obtained, clearly exhibiting the broad
applicability of the framework presented in the current work. In the nonlinear regime, the comparative investi-
gation of a PEH under base excitation shows that geometrical nonlinearity should be considered when the tip
displacement is over 30% of the beam length; and for the flow-driven PEHs, geometrical nonlinearity alone of
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(a)
(b)

(c)

Fig. 7 Post-critical response of the PEH when the flow velocity is 40ms−1 and resistive load is 10M�

Fig. 8 Unbounded dynamic response of a linear PEH
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the structural model is sufficient to provide the nonlinear restoring force necessary for the occurrence of limit
cycle oscillations in axial flow.
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Appendix A

The aim of this part is to discuss the accuracy of the proposed beam model, which does not fulfill the stress
compatibility between the layers due to the lack of warping displacements through the beam thickness. A
static problem of a cantilevered laminate comprising one core layer and two face layers is investigated using
the above beam model and a 2D continuum model. For simplicity, we choose only two different materials
without piezoelectric effects, one for the core layer and the other one for the two face layers. The geometric
and mechanical parameters are given in Table 3.

The governing equations for a 3D continuum are

0 = ∇ · (FS) + g, (47)

S = λ(trE)I + 2μE, (48)

E = 1

2
(FTF − I), (49)

where F = I+∇d is the deformation gradient tensor, S is the 2nd Piola-Kirchhoff stress tensor,E is the Green-
Lagrange strain tensor, g is the body force vector, and λ,μ are Lamé constants. In the 2D implementation,
plane strain assumptions are used; in the 1D (beam) implementation, the equivalent parameter (E I )e in Eq.
(38) is multiplied with the coefficient 1

1−η2
to obtain the appropriate bending stiffness.

We consider two laminates A and B, where each layer has a thickness of 0.01m and 0.03m, respectively,
and thus the thickness-to-length ratio α is 3% (case A) and 9% (case B). For both A and B, the core layer
may be the strong material (cY = 100GPa) or the weak material (cY = 20GPa). For laminate A, the static
body force is applied in the transverse direction (3-direction) of the structure as g = (0; 3 × 107)Nm−3, while
g = (0; 5 × 108)Nm−3 for B.

The deflection of the centerline of laminate A and B is obtained from an FE solution of the proposed beam
model and the above 2D model. The results are shown in Fig. 9.

In Fig. 9, the solid lines with circle markers are the 1D results when the shear correction factor (SCF) 5
6 is

used. In Fig. 9b, the triangle and square markers indicate the SCF is 1
2 and 1, respectively. For laminate A, the

difference between the 1D and 2D results cannot be distinguished, so only one SCF is employed. For laminate
B, the SCF does influence the 1D results, although rather slightly in this case. This may be explained by the
role of the SCF in the first-order shear deformation theory (FSDT). In general, FSDT fails to represent the
high-order variation of transverse shear stresses through the thickness. To amend this, the SCF is introduced
to match the global response obtained from FSDT with the elasticity solutions. For laminated structures, an
ideal SCF could be computed using some sophisticated methods [45], where the configuration, geometry, and

Table 3 Geometric and mechanical parameters of the three-layer laminate

Length Width Total thickness Young’s modulus cY Poisson ratio η
m m m GPa –

1 1 0.03 or 0.09 100 or 20 0.3

http://creativecommons.org/licenses/by/4.0/
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Fig. 9 Comparison of the deflection computed from the beam model and the 2D model

Fig. 10 Strain and stress distribution over the middle cross section of laminate B

mechanical parameters are all of interest. Therefore, to further improve the accuracy of the beam model, an
optimal SCF should be carefully determined case by case.

We also compare the strain and stress distribution over the middle cross section of laminate B when a weak
core is used, as shown in Fig. 10. The axial strain for the 2D model is the axial component of E, i.e., E11; for
the 1D model, the axial strain is ε(x, z). Similarly, the shear strain is E13 in 2D and γ (x, z) in 1D; the axial
and shear stresses in 2D are S11 and S13, respectively; the axial stress in 1D is cY ε(x, z), and the shear stress
is cY γ (x,z)

2(1+η)
.
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Table 4 Proportion of axial strain energy and shear strain energy of a three-layer laminate

Layer thickness Total energy W Axial strain energy W11
W Shear strain energy W13

W

m 1D FE
1 × 105 J

2D FE
1 × 105 J

1D FE
%

2D FE
%

1D FE
%

2D FE
%

0.005 5.096 5.464 97.98 97.07 2.019 1.753
0.01 19.17 20.83 97.96 97.05 2.039 1.826
0.02 61.24 66.81 97.62 97.01 2.377 2.108
0.03 88.10 96.28 96.60 96.53 3.398 2.926
0.04 90.67 98.74 94.93 95.54 5.073 4.243

It can be seen that the proposed geometrically nonlinear 1Dmodel predicts perfect axial strain/stress for the
setup under consideration. This provides a justification for the observed adequately accurate global response
of the 1D model, as demonstrated by Fig. 9, although the correct shear strain/stress is missing. This point may
be illustrated from the perspective of strain energy. Defining the component of strain energy as below,

Wi j =
∫

Ei j Si j d�, i, j ∈ {1, 3} , (50)

the percentage of axial strain energyW11 and shear strain energyW13 in the total energyW2D = W11 +W13 +
W33 can be computed from the 2D model for a laminate with a weak core and various thicknesses, as shown in
Table 4. For the 1Dmodel,W11 andW13 can also be defined in a similar manner, e.g., replacing E11 by ε(x, z),
and the total energy is W1D = W11 + W13. The proportion of shear strain energy increases monotonically as
the laminate becomes thicker, but for all the given parameters, i.e., α � 12%, the axial strain energy accounts
for more than 95% share (referring to the 2D results). Hence, the accuracy of the model for global response is
dominated by the prediction of axial strain/stress when the laminate is thin or moderately thick.

In summary, it is clear from the above discussion that the 1D model in this work can be used to obtain
effective global response for common beam-like piezoelectric energy harvesters, where the structures are
usually not very thick and the material parameters of the substrate and the piezoelectric patches do not deviate
from each other too significantly.

Appendix B

Geometric and material parameters used in the numerical examples of this work are given in Tables 5, 6, 7,
and 8, where the length is denoted by L , width by b, thickness by h, density by ρ, Young’s modulus by cY ,
Poisson ratio by η, piezoelectric constants by d31 and e31, and permittivity by εS33.

Table 5 Thin bimorph in Sect. 4.1.2

Material L b h ρ cY η d31 εS33
mm mm mm kg m−3 GPa – pm V−1 pF m−1

Substrate 50.8 31.8 0.14 9000 105 0.35 – –
Piezo 50.8 31.8 0.26 7800 66 0.35 – 190 1500ε0

Other parameters: TipmassMt = 0.012 kg, ε0 = 8.854 pFm−1, mechanical damping ratio of the first vibrationmode ζ1 = 0.027,
shear correction factor is 0.83
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Table 6 Thick unimorph in Sect. 4.1.2

Material L b h ρ cY η d31 εS33
mm mm mm kg m−3 GPa – pm V−1 pF m−1

Substrate 100.0 10.0 see Table 2 7165 100 0.35 – –
Piezo 100.0 10.0 see Table 2 7800 66 0.35 – 190 1800ε0

Other parameters: ε0 = 8.854 pFm−1, shear correction factor is 0.87. For the 3D FE implementation: The elasticity matrix,
permittivity matrix, and piezoelectric moduli matrix are taken from Appendix B of [33], i.e., C11 = C22 = 121GPa, C12 =
75.4GPa, C13 = C23 = 75.2GPa, C33 = 111GPa, C44 = C55 = 21.1GPa, C66 = 22.8GPa; ε11 = ε22 = 1730ε0,
ε33 = 1700ε0, ε0 = 8.854 pFm−1; e31 = e32 = −5.4Cm−2, e33 = 15.8Cm−2, e24 = e15 = 12.3Cm−2

Table 7 PEH under strong base excitation in Sect. 4.2.1

Material L b h ρ cY η e31 εS33
mm mm mm kg m−3 GPa – Cm−2 pF m−1

Substrate 32.0 16.0 0.172 1390 3.79 0.35 – –
Piezo 31.0 16.0 0.028 1780 3.00 0.35 0.07 110

Other parameters: Tip mass Mt = 3.15 g, piezoelectric capacitanceCp = 1.41 nF, mechanical damping ratio of the first vibration
mode ζ1 = 0.043, shear correction factor is 0.87, resistive load R = 25M�

Table 8 PEH harvesting energy from axial air flow in Sect. 4.2.2

Material L b h ρ cY η d31 εS33
mm mm mm kg m−3 GPa – pm V−1 pF m−1

Substrate 100 12.7 0.0762 7880 210 0.30 – –
Piezo 100 12.7 0.0520 1780 4.0 0.35 28 110

Other parameters: Shear correction factor is 0.87, air density ρair = 1.225 kgm−3
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