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ARTICLE

Rapid antigen testing as a reactive response to
surges in nosocomial SARS-CoV-2 outbreak risk
David R. M. Smith 1,2,3,8✉, Audrey Duval1,2,4,8, Jean Ralph Zahar4,5, the EMAE-MESuRS Working Group on

Nosocomial SARS-CoV-2 Modelling*, Lulla Opatowski1,2 & Laura Temime3,6

Healthcare facilities are vulnerable to SARS-CoV-2 introductions and subsequent nosocomial

outbreaks. Antigen rapid diagnostic testing (Ag-RDT) is widely used for population screening,

but its health and economic benefits as a reactive response to local surges in outbreak risk

are unclear. We simulate SARS-CoV-2 transmission in a long-term care hospital with varying

COVID-19 containment measures in place (social distancing, face masks, vaccination).

Across scenarios, nosocomial incidence is reduced by up to 40-47% (range of means) with

routine symptomatic RT-PCR testing, 59-63% with the addition of a timely round of Ag-RDT

screening, and 69-75% with well-timed two-round screening. For the latter, a delay of 4-5

days between the two screening rounds is optimal for transmission prevention. Screening

efficacy varies depending on test sensitivity, test type, subpopulations targeted, and com-

munity incidence. Efficiency, however, varies primarily depending on underlying outbreak risk,

with health-economic benefits scaling by orders of magnitude depending on the COVID-19

containment measures in place.
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A range of vaccines have proven safe and effective for the
prevention of SARS-CoV-2 infection, offering hope
towards an end to the COVID-19 pandemic1–3. Unfor-

tunately, despite high vaccination coverage, hospitals and long-
term care facilities (LTCFs) remain vulnerable to nosocomial
outbreaks4. LTCFs globally report instances of breakthrough
infection and ensuing transmission among immunized staff and
residents. This is notably due to variants of concern like B.1.1.7
(Alpha), B.1.351 (Beta) and B.1.617.2 (Delta), which may
partly escape vaccine-induced immunity relative to wild type5–8.
This suggests that testing and screening interventions will
remain important tools for detecting and isolating SARS-CoV-2
infections in healthcare facilities, even in settings with high vac-
cine uptake.

However, while repeated screening may be an effective tool for
nosocomial transmission prevention9,10, it also imposes sub-
stantial economic cost and occupational burden on healthcare
staff11,12. For potentially vulnerable, resource-limited facilities, a
key challenge is knowing if, when and how to implement SARS-
CoV-2 surveillance interventions13. When outbreak risk is low –
perhaps in a highly immunized LTCF around low community
incidence and few variants of concern – screening at frequent
intervals is probably an inefficient use of limited health-economic
resources.

Yet outbreak risk is in constant flux, and is sometimes pre-
dictable. Festive holidays, for instance, draw individuals from
distant places into close contact for prolonged periods, and have
been associated with surges in SARS-CoV-2 epidemic risk in
China, Israel, and elsewhere14,15. Into 2022, widespread post-
holiday, inter-generational population movement in the context
of variants like Delta and B.1.1.529 (Omicron) may pose similar
concerns16. In such a context where local knowledge or epide-
miological data indicate a suspected spike in epidemic risk, or
where identification of a new case or exposed contact within a
healthcare facility indicates potential for a nosocomial outbreak,
reactive use of antigen rapid diagnostic testing (Ag-RDT) may be
an efficient public health response.

Here, we aim to help determine the best surveillance strategies
for control of SARS-CoV-2 transmission in healthcare facilities in
the context of a surge in nosocomial outbreak risk. To this end,
we adapt a simulation model and assess the epidemiological
efficacy and health-economic efficiency of single or repeated Ag-
RDT screening coupled with routine symptomatic reverse tran-
scriptase polymerase chain reaction (RT-PCR) testing. Simulated
Ag-RDT screening interventions are conceptualized as reactive
public health responses, conducted in a long-term care hospital
with varying COVID-19 containment measures in place.

Results
SARS-CoV-2 outbreak risk depends on the COVID-19 pre-
vention measures in place. Following a simulated surge in
SARS-CoV-2 outbreak risk, nosocomial incidence varied across
LTCFs depending on the COVID-19 containment measures in
place (Fig. 1). Low-control LTCF 1 experienced exponential
epidemic growth driven by patient-dominated clusters, by two
weeks reaching a mean cumulative number of incident nosoco-
mial SARS-CoV-2 infections I= 28.9 (range 0–82). With patient
social distancing in the moderate-control LTCF 2, epidemic
growth was linear, and nosocomial incidence was reduced by a
mean 62.2% relative to LTCF 1, with a similar share of infections
among patients and staff (Supplementary Fig. S2). Finally, with
vaccination, mandatory face masks and social distancing com-
bined in the high-control LTCF 3, outbreaks tended towards
extinction, with a mean 96.2% reduction in incidence relative
to LTCF 1. In this last LTCF, staff members infected in the

community represented the majority of cases, and rarely infected
others in the hospital.

Super-spreaders drove high incidence in LTCF 1 (representing
a mean 5.5% of infected individuals, but responsible for 47.3% of
nosocomial infections) but less so in LTCFs with more robust
COVID-19 containment measures (3.1% and 23.4% in LTCF 2;
0.2% and 1.1% in LTCF 3; Supplementary Fig. S3). In a sensitivity
analysis evaluating outbreak risk across asymmetric patient-staff
vaccine coverage, patient more than staff immunization was
impactful for preventing patient transmission to other individuals
(see Supplementary Fig. S4). Conversely, patient and staff
immunization were similarly impactful against staff transmission.
Given low rates of patient and/or staff immunization, this setting
was nonetheless resilient to outbreaks when alternative contain-
ment measures were also in place (i.e. with social distancing and
mandatory face masks).

Reactive Ag-RDT screening complements, but does not replace
routine RT-PCR testing. Surveillance interventions were eval-
uated in each LTCF for their ability to prevent SARS-CoV-2
transmission, and surveillance efficacy (E) is reported as the mean
(95% CI) relative reduction in I due to surveillance. Routine RT-
PCR testing significantly reduced incidence of hospital-acquired
SARS-CoV-2 infection, by E= 39.8% (39.1–40.3%) in LTCF 1, E=
41.2% (40.5–41.9%) in LTCF 2, and E = 46.6% (45.4–47.5%) in
LTCF 3 (Fig. 2, Supplementary Fig. S7). This corresponded to a
mean 11.9 infections averted in LTCF 1, 4.8 in LTCF 2, and 0.51 in
LTCF 3 (Supplementary Fig. S8). Greater relative efficacy in
higher-control LTCFs was consistent with a higher average prob-
ability of positive test results, a consequence of fewer new, as-yet
undetectable infections (Supplementary Fig. S6). On its own,
1-round Ag-RDT screening was less effective than routine testing,
reducing the incidence of hospital-acquired SARS-CoV-2 infection
by up to E = 31.2–37.5% (range of means across LTCFs when
conducted on day 1). For 1-round Ag-RDT screening in combi-
nation with routine testing, nosocomial incidence was reduced by
up to E = 58.4–63.5%. Among infections not prevented by routine
testing, this represents a marginal Em = 30.5–32.4% reduction in
remaining incidence due to screening. Whether paired with routine
testing or conducted independently, more immediate 1-round Ag-
RDT screening was generally more effective (Fig. 2).

Two-round Ag-RDT screening improves screening efficacy, but
is time-sensitive. Two-round screening—conducting a first
round of screening immediately upon outbreak detection, and an
additional second round over the following days—increased
surveillance efficacy. Nosocomial incidence was reduced by up to
E = 69.4–75.0% across LTCFs with well-timed 2-round screening
(Fig. 2). This represents a marginal reduction of Em= 48.1–52.8%
among remaining infections not averted by routine testing alone.
Optimal timing for the second round of screening was on days
5–6 (4–5 days after the first round). In an alternative scenario of
higher community incidence and more frequent introductions of
SARS-CoV-2 into the LTCF, screening was overall less effective
for transmission prevention than in the baseline scenario, and
optimal timing for the second screening round was delayed fur-
ther in LTCFs 2 and 3 (Supplementary Fig. S9c).

Screening efficacy depends on screening targets and test type.
Targeting both patients and staff for screening was always more
effective than only targeting one or the other (Supplementary
Fig. S9a). Targeting only patients was substantially more effective
than staff for LTCF 1, consistent with its large patient-led out-
breaks. This difference was less pronounced in LTCF 2, while in
LTCF 3 screening efficacy was nearly identical whether targeting
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patients or staff. We also evaluated the use of RT-PCR instead of
Ag-RDT for screening, maintaining its higher diagnostic sensi-
tivity and longer turnaround time (24 h). For all types of
screening considered (1-round, 1-round with routine testing,
2-round with routine testing), Ag-RDT screening was more
effective for transmission prevention than RT-PCR screening,
suggesting that faster turnaround time for Ag-RDT outweighs its
reduced sensitivity. This finding was robust to a sensitivity ana-
lysis considering an alternative curve for diagnostic sensitivity of
Ag-RDT relative to RT-PCR (Supplementary Fig. S9b).

Screening efficiency and cost-effectiveness scale with under-
lying outbreak risk. The efficiency of simulated surveillance

interventions was evaluated using three distinct outcomes:
apparent efficiency (A, the average expected number of infections
detected per test used), real efficiency (R, the average number of
infections prevented per test used), and the cost-effectiveness ratio
(CER, testing unit costs per infection prevented). The efficiency of
routine RT-PCR testing varied substantially across LTCFs: mean
apparent efficiency ranged from A = 28–65 cases detected/1000
RT-PCR tests, while mean real efficiency ranged from R = 5–105
cases averted/1000 RT-PCR tests (Supplementary Fig. S10).
Relative to RT-PCR, the apparent efficiency of Ag-RDT screening
interventions was similar across LTCFs. For example, for the
most effective surveillance intervention (routine RT-PCR testing
+ 2-round Ag-RDT screening on days 1 and 5; intervention
#23 in Supplementary table S2), apparent efficiency of screening

Fig. 1 Modelling context: simulating SARS-CoV-2 outbreaks in a long-term care facility (LTCF) with three different levels of COVID-19 control. a A list
of the COVID-19 containment measures in place across low-control LTCF 1, moderate-control LTCF 2, and high-control LTCF 3 (see Supplementary
information section I for details). b Daily infection prevalence, the mean number of individuals in each infection stage (colours) over time. Pre-symptomatic
infection combines pre-symptomatic and pre-asymptomatic infection, and symptomatic infection combines mild symptomatic and severe symptomatic
infection. c Daily nosocomial infection incidence, the number of new SARS-CoV-2 infections acquired within the LTCF each day. Thin coloured lines are
individual simulations; the thick black line is the mean across 100 simulations. In text, the mean (range) cumulative nosocomial incidence, I, over two
weeks. The proportions of simulations with ≥1 cumulative nosocomial cases were 98%, 98% and 59% in LTCFs 1, 2 and 3, respectively; the proportions
with ≥5 cumulative nosocomial cases were 91%, 73% and 2%; the proportions with ≥10 cumulative nosocomial cases were 82%, 55% and 0%; and the
proportions with ≥25 cumulative nosocomial cases were 51%, 6% and 0%.
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ranged from A = 3.3–3.6 infections detected/1000 Ag-RDT tests
if targeting patients, A = 6.2–6.3 infections detected/1000 Ag-
RDT tests if targeting staff, and A = 5.1–5.2 infections detected/
1000 Ag-RDT tests if targeting both patients and staff. This
reflects that screening interventions detected similar numbers of
infections in each LTCF relative to the large number of tests used.
However, LTCFs varied greatly in terms of real health-economic
benefits of screening. For example, for this same intervention
(#23) targeting patients, marginal real efficiency of screening was
Rm = 19.6 cases averted/1000 Ag-RDT tests in LTCF 1, Rm = 5.3
cases averted/1000 Ag-RDT tests in LTCF 2, and Rm = 0.5 cases
averted/1000 Ag-RDT tests in LTCF 3 (Fig. 3). Efficiency and
other measures of screening performance (TPV, NPV, PPV,
NPV) varied substantially over time, depending on which
populations were targeted by screening (Supplementary Fig. S11).

Cost-effectiveness of surveillance interventions varied by
orders of magnitude across LTCFs (Fig. 4). In LTCF 1, assuming
baseline per-test unit costs (€50/RT-PCR test, €5/Ag-RDT test),
the cost-effectiveness ratio of the most effective surveillance
intervention (#23) was CER = €469 (95% CI: €462–€478)/case
averted (Fig. 4). In LTCF 2, the same intervention cost CER =
€1180 (€1166–€1200)/case averted, and in LTCF 3 CER= €11,112

(€10,825–€11,419)/case averted. Cost-effectiveness ratios were
similar whether conducting one or two rounds of Ag-RDT
screening (Supplementary Fig. S12). Overall, for interventions
combining routine testing and reactive screening, cost-
effectiveness ratios were more sensitive to costs of Ag-RDT
screening tests than routine RT-PCR tests (Fig. 4). At a fixed unit
cost of €50/RT-PCR test in the high-control LTCF 3, cost-
effectiveness ratios for intervention #23 were approximately: CER
= €16,000/case averted at €10/Ag-RDT test, CER = €30,000/case
averted at €25/Ag-RDT test, and CER = €54,000/case averted at
€50/Ag-RDT test. Conversely, in the low-control LTCF, cost-
effectiveness ratios remained below CER= €5000/case averted up
to €100/Ag-RDT test. When reactive Ag-RDT screening and
routine RT-PCR testing were considered separately as indepen-
dent surveillance strategies, routine testing was always more cost-
effective than reactive screening per € spent on surveillance costs
(Supplementary Fig. S13).

Discussion
Surges in nosocomial SARS-CoV-2 outbreak risk are often pre-
dictable, resulting from phenomena like local emergence of a

Fig. 2 Efficacy of Ag-RDT screening interventions for reducing nosocomial SARS-CoV-2 incidence. Points represent mean efficacy (across n =
10,000 simulations) for each of 26 screening interventions, arranged by timing of the screening intervention (days since initial outbreak detection,
x-axis) and coloured by screening implementation (either as 1-round screening with no other testing, orange; as 1-round screening in combination with
routine RT-PCR testing, purple; or as 2-round screening with routine RT-PCR testing, black). For 2-round screening, the first round was conducted on
day 1, with points arranged according to the date of the second round (days 2–9). The solid horizontal line corresponds to mean efficacy of routine
RT-PCR testing in absence of screening, which is conducted continuously over time and does not correspond to a specific date. Relative reductions in
incidence were similar across LTCFs, but there was significant variation in the number of infections averted (Supplementary Fig. S8). Error bars (dashed
lines for routine testing) correspond to 95% confidence intervals estimated by bootstrap resampling (n = 10,000). Baseline assumptions underlying
simulations include: “low” community SARS-CoV-2 incidence; time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and screening
interventions that target all patients and staff in the LTCF. RT-PCR = reverse transcriptase polymerase chain reaction; Ag-RDT = antigen rapid
diagnostic testing; LTCF = long-term care facility.
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highly transmissible variant, seasonal or festive gatherings that
increase population mixing, and the identification of index cases
or exposed contacts in a healthcare facility. When such risks
are known, implementing reactive surveillance may help to
identify and isolate asymptomatic and pre-symptomatic infec-
tions, limiting onward nosocomial transmission. Using simula-
tion modelling, we demonstrate how reactive Ag-RDT screening
complements routine RT-PCR testing in reducing nosocomial
SARS-CoV-2 incidence following a known surge in outbreak risk.
With two rounds of well-timed Ag-RDT screening, up to 75% of
infections were prevented, compared to 47% with routine RT-
PCR testing alone. Underlying outbreak risk was the greatest
driver of screening efficiency, more important than screening

timing (immediate vs. delayed), test type (Ag-RDT vs. RT-PCR)
or target (patients vs. staff). We estimated that a vulnerable
LTCF gains between one and two orders of magnitude more
health-economic benefit (>10 infections averted/1000 Ag-RDT
tests used) than a resilient LTCF with alternative COVID-19
control measures already in place (<1 infection averted/1000 Ag-
RDT tests).

Ag-RDT screening is widely used in healthcare settings, but
there is limited empirical evidence demonstrating efficacy for
SARS-CoV-2 transmission prevention17. Despite a range of stu-
dies reporting efficacy for case identification18–20, interventional
trials are needed to understand impacts on nosocomial spread.
Our comparison of apparent and real screening efficiency

Fig. 3 Efficiency of Ag-RDT screening: infection detection versus infection prevention. Efficiency of Ag-RDT screening in the context of a highly effective
surveillance strategy (intervention #23, routine RT-PCR testing + 2-round Ag-RDT screening on days 1 and 5), comparing (a) apparent screening
efficiency with (b) marginal real screening efficiency. Marginal real screening efficiency describes efficiency of Ag-RDT screening for prevention of
remaining nosocomial SARS-CoV-2 infections not already averted by routine RT-PCR testing. Screening interventions targeted either all members of staff
(blue), all patients (red), or all individuals in the LTCF (orange). Baseline assumptions underlying simulations include: “low” community SARS-CoV-2
incidence and time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A). Bar heights and error bars correspond to means and 95% confidence
intervals estimated by bootstrap resampling (n = 10,000). RT-PCR = reverse transcriptase polymerase chain reaction; Ag-RDT = antigen rapid diagnostic
testing; LTCF = long-term care facility.

Fig. 4 Surveillance cost-effectiveness: underlying outbreak risk outweighs testing unit costs.Mean cost-effectiveness ratios for a highly epidemiologically
effective surveillance strategy (intervention #23, routine RT-PCR testing + 2-round Ag-RDT screening on days 1 and 5), estimated as testing unit costs per
infection averted while varying unit costs for RT-PCR tests (x-axis) and Ag-RDT tests (y-axis). Baseline assumptions underlying simulations include: “low”
community SARS-CoV-2 incidence; time-varying Ag-RDT sensitivity relative to RT-PCR (Ag-RDT A); and screening interventions that target all patients and
staff in the LTCF. RT-PCR = reverse transcriptase polymerase chain reaction; Ag-RDT = antigen rapid diagnostic testing; LTCF = long-term care facility.
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demonstrates why case identification may be a poor proxy mea-
sure for actual health and economic benefit. In the absence of
empirical data, mathematical models have been useful tools to
evaluate the performance of SARS-CoV-2 screening interventions
in healthcare settings. Most studies have simulated use of routine
screening at regular intervals (e.g. weekly, biweekly), finding that
more frequent screening reduces outbreak probability, that tar-
geting patients versus staff can significantly impact effectiveness,
and that faster diagnostic turnaround time of Ag-RDT tends to
outweigh reduced sensitivity relative to RT-PCR9,10,21–28. These
conclusions were recapitulated in our findings.

Despite potential to reduce transmission, routine screening is
an economic and occupational burden with uncertain suitability
for low-risk healthcare settings11,12. These considerations have
generally been neglected in previous work. A few modelling
studies have estimated the cost-effectiveness of nosocomial
screening interventions in specific use cases, including for hos-
pital patients admitted with respiratory symptoms29, patients
admitted to German emergency rooms30, and routine staff and
resident testing in English nursing homes31. However, key
impacts of stochastic transmission dynamics, screening hetero-
geneity, and other concomitant COVID-19 containment mea-
sures have rarely been accounted for, nor the wide range of unit
costs for different testing technologies considered here. Further,
to the best of our knowledge no studies have evaluated efficacy
and efficiency of reactive, as opposed to routine screening,
although findings from See et al. suggest greater efficiency of
testing in outbreak versus non-outbreak settings32. Our work was
further strengthened through the use of time-varying, test-specific
diagnostic sensitivity (as opposed to time-invariant estimates
often assumed in other work), facilitating assessment of optimal
timing for multi-round screening. Overall, our use of high-reso-
lution, stochastic, individual-based modelling complements pre-
vious studies in demonstrating how epidemiological and health-
economic benefits of reactive screening scale with test sensitivity,
screening timing, test type, population targets, and—most criti-
cally—underlying nosocomial outbreak risk.

This work focused on the detailed evaluation of surveillance
interventions, explored in the context of three focal scenarios cor-
responding to varied adherence to standard COVID-19 contain-
ment measures (social distancing, face masks, vaccination). Each
scenario resulted in fundamentally different epidemic dynamics
(exponential growth, linear growth and extinction), allowing us to
demonstrate how health-economic efficiency of surveillance varies
with underlying nosocomial outbreak risk, while relative epide-
miological efficacy is largely conserved. However, a detailed
assessment of how different combinations of these other COVID-19
containment measures impact outbreak risk, transmission dynam-
ics, surveillance efficacy and surveillance efficiency was beyond the
scope of this work. To take the example of vaccination, outbreak
risk (and hence surveillance efficiency) depends on, among other
variables: the particular vaccine(s) used; their efficacy for prevention
of transmission and disease in the context of locally circulating
variants; the distribution of the number of doses/boosters received
across patients and staff; and associated rates of immune waning
and breakthrough infection. In a supplementary analysis we show
how outbreak risk in our simulated LTCFs varies across asymmetric
levels of immunizing seroprevalence (Supplementary Fig. S4),
which may in turn impact optimal targets for screening (e.g. patient
screening should likely be prioritized in a facility with dis-
proportionately low patient or high staff vaccine coverage). For real-
world facilities, local outbreak risk must be continuously assessed
using local and up-to-date demographic, epidemiological and
immunological data.

Our findings should be interpreted in the context of several
methodological limitations. First, some results may reflect

specificities of the rehabilitation hospital contact network and
transmission process underlying our simulations. For instance,
we estimated greater efficiency for screening patients relative to
staff, but the opposite result may be expected in settings where
staff have significantly higher rates of contact than patients.
Further, the assumption that transmission risk saturates after 1 h
of infectious contact may lack biological realism, but is unlikely to
have substantially affected transmission dynamics (approximately
80% of contacts were <60 m in duration; median duration =
28.5 m). Second, our use of retrospective counterfactual analysis
facilitated precise estimation of intervention efficacy, but pre-
cluded consideration of how surveillance interventions might
impact human behaviour. For instance, healthcare workers that
conduct screening inevitably come into contact with many indi-
viduals, potentially creating new opportunities for transmission.
This risk may be mitigated through appropriate use of PPE
during screening33, and is not relevant if our results are inter-
preted in the context of self-administered auto-tests. Auto-testing
may be a cost-effective intervention in the context of at-home
testing in the community34, but feasibility in healthcare settings is
unclear, particularly for patients or residents among certain high-
risk groups 35.

Third, counterfactual scenarios did not account for possible
alternative infectors due to subsequent infectious exposures. For
instance, an individual whose infection was averted due to iso-
lation of their infector should nonetheless remain at risk of
infection during subsequent contacts with other infectious indi-
viduals. This effect was likely negligible in higher-control LTCFs,
where multiple acquisition routes are unlikely in the context of
low nosocomial incidence, but may have resulted in over-
estimation of intervention efficacy in lower-control LTCFs.
However, this should not have qualitatively changed our con-
clusions, as transmission chain pruning was conducted identically
across interventions (e.g. testing vs. screening), and screening
timing, test type (RT-PCR vs. Ag-RDT) and target (patients vs.
staff). Fourth, our cost-effectiveness ratios only considered testing
unit costs, but decision-makers must consider a range of other
implementation costs, from human resources, to logistical coor-
dination, to opportunity costs of false-positive isolation.
Decision-makers may also have a wide variety of tests and
manufacturers to choose from, including tests with heterogeneous
sampling techniques (e.g. nasopharyngeal swabs vs. saliva or
pharynx gargle samples), with potential consequences for sur-
veillance costs, efficacy, compliance and occupational burden.
(Note that the RT-PCR and Ag-RDT sensitivity curves used in
the present work represent average results across a range of dif-
ferent tests used on upper respiratory specimens.) In particular,
group testing (sample pooling) may be an efficient means of
surveillance in low prevalence settings, reducing overall testing
costs36. Finally, we limited our outbreak simulations to the two
weeks following intervention implementation, implicitly assum-
ing that LTCFs came to control nosocomial transmission at the
same time. We thus do not capture potential downstream expo-
nential benefits of preventing infections, including those that go
on to seed transmission in the community.

Since its widespread uptake as a SARS-CoV-2 surveillance
intervention, there has been substantial debate about whether the
potential health-economic efficiency of Ag-RDT justifies an ele-
vated risk of false-negative diagnosis37,38. Our findings are con-
sistent with the view that Ag-RDT is on its own insufficient to
eliminate nosocomial SARS-CoV-2 outbreak risk, but that it is
nonetheless an effective component of multi-modal infection
prevention strategies39. We demonstrate that reactive Ag-RDT
screening is a potentially efficient public health response to surges
in outbreak risk in the LTCF setting, but that its health and
economic benefits scale by orders of magnitude depending on
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other epidemiological risk factors, including the facility’s inter-
individual contact patterns, infection prevention measures, and
vaccine coverage. This suggests that healthcare institutions should
carefully evaluate their vulnerability to COVID-19—and hence
potential returns on investment—before implementation of Ag-
RDT screening interventions.

Methods
Ethical approval. The inter-individual contact data used in this work was collected
previously during the i-Bird study. The i-Bird study obtained all authorizations in
accordance with French regulations regarding medical research and information
processing. All French IRB-equivalent agencies accorded the i-Bird program official
approval (CPP 08061; Afssaps 2008-A01284-51; CCTIRS 08.533; CNIL AT/YPA/SV/
SN/GDP/AR091118 N°909036). Signed consent by patients and staff was not required
according to the French Ethics Committee to which the project was submitted.

Simulating SARS-CoV-2 outbreaks in the long-term care hospital setting. We
simulated SARS-CoV-2 outbreaks using CTCmodeler, a previously developed
stochastic, individual-based transmission model in the LTCF setting36,40. Using
high-resolution close-proximity interaction data from a 170-bed rehabilitation
hospital in northern France, this model simulates (i) detailed inter-individual
contacts among patients and staff, (ii) transmission of SARS-CoV-2 along simu-
lated contact networks, and (iii) clinical progression of COVID-19 among infected
individuals. More information about the model and underlying contact data are
provided in Supplementary information section I.

A range of COVID-19 containment measures were built into the model. These
include (i) a patient social distancing intervention (cancellation of social activities; see
Supplementary Fig. S1), (ii) mandatory face masks among patients and staff (80%
reduction in transmission rates), and (iii) imperfect vaccination of patients and staff
(50% immunizing seroprevalence at simulation outset, compared to an assumed 20%
baseline in scenarios without vaccination). This value is consistent with an estimated
53% efficacy of the mRNA BNT162b2 vaccine against infection with the Delta variant
four months from second dose41. In a sensitivity analysis, we varied rates of
immunizing seroprevalence from 0% to 100% across patients and staff to investigate
potential epidemiological impacts of asymmetric immunization coverage. Three
distinct combinations of containment measures were applied to the baseline LTCF to
represent variable degrees of investment in COVID-19 prevention (Fig. 1a). These are
presented as (i) low-control LTCF 1, with no explicit measures in place, (ii) moderate-
control LTCF 2, with patient social distancing, and (iii) high-control LTCF 3, with
patient social distancing, mandatory face masks and vaccination. Further modelling
details are provided in Supplementary information section I.

Simulation initialization. Simulations were initialized to include a surge in SARS-
CoV-2 outbreak risk, defined as a surge in SARS-CoV-2 introductions from the
community. We assumed that 50% of patients and 100% of staff were exposed to
contacts outside the LTCF in the week prior to simulation, conceptualized as
representing family gatherings over a festive period. Calibrated to French epidemic
data from January 2021, this translated to one patient and three staff infections,
with a mean 1.4 symptomatic infections upon simulation initialization (Fig. 1b).
Detection of symptomatic infection at simulation outset was interpreted as coin-
ciding with initial SARS-CoV-2 outbreak detection within the LTCF, triggering
implementation of surveillance interventions (see below). We further assumed a
low baseline rate of subsequent SARS-CoV-2 introductions from the community,
again calibrated to French data and depicting a situation of ongoing localized risk.
See Supplementary information section I for more initialization details. Outbreaks
were simulated over two weeks to evaluate short-term outbreak risk and immediate
health-economic benefits of surveillance interventions.

Surveillance interventions. Surveillance interventions were implemented in
response to the identified surge in nosocomial outbreak risk at simulation outset. We
distinguish between routine testing, the targeted use of RT-PCR upon onset of
COVID-19-like symptoms or admission of new patients into the LTCF; and popu-
lation screening, the mass testing of entire populations (e.g. patients, staff) on selected
dates. We assessed 27 surveillance interventions grouped into four categories: (i)
routine testing, (ii) 1-round screening, (iii) routine testing + 1-round screening, and
(iv) routine testing + 2-round screening (see list of interventions in Supplementary
table S2). The latter two categories are defined as multi-level surveillance interventions
that combine both screening and testing. Based on published estimates, diagnostic
sensitivities of RT-PCR sPCR(t) and Ag-RDT sRDT(t) were assumed to vary with time
since SARS-CoV-2 exposure t42,43. Ag-RDT was on average 73.5% as sensitive as RT-
PCR, with greater sensitivity (87.5%) up to 7-days post-symptom onset and lower
sensitivity (64.1%) thereafter (see sensitivity curves in Supplementary Fig. S5 and
further methodological detail in Supplementary information section III). For diag-
nostic specificity, we assumed 99.7% for Ag-RDT and 99.9% for RT-PCR 43.

Simulating counterfactual scenarios. Surveillance interventions were applied
retrospectively to daily outbreak data for precise estimation of intervention

effects, using methods adapted from single-world counterfactual analysis (see
Kaminsky et al. 44). Counterfactual scenarios were simulated by (i) retro-
spectively isolating individuals who test positive for SARS-CoV-2 (assuming
immediate isolation for Ag-RDT but a 24-h lag for RT-PCR, reflecting a delay
between sample and result), and (ii) pruning transmission chains, (removing all
transmission events originating from isolated individuals). Single-world
matching facilitated estimation of marginal benefits of multi-level surveillance
interventions, i.e. additional benefits of population screening relative to a
baseline routine testing intervention already in place (illustrated in Fig. 5).
Simulation of counterfactual scenarios is described further in Supplementary
information section III. We simulated 100 counterfactual scenarios per inter-
vention per outbreak, for n = 43.7 million simulations for estimation of sur-
veillance efficacy, efficiency and cost-effectiveness.

Surveillance outcomes: efficacy. For each outbreak simulation, the cumulative
number of nosocomial infections at two weeks, I, was calculated in the absence of
surveillance interventions as Ibaseline. For each counterfactual scenario, the number
of infections averted by transmission chain pruning for each surveillance inter-
vention was calculated as Iaverted, so the adjusted incidence for each surveillance
counterfactual was calculated as

Isurveillance ¼ Ibaseline � Iaverted ð1Þ
The relative efficacy, E, of each surveillance intervention for each counterfactual

was calculated as the proportional reduction in I, given by

E ¼ 1� Isurveillance
Ibaseline

ð2Þ
For multi-level interventions combining routine testing (“testing”) and

population screening (“screening”), marginal relative efficacy of screening, Em, was
calculated by excluding infections already averted due to testing,

Em ¼ 1� Itestingþscreening

Itesting
ð3Þ

Surveillance outcomes: efficiency. We calculated four measures of
surveillance efficiency. First, apparent efficiency, A, was defined as perceived
operational efficiency, calculated using the number of cases detected by surveillance
(Dsurveillance) as

A ¼ Dsurveillance

n
ð4Þ

where n is the number of tests used.
Second, real efficiency, R, was defined as the relative health benefit resulting

from intervention, calculated using the per-test number of infections averted as

R ¼ Ibaseline � Isurveillance
n

ð5Þ
Third, for multi-level interventions combining testing and screening, marginal

real efficiency of screening, Rm, was calculated by excluding infections already
averted and tests already used due to testing, given by

Rm ¼ Itesting � Itestingþscreening

nscreening
ð6Þ

Fourth, the cost-effectiveness ratio, CER, was defined as total surveillance costs
per case averted, accounting for unit costs c of routine testing (ctesting) and
screening (cscreening),

CER ¼ ntesting ´ ctesting þ nscreening ´ cscreening
Ibaseline � Isurveillance

ð7Þ

where we assumed the use of RT-PCR for routine testing at a baseline €50/test, and
Ag-RDT for population screening at a baseline €5/test, similar to previous cost
estimates for France and the UK45,46. Other outcomes evaluated to assess the
performance of testing and screening interventions were true-positive rate (TPR),
true-negative rate (TNR), negative predictive value (NPV) and positive predictive
value (PPV).

Statistics. All surveillance outcomes are reported as means across n =
10,000 simulations (100 outbreaks × 100 surveillance runs) and were calculated in
R software v3.6.0. 95% confidence intervals were calculated using bootstrap
resampling with 100 replicates and normal approximation (R package boot).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Synthetic contact data used in CTCmodeler are available from DS within one month if
requested for public research purposes. Outbreak datasets generated by CTCmodeler and
surveillance outcome datasets resulting from the present study are available at https://
github.com/drmsmith/agrdt/ 47.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27845-w ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:236 | https://doi.org/10.1038/s41467-021-27845-w |www.nature.com/naturecommunications 7

https://github.com/drmsmith/agrdt/
https://github.com/drmsmith/agrdt/
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Code availability
Code developed during the present study is available at https://github.com/drmsmith/
agrdt/ 47.
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