

Dairy product consumption and risk of cancer: A short report from the NutriNet-Santé prospective cohort study

Mélanie Deschasaux-Tanguy, Laura Barrubés Piñol, Laury Sellem, Charlotte Debras, Bernard Srour, Eloi Chazelas, Gaëlle Wendeu-foyet, Serge Hercberg, Pilar Galan, Emmanuelle Kesse-Guyot, et al.

▶ To cite this version:

Mélanie Deschasaux-Tanguy, Laura Barrubés Piñol, Laury Sellem, Charlotte Debras, Bernard Srour, et al.. Dairy product consumption and risk of cancer: A short report from the NutriNet-Santé prospective cohort study. International Journal of Cancer, 2022, 150 (12), pp.1978-1986. 10.1002/ijc.33935. hal-03622713

HAL Id: hal-03622713 https://cnam.hal.science/hal-03622713v1

Submitted on 25 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Dairy product consumption and risk of cancer: a short report from the NutriNet-Santé prospective cohort study

Authors:

Mélanie Deschasaux-Tanguy^{1,2}*§, Laura Barrubés Piñol^{1,3,4,5}*, Laury Sellem¹, Charlotte Debras^{1,2}, Bernard Srour^{1,2}, Eloi Chazelas^{1,2}, Gaëlle Wendeu-Foyet^{1,2}, Serge Hercberg^{1,2,6}, Pilar Galan¹, Emmanuelle Kesse-Guyot¹, Chantal Julia^{1,6}, Nancy Elvira Babio Sánchez^{3,4,5}**, Jordi Salas Salvadó^{3,4,5}**, Mathilde Touvier^{1,2}**

*co-first authors **co-last authors

Affiliations:

¹ Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center – University of Paris (CRESS), Bobigny, France

² French network for Nutrition And Cancer Research (NACRe network), Jouy-en-Josas, France, <u>http://www.inrae.fr/nacre</u>

³ Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain;

⁴ Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Sant Joan de Reus, Reus, Spain.

⁵Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.

⁶ Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France

§ Corresponding author:

Mélanie Deschasaux-Tanguy Sorbonne Paris Nord University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center – University of Paris (CRESS), Bobigny, France <u>m.deschasaux@eren.smbh.univ-paris13.fr</u>

Keywords: dairy products; cancer; prospective study; cohort

Abbreviations: BMI, body mass index; CI, confidence interval; GLOBOCAN, Global Cancer Observatory; HR, hazards ratio; IPAQ, International Physical Activity Questionnaire; SD, standard deviation; SFA, saturated fatty acid; WCRF/AICR, World Cancer Research Fund/American Institute of Cancer Research

1 Abstract

2 The impact of dairy product consumption for long-term health remains unclear, in particular 3 regarding their involvement in cancer etiology for frequent locations like breast or prostate. Besides, little is known about potentially different effects of dairy producto subtypes. Our 4 5 objective was therefore to evaluate the associations between dairy product consumption (total and subtypes) and cancer risk. A total of 101,279 participants from the French NutriNet-Santé 6 7 cohort study were included (78.7% women; mean (SD) age=42.2 (14.5) years). Dairy product 8 consumption was assessed using validated web-based 24-hour dietary records. Multi-adjusted 9 Cox models were computed. After a median [interquartile range] follow-up time of 5.9 [2.7-10 8.3] years, we documented 2,503 incident cancer cases (783 breast, 323 prostate, and 182 11 colorectal cancers). Total dairy product consumption was not significantly associated with 12 cancer. However, the consumption of "fromage blanc" (a French type of quark/cottage 13 cheese) was associated with an increased risk of cancer overall [HR for 1 serving increment 14 (95% CI)=1.11 (1.01-1.21); P-trend=0.03] and of colorectal cancer [HR=1.39 (1.09-1.77); P-15 trend<0.01]. Besides, sugary dairy dessert consumption was directly associated with 16 colorectal cancer risk [HR for 1 serving increment=1.58 (1.01-2.46); P-trend=0.046]. No 17 association was observed between the consumption of dairy products or sugary dairy desserts 18 and the risk of prostate and breast cancers. In our study, the consumption of dairy products 19 was not associated with the risk of overall, colorectal, breast or prostate cancers. The 20 consumption of "fromage blanc" and sugary dairy desserts were associated to an increased 21 of colorectal investigations. risk this further cancer, but warrants

22 Introduction

23 Cancer incidence is rapidly increasing and has become a leading cause of death in many countries. The Global Cancer Observatory (GLOBOCAN) estimated that 18.1 million new 24 cancer cases occurred worldwide in 2018¹. There is accumulating evidence that diet and 25 lifestyle factors play an important role on cancer development². In particular, dairy product 26 27 consumption may be involved in cancer prevention through their content in calcium, vitamin 28 D, lactic acid-producing bacteria (fermented dairy products), conjugated linoleic acid but also 29 lactoferrin or butyrate². In 2018, the Third Expert Report from the World Cancer Research Fund/American Institute of Cancer Research (WCRF/AICR) concluded that consuming dairy 30 products probably decreases the risk of colorectal cancer². Associations with a decreased 31 breast cancer risk (pre-menopause) and an increased prostate cancer risk (potentially through 32 elevated levels of insulin-like growth factor 1) were less clear, with only limited-suggestive 33 evidence², thus requiring additional studies. Evidence for other cancer locations is more 34 limited ². Besides, more evidence is needed regarding potential specific associations between 35 36 dairy product subtypes and cancer risk.

We therefore analyzed the associations between the consumption of total dairy products and
specific dairy product subtypes and the risk of developing overall, breast, prostate and colon
cancers in the NutriNet-Santé Cohort Study.

40

41 Material and methods

42 Study population

The NutriNet-Santé study is a French, ongoing, web-based prospective cohort launched in 2009 aiming to evaluate the relationship between nutrition, mortality and health outcomes, and examine determinants of dietary behaviors and nutritional status. Detailed information on this cohort can be found elsewhere ³. Participants (aged >18 years old) with access to the 47 Internet have been continuously recruited since May 2009 from the general population by vast 48 multimedia campaigns, and followed through questionnaires using a dedicated and secured 49 online platform (http://www.etude-nutrinet-sante.fr). Electronic informed consent was 50 obtained from each participant. The NutriNet-Santé Study (registered at ClinicalTrials.gov as NCT03335644) is conducted according to the Declaration of Helsinki guidelines. It was 51 52 approved by the Institutional Review Board of the French Institute for Health and Medical 53 Research and the 'Commission Nationale de l'Informatique et des Libertés' (CNIL 54 n°908450/n°909216).

55 Data collection

At baseline, participants completed a set of five validated questionnaires related to 56 sociodemographic and lifestyle characteristics ⁴, anthropometry ^{5,6}, dietary intakes ^{7–9}, 57 58 physical activity (validated short version of the International Physical Activity Questionnaire [IPAQ]) ¹⁰ and health status. Dietary data were collected at baseline and every six months 59 60 through series of three non-consecutive validated web-based 24-hour dietary records (2 weekdays and 1 weekend day), randomly assigned over a two-week period. Portion sizes were 61 estimated using validated photographs¹¹, standard containers or directly in g or mL. Mean 62 daily energy, alcohol and macro- and micro-nutrient intakes were estimated using a French 63 food composition database ¹². Amounts consumed from composite dishes were estimated 64 considering French recipes validated by food and nutrition professionals. Dietary under-65 reporters were detected on the basis of the method proposed by Black ¹³. The present study 66 focused on the consumption of dairy products, which include milk and cheese, as well as 67 yogurt, "fromage blanc" and "petit-Suisse" (French specialties, similar to cottage cheese or 68 69 quark) with a sugar content < 12%). Fermented dairy products included yogurt, cheese, "fromage blanc" and "petit-Suisse". Sugary dairy desserts, milk-based products not classified 70 71 as dairy products according to French recommendations due to their high sugar content (e.g., cream dessert, pudding, custard, "crème brûlée", milkshake, as well as sweetened or fruit
yogurt, "fromage blanc" and "petit-Suisse" with a sugar content ≥12%) were also considered.
The consumption of dairy products and sugary dairy desserts was assessed as the mean intake
over all dietary records that were completed during the first two years of each participant's
follow-up.

77 *Case ascertainment*

78 Participants were asked to report their health status at baseline and every six months through a 79 health check-up questionnaire. A dedicated and secured web-interface is also available at any 80 time for the participants to report health events, new treatments, or medical exams. Reported 81 cancer cases were validated by an expert medical committee, based on medical and 82 anatomopathological reports collected from the participants, their physicians and/or hospitals. 83 The NutriNet-Santé study is also linked to the national medical databases of the health 84 insurance (SNIIRAM) and to the French cause-specific mortality registry (CépiDC) enabling 85 to complete death and health data thereby limiting potential bias due to unreported cancer cases. Cancer cases were classified using the International Chronic Diseases Classification, 86 10th Revision, Clinical Modification (ICD-10)¹⁴. All primary cancers diagnosed between the 87 88 inclusion and January 7th, 2019 were considered as cases, except for basal cell skin carcinoma. 89

90 Statistical analysis

A total of 129,787 individuals provided at least 2 24h dietary records during their first two years of follow-up, of which were excluded n=21,804 energy under-reporters and n=6,704 participants with prevalent cancer at baseline. Dairy product consumption was considered using standard servings: 150 g of milk; 125 g of yogurt; 30 g of cheese; 100 g of "fromage blanc"; 120 g of "petit-Suisse" and 125 g of sugary dairy dessert. Servings for total dairy products were calculated as the sum of the servings of milk, cheese, yogurt, "fromage blanc",

97 and "petit-Suisse". Dairy desserts were considered separately. Hazards ratios and 95% 98 confidence intervals were computed from Cox proportional hazard models. Main outcomes 99 were overall, breast, prostate and colorectal cancers (the most common cancer locations in the 100 cohort). Participants contributed person-time from their inclusion until their date of diagnosis, 101 last completed questionnaire, death, or January 7th, 2019, whichever occurred first. 102 Stratifications by menopausal status for breast cancer were also carried out. In these analyses, 103 women contributed person-time to the premenopausal model until their age at menopause, and 104 to the postmenopausal model from their age at menopause.

105 The main model included the following potential confounders: sociodemographic 106 characteristics - age (timescale), sex, educational level (less than high-school degree, high-107 school degree, undergraduate and graduate degree); anthropometric characteristics - height 108 (cm), BMI (kg/m²); lifestyle – smoking status (never, former, current smokers), physical 109 activity (high, moderate, low, missing); personal and family history of diseases (yes/no) -110 personal history of type 2 diabetes, hypertriglyceridemia, hypercholesterolemia and family 111 history of cancer; study design (number of 24-hour dietary records); dietary intakes of 112 nutrients or food groups associated with cancer risk or reflecting overall diet quality: non-113 alcohol energy (kcal/d), sugar (g/d), sodium (g/d), alcohol (g/d), fruit and vegetables (g/d), 114 whole grain products (g/d), red and processed meat (g/d) as well as saturated fatty acids 115 (SFAs) (g/d, continuous) and calcium (mg/d) brought by other sources than dairy products. 116 For analyses on dairy product subtypes, models were also adjusted for the consumption of 117 each other dairy products than the one studied. Breast cancer models were additionally 118 adjusted for covariates linked to reproductive history: menopausal status at baseline (yes/no), 119 use of hormonal treatment for menopause (yes/no), oral contraception use (yes/no), number of 120 children (continuous), age at menarche (never, <12y, $\ge 12y$), and age at first birth (never, 121 <30y, ≥30y).

For all covariates except physical activity, $\leq 5\%$ of values were missing and imputed to the modal (categorical variables) or median (continuous variables) values. A missing class was created for physical activity (14% missing). We conducted secondary analyses to examine the associations between sex-specific quartiles of intake of SFAs and calcium from dairy products and the risk of cancer. Sensitivity analyses were performed excluding participants with less than two years of follow-up and repeating the main analyses with a model not adjusted for dietary variables or personal health history.

129 All tests were two-sided, with P < 0.05 considered to be statistically significant. We used SAS 130 version 9.4 for the analyses.

131 **Results**

A total of 101,279 participants (78.7% women) with a median [interquartile range] follow-up time of 5.9 [2.7-8.3] years were included in the analyses. During follow-up, we documented the incidence of 2,503 overall cancers, 783 breast cancers (324 premenopausal and 459 postmenopausal), 323 prostate cancers and 182 colorectal cancers. Participants consumed on average 198.4 g/day of dairy products, with 83.3g/day of milk, 58.1g/day of yogurt, 36.9g/day of cheese and 17.7g/day of "fromage blanc".

Table 1 contains the baseline characteristics of all participants according to sex-specific quartiles of total dairy product consumption. At baseline, mean (SD) age was 42.2 (14.5) years and mean (SD) BMI was 23.7 (4.5) kg/m². Individuals with a higher consumption of total dairy products were more likely to have higher BMI and family history of cancer, to be current smokers and physically active. They also showed significantly higher intakes of energy (without alcohol), total lipids, carbohydrates and sodium and lower intakes of alcohol and sugary dairy desserts. 145 No association was observed between the consumption of total dairy products and the risk of 146 overall cancer, and neither with the risk of breast cancer (with similar results pre and post-147 menopause), colorectal cancer and prostate cancer (Table 2).

148 Likewise, no association was observed for the consumption of milk, yogurt or cheese.

However, an increase of 1 serving in the consumption of "fromage blanc" was associated with an increased risk of overall cancer [HR (95% CI)=1.11 (1.01-1.21); *P* for trend=0.03] and colorectal cancer [HR=1.39 (1.09-1.77); *P* for trend<0.01] but not with breast or prostate cancer risk (Table 2). Similarly, 1-serving increment in sugary dairy dessert consumption was positively associated with the risk of colorectal cancer [HR=1.58 (1.01-2.46); *P* for trend=0.046] (Table 2).

In line, no association was observed between intakes of SFAs and calcium from dairy productsources and cancer risk (Table 3).

157 The results of the sensitivity analyses (Supplementary Table S1) for overall, colorectal and158 prostate cancer were similar to the main results.

159

160 **Discussion**

In the present study, no association was observed between the consumption of dairy products and the risk of overall, colorectal, breast or prostate cancers. The consumption of "fromage blanc" and sugary dairy desserts were however associated with higher risk of colorectal cancer.

Our results were in line with a recent meta-analysis showing that there were no strong associations between the intake of milk or yogurt and breast cancer risk ¹⁵. Additionally, although some studies indicated that the consumption of milk and dairy products may increase the risk of prostate cancer, the evidence remains inconsistent ¹⁶. However, unlike our findings, previous studies have shown a significant decreased colorectal cancer risk associated with the 170 consumption of total dairy products ¹⁷, supporting the conclusions of the WCRF/AICR 171 (although the association with cheese consumption was less clear) ², as well as an overall 172 decrease in cancer risk related to fermented dairy food intake ¹⁸. Differences between these 173 studies and ours could pertained to differences in the amount and types of dairy products 174 consumed but also differences in overall lifestyle between the population studied.

175 No clear mechanisms seem to explain the observed increased risk of colorectal cancer 176 associated with the consumption of "fromage blanc", a dairy specialty resulting from lactic 177 coagulation and draining, without further processing or additives. Thus, we suggest 178 interpreting this result with caution, as it could result from an artefact of the study sample. 179 The consumption of "fromage blanc" in France is often encouraged as part of dieting. Hence, 180 individuals consuming higher amounts of "fromage blanc" (more likely to have a higher BMI, 181 family history of cancer and higher prevalence of type 2 diabetes in our sample) may be those 182 already at higher risk of cancer, thus introducing a bias in the observed association, even 183 though we adjusted for personal history of diseases and family history of cancer in our main 184 model and excluded cases occurring during the first years of follow-up in sensitivity analyses. 185 In turn, sugary dairy desserts often contain elevated amounts of sugar as well as additives (for instance emulsifiers or texturizers) ^{19,20}, which could contribute to explain the observed 186 187 association with an increased colorectal cancer risk, notably through body weight gain and 188 subsequent increase in insulin resistance 2 .

This study has some limitations that should be acknowledged. First, since this is a volunteerbased cohort, participants in the NutriNet-Santé cohort were more often women, with healthconscious behaviors and with higher educational and socioeconomical status in comparison to the general French population ²¹. This could limit the generalization of our results as it may have resulted in a lower number of incident cancer cases and a lower consumption of sugary dairy desserts, which could have led to underestimate the strength of the associations

195 observed. Secondly, the number of incident colorectal cancer cases was relatively limited, 196 which may have prevented us from observing an association for total dairy consumption 2 . 197 Statistical power was also limited by the fact that there was a substantial proportion of non-198 consumers for several dairy subtypes. Next, despite the multiple adjustments in our analyses, 199 residual confounding or bias cannot be ruled out. Finally, dietary assessment tools are subject 200 to some measurement error. Yet, to limit this bias, dietary intakes in this study were assessed 201 using repeated 24h dietary records (mean number of dietary records per participant of 5.7 202 (SD: 3.1)) that have been validated against biomarkers and interviews by a trained dietitian ^{7–} 9. 203

Overall, our analyses did not show evidence of a statistically significant association between dairy product intake and cancer risk. The results suggest a positive modest association between the consumption of "fromage blanc" and sugary dairy desserts and colorectal cancer risk. However, this requires additional investigation in further prospective studies and more mechanistic insights.

Acknowledgements: The authors warmly thank all the volunteers of the NutriNet-Santé cohort for their continuous participation in the study. The authors also thank Cédric Agaesse (manager), Alexandre De-Sa and Rebecca Lutchia (dietitians); Thi Hong Van Duong, Régis Gatibelza, Jagatjit Mohinder and Aladi Timera (computer scientists); Nicolas Dechamp (data-manager/statisticians); Sandrine Kamdem (health event validator); and Maria Gomes (participants' support) for their technical contribution to the NutriNet-Santé study.

Authors' contribution: The authors' contributions were as follows – MDT, LBP, NEBS, LSS, MT conceptualized the study and defined the analytical strategy; LBP: performed statistical analyses and drafted the manuscript; MDT, MT: supervised statistical analyses;

MDT, NEBS, LSS, MT: supervised writing; LS, CD, BS, EC, GWF, SH, PG, EKG, CJ: critically helped in the interpretation of results, read and revised the manuscript and provided relevant intellectual input. They all read and approved the final manuscript. MDT and MT had primary responsibility for the final content.

Data availability statement: If you are a researcher of a public institution, you can submit a collaboration request including your institution and a brief description of your project to collaboration@etude-nutrinet-sante. All requests will be reviewed by the steering committee of the NutriNet-Santé study. A financial contribution may be requested. If the collaboration is accepted, a data access agreement will be necessary and appropriate authorizations from the competent administrative authorities may be needed. In accordance with existing regulations, no personal data will be accessible.

Funding: The NutriNet-Santé cohort study was supported by the following public institutions: Ministère de la Santé, Santé Publique France, Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Conservatoire National des Arts et Métiers (CNAM) and Université Sorbonne Paris Nord. Study investigators are independent from the funders. Funders had no role in the study design, the collection, analysis, and interpretation of data, the writing of the manuscript, or the decision to submit the article for publication.

Conflict of interest: Dr Nancy Babio declares that her institution received grants from Danone S.A. for the purposes of scientific and technical consulting but not for preparing this study. In addition, she was one of the members of the Scientific Advisory Board of the EU program for the promotion of milk and milk products within the framework of appropriate dietary practices (2017-2019). Jordi Salas was a member of the executive committee of the Instituto Danone España. He is currently an unpaid member of the Danone Institute España and the Danone International Institute and declares he has received funds to cover the

expenses derived from the Institute but not for this study. All other authors declare no conflict of interest.

Ethics Statement: Electronic informed consent was obtained from each participant. The NutriNet-Santé Study (registered at ClinicalTrials.gov as NCT03335644) is conducted according to the Declaration of Helsinki guidelines. It was approved by the Institutional Review Board of the French Institute for Health and Medical Research and the 'Commission Nationale de l'Informatique et des Libertés' (CNIL n°908450/n°909216).

References

- 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA: A Cancer Journal for Clinicians* 2018;68:394–424.
- 2. World Cancer Research Fund/American Institute for Cancer Research. Diet, Nutrition, Physical Activity and Cancer: a global perspective. Continuous Update Project Expert Report. 2018.
- 3. Hercberg S, Castetbon K, Czernichow S, Malon A, Mejean C, Kesse E, Touvier M, Galan P. The Nutrinet-Santé Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. *BMC public health* 2010;10:242.
- 4. Vergnaud A-C, Touvier M, Méjean C, Kesse-Guyot E, Pollet C, Malon A, Castetbon K, Hercberg S. Agreement between web-based and paper versions of a socio-demographic questionnaire in the NutriNet-Santé study. *International journal of public health* 2011;56:407–17.
- 5. Lassale C, Péneau S, Touvier M, Julia C, Galan P, Hercberg S, Kesse-Guyot E. Validity of web-based self-reported weight and height: results of the Nutrinet-Santé study. *Journal of medical Internet research* 2013;15:e152.
- 6. Touvier M, Méjean C, Kesse-Guyot E, Pollet C, Malon A, Castetbon K, Hercberg S. Comparison between web-based and paper versions of a self-administered anthropometric questionnaire. *European journal of epidemiology* 2010;25:287–96.
- 7. Touvier M, Kesse-Guyot E, Méjean C, Pollet C, Malon A, Castetbon K, Hercberg S. Comparison between an interactive web-based self-administered 24 h dietary record and an interview by a dietitian for large-scale epidemiological studies. *The British journal of nutrition* 2011;105:1055–64.
- 8. Lassale C, Castetbon K, Laporte F, Camilleri GM, Deschamps V, Vernay M, Faure P, Hercberg S, Galan P, Kesse-Guyot E. Validation of a Web-based, self-administered, non-consecutive-day dietary record tool against urinary biomarkers. *The British journal of nutrition* 2015;113:953–62.
- 9. Lassale C, Castetbon K, Laporte F, Deschamps V, Vernay M, Camilleri GM, Faure P, Hercberg S, Galan P, Kesse-Guyot E. Correlations between Fruit, Vegetables, Fish, Vitamins, and Fatty Acids Estimated by Web-Based Nonconsecutive Dietary Records and Respective Biomarkers of Nutritional Status. *Journal of the Academy of Nutrition and Dietetics* 2016;116:427-438.e5.
- Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, Oja P. International physical activity questionnaire: 12-Country reliability and validity. *Medicine and Science in Sports and Exercise* 2003;35:1381–95.

- le Moullec N, Deheeger M, Preziosi P, Monteiro P, Valeix P, Rolland M, et al. Validation du Manuel-photos utilisé pour l'enquête alimentaire de l'étude SU.VI.MAX. *Cah Nutr Diet* 1996;158–64.
- Arnault N, Caillot L, Castetbon K. Table de composition des aliments, étude Nutrinet-Santé [Food composition table. NutriNet-Santé study]. Les éditions INSERM/Economica, Paris (in French), 2013.
- 13. Black AE. Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations. *International Journal of Obesity* 2000;24:1119–30.
- 14. WHO. ICD-10, International classification of diseases and related health problems. 10th revision. Geneva: World Health Organization: 2010.
- 15. Chen L, Li M, Li H. Milk and yogurt intake and breast cancer risk: A meta-analysis. *Medicine* 2019;98:e14900.
- López-Plaza B, Bermejo LM, Santurino C, Cavero-Redondo I, Álvarez-Bueno C, Gómez-Candela C. Milk and Dairy Product Consumption and Prostate Cancer Risk and Mortality: An Overview of Systematic Reviews and Meta-analyses. *Advances in Nutrition*2019;10:S212–23.
- Barrubés L, Babio N, Becerra-Tomás N, Rosique-Esteban N, Salas-Salvadó J. Association between Dairy Product Consumption and Colorectal Cancer Risk in Adults: A Systematic Review and Meta-Analysis of Epidemiologic Studies. *Advances in Nutrition*2019;10:S190–211.
- 18. Zhang K, Dai H, Liang W, Zhang L, Deng Z. Fermented dairy foods intake and risk of cancer. *International Journal of Cancer* 2019;144:2099–108.
- 19. Open Food Facts World [Internet]. [cited 2020 Aug 31];Available from: https://world.openfoodfacts.org/
- 20. Chazelas E, Deschasaux M, Srour B, Kesse-Guyot E, Julia C, Alles B, Druesne-Pecollo N, Galan P, Hercberg S, Latino-Martel P, Esseddik Y, Szabo F, et al. Food additives: distribution and co-occurrence in 126,000 food products of the French market. *Scientific Reports* 2020;10.
- 21. Andreeva VA, Salanave B, Castetbon K, Deschamps V, Vernay M, Kesse-Guyot E, Hercberg S. Comparison of the sociodemographic characteristics of the large NutriNet-Santé e-cohort with French Census data: The issue of volunteer bias revisited. *Journal of Epidemiology and Community Health* 2015;69:893–8.

Table 1. Baseline characteristics of study population according to quartiles of dairy products consumption (n=101,279). NutriNet-Santé cohort, France, 2009-19^a

	All	Quartiles of total dairy product consumption						
Characteristics	participants (<i>n</i> =101,279)	1 (<i>n</i> =25,319)	(n=25,320)	3 (<i>n</i> =25,319)	4 (<i>n</i> =25,321)	<i>P</i> -value ^a		
Age (years)	42.2 (14.5)	41.2 (14.2)	43.0 (14.4)	43.1 (14.6)	41.6 (14.5)	< 0.001		
Female sex, n (%)	79,742 (78.7)	19,935 (19.7)	19,936 (19.7)	19,935 (19.7)	19,936 (19.7)	-		
Height (cm)	166.7 (8.0)	166.6 (8.0)	166.6 (8.1)	166.7 (8.0)	167.0 (8.1)	< 0.001		
BMI (Kg/m ²)	23.7 (4.5)	23.1 (4.2)	23.6 (4.4)	24.0 (4.5)	24.1 (4.7)	< 0.001		
Family history of cancer ^b , n (%)	37,550 (37.1)	9,054 (8.9)	9,617 (9.5)	9,679 (9.6)	9,200 (9.1)	< 0.001		
Higher education	, , ,	, , ,	, , ,	, (, , , , , , , , , , , , , , , , , ,	, , ,			
No	17,279 (17.1)	4,138 (4.1)	4,344 (4.3)	4,354 (4.3)	4,443 (4.4)	0.001		
Yes, <2 years	17,311 (17.1)	4,379 (4.3)	4,224 (4.2)	4,268 (4.2)	4,440 (4.4)	< 0.001		
Yes, ≥2 years	66,689 (65.9)	16,802 (16.6)	16,752 (16.5)	16,697 (16.5)	16,438 (16.2)			
Smoking status, n (%)								
Never	17,516 (17.3)	5,709 (5.6)	4,634 (4.6)	3,889 (3.8)	3,284 (3.2)			
Former	32,816 (32.4)	7,978 (7.9)	8,438 (8.3)	8,604 (8.5)	7,796 (7.7)	< 0.001		
Current	50,947 (50.3)	11,632 (11.5)	12,248 (12.1)	12,826 (12.7)	14,241 (14.1)			
IPAQ physical activity level, <i>n</i> (%)	50,747 (50.5)	11,052 (11.5)	12,240 (12.1)	12,020 (12.7)	14,241 (14.1)			
High	28,154 (27.8)	6,809 (6.7)	6,936 (6.9)	7,180 (7.1)	7,229 (7.1)			
Moderate	37,587 (37.1)	9,466 (9.4)	9,631 (9.5)	9,421 (9.3)	9,069 (9.0)	< 0.001		
Low	21,422 (21.2)	5,629 (5.6)	5,310 (5.2)	5,188 (5.1)	5,295 (5.2)	<0.001		
Missing	14,116 (13.9)	3,415 (3.4)	3,443 (3.4)	3,530 (3.5)	3,728 (3.7)			
Energy intake without alcohol (kcal/d)	1850,3 (452.1)	1748,1 (429.5)	1832,2 (426.3)	1870 (441.1)	1950,8 (485.3)	< 0.001		
Alcohol intake (g/d)	7.7 (11.8)	8.9 (13.4)	8.8 (12.4)	7.6 (11.1)	5.8 (9.7)	< 0.001		
Total lipid intake (g/d)	81.6 (25.3)	79.2 (24.3)	82.6 (24.3)	82.3 (25.1)	82.5 (27.2)	< 0.001		
Carbohydrate intake (g/d)	198.7 (57.6)	188.8 (57.7)	194.6 (53.7)	200 (55.0)	211,2 (61.1)	< 0.001		
Protein intake (g/d)	78.8 (21.5)	68.9 (19.5)	76.3 (19.0)	80.8 (19.4)	89.2 (22.6)	< 0.001		
Sodium intake, (mg/d)	2718,9 (885,3)	2,557 (875.7)	2734,3 (865.4)	2772,5 (878,6)	2811,8 (900)	< 0.001		
Number of children ^c	1.3 (1.2)	1.2 (1.2)	1.3 (1.2)	1.3 (1.2)	1.3 (1.3)	< 0.001		
Menopausal status at baseline ^c	× ,	~ /						
Premenopausal, n (%)	57,187 (71.7)	14,847 (18.6)	13,925 (17.5)	13,763 (17.3)	14,652 (18.4)	< 0.001		
Perimenopausal or postmenopausal, n (%)	22,555 (28.3)	5,088 (6.4)	6,011 (7.5)	6,172 (7.7)	5,284 (6.6)			
Use of hormonal treatment for menopause ^c , n (%)	4,011 (17.9)	822 (3.7)	988 (4.4)	1,153 (5.1)	1,048 (4.7)	< 0.001		
Oral contraception ^c , n (%)	22,475 (28.2)	5,472 (6.9)	5,366 (6.7)	5,524 (6.9)	6,113 (7.7)	< 0.001		
Total dairy product consumption ^{d} (g/d)	198.4 (148.8)	46.5 (26.1)	125.8 (22.1)	215.7 (32.4)	405.4 (121.8)	_		
Milk consumption ^e (g/d)	83.3 (122.3)	5.9 (12.1)	25.0 (34.6)	69.7 (69.9)	232.6 (147.4)	-		
Yogurt consumption ^f (g/d)	58.1 (68.9)	9.2 (16.7)	45.5 (39.0)	79.8 (61.9)	98.0 (93.6)	-		
Cheese consumption (g/d)	36.9 (28.0)	27.4 (20.4)	40.5 (27.4)	41.0 (29.6)	38.6 (31.2)	-		
"Fromage blanc" ^h consumption (g/d)	17.7 (40.2)	3.4 (10.1)	12.9 (23.3)	22.3 (36.8)	32.1 (63.4)	-		
Fermented dairy products consumption ⁱ (g/d)	115.8 (87.1)	40.7 (25.3)	101.4 (36.8)	147.0 (67.0)	174 (116.9)	_		
Sugary dairy desserts consumption (g/d)	36.3 (48.6)	36.9 (53.0)	37.6 (47.1)	35.3 (46.0)	35.3 (47.8)	-		
Dairy SFA intake (g/d)	7.9 (5.1)	4.9 (3.5)	7.9 (4.5)	8.8 (5.0)	9.8 (5.7)	_		
Dairy calcium intake (g/d)	432.2 (248.9)	199.4 (134.5)	361.2 (150.6)	477.5 (166.1)	690.6 (226.6)	-		
Duny cucrum marc (mg/u)	- <i>52.2</i> (2 1 0. <i>)</i>)	1)), 1 (1),1))	501.2 (150.0)	+77.5 (100.1)	070.0 (220.0)	-		

Abbreviations: BMI, body mass index; IPAQ, International Physical Activity Questionnaire; SFA, saturated fatty acids.

^aP-values were obtained using Chi-square tests (categorical variables) or Fisher tests from unadjusted analysis of variance models (continuous variables).

^bAmong first-degree relatives.

^cAmong women.

dincludes milk, cheese, yogurt, "fromage blanc" and "petit-Suisse".

eincludes all mammalian milks including flavored milks (≤12% of the content in simple sugars).

^fincludes all yogurts made with mammalian milk ($\leq 12\%$ of the content in simple sugars).

^galso comprises low-fat cheeses.

^hFrench dairy specialty, similar to cottage cheese/quark (≤12% of the content in simple sugars).

ⁱincludes cheese, yogurt, "fromage blanc", "petit-Suisse" and fermented milk. ^jincludes cream dessert, pudding, custard, milk shakes, flavored milks, as well as fruit or sweetened yogurt, "fromage blanc" and "petit-Suisse" with $\geq 12\%$ of the content in simple sugars.

Table 2. Associations between total dairy product and dairy product subtypes consumption and risk of cancer (n=101,279). NutriNet-Santé cohort, France, 2009-19^a

	All cancers Continuous per 1 serving increment ^b		Breast cancer Continuous per 1 serving increment		Colorectal cancer Continuous per 1 serving increment		Prostate cancer Continuous per 1 serving increment	
	HR (95% CI)	P value for trend	HR (95% CI)	P value for trend	HR (95% CI)	P value for trend	HR (95% CI)	P value for trend
Cases/person-years (n)	2,503/555,386	-	783/435,186	-	182/555,386	-	323/120,200	
Total dairy ^c :	1.02 (0.98-1.05)	0.30	1.00 (0.93-1.06)	0.87	1.05 (0.93-1.19)	0.45	1.00 (0.91-1.09)	0.95
Milk ^d :	1.01 (0.96-1.07)	0.70	0.97 (0.88-1.07)	0.56	0.92 (0.74-1.15)	0.45	1.07 (0.94-1.23)	0.30
Yogurt ^e	0.99 (0.92-1.07)	0.74	1.02 (0.89-1.16)	0.82	0.90 (0.67-1.19)	0.45	1.03 (0.83-1.29)	0.77
Cheese ^f :	1.02 (0.96-1.07)	0.57	0.99 (0.89-1.10)	0.88	1.10 (0.93-1.30)	0.29	0.92 (0.80-1.05)	0.22
"Fromage blanc" ^g :	1.11 (1.01-1.21)	0.03	1.06 (0.90-1.24)	0.48	1.39 (1.09-1.77)	0.008	1.01 (0.77-1.34)	0.93
Fermented dairy productsh:	1.02 (0.98-1.06)	0.32	1.01 (0.93-1.09)	0.83	1.10 (0.96-1.27)	0.17	0.95 (0.85-1.06)	0.37
Sugary dairy desserts ⁱ :	1.00 (0.88-1.14)	0.99	1.03 (0.82-1.29)	0.83	1.58 (1.01-2.46)	0.046	0.73 (0.49-1.07)	0.11

Abbreviations: CI, confidence interval; HR, hazard ratio.

^aCox proportional hazard models adjusted for age (timescale), sex (in models for overall and colorectal cancer only), height, BMI, baseline type 2 diabetes, prevalent hypertriglyceridemia, prevalent hypercholesterolemia, energy intake without alcohol, sugar intake, sodium intake, fruits and vegetables intake, whole foods, red and processed meat consumption, non-dairy calcium intake, non-dairy SFA intake, alcohol intake, number of 24 h dietary records, smoking status, educational level, physical activity, and family history of cancer. Breast cancer models were additionally adjusted for menopausal status, use of hormonal treatment for menopause, oral contraception use, number of children, age at menarche, and age at first birth. For analyses on dairy product subtypes, models were also adjusted for the consumption of each other dairy products than the one studied.

^b Intakes in g/day were converted into servings/day based on the use of standard units: 150 g for milk, 125 g for yogurt, 30 g for cheese, 100 g for "fromage blanc", and 120 g for "petit-Suisse". Servings for total dairy products were calculated as the sum of the servings of milk, cheese, yogurt, "fromage blanc", and "petit-Suisse". Servings for fermented dairy products were calculated as the sum of the servings of cheese, yogurt, "fromage blanc", "petit-Suisse" and fermented milk. For sugary dairy desserts, we considered the same serving size as yogurt (125 g).

cincludes milk, cheese, yogurt, "fromage blanc" and "petit-Suisse".

^dincludes all mammalian milks including flavored milks (≤12% of the content in simple sugars).

eincludes all yogurts made with mammalian milk ($\leq 12\%$ of the content in simple sugars).

falso comprises low-fat cheeses.

^gFrench dairy specialty, similar to cottage cheese/quark (≤12% of the content in simple sugars).

^hincludes cheese, yogurt, "fromage blanc", "petit-Suisse" and fermented milk.

includes cream dessert, pudding, custard, milk shakes, flavored milks, as well as fruit or sweetened yogurt, "fromage blanc" and "petit-Suisse" with ≥12% of the content in simple sugars).

	All cancers		Breast cancer		Colorectal cancer		Prostate cancer	
Cancer site	Continuous per 1 SD increment ^b		Continuous per 1 SD increment		Continuous per 1 SD increment		Continuous per 1 SD increment	
	HR (95% CI)	<i>P</i> value for trend	HR (95% CI)	P value for trend	HR (95% CI)	P value for trend	HR (95% CI)	P value for trend
Cases/person-years (n)	2,503/555,386	-	783/435,186	-	182/555,386	-	323/120,200	
SFAs from dairy products:	1.01 (0.96-1.06)	0.65	1.04 (0.94-1.15)	0.46	1.11 (0.95-1.30)	0.20	0.89 (0.78-1.01)	0.08
Calcium from dairy products:	1.02 (0.97-1.07)	0.51	0.97 (0.88-1.06)	0.44	1.07 (0.90-1.27)	0.47	0.99 (0.87-1.12)	0.04

Table 3. Associations between SFAs and calcium from dairy product intakes and risk of cancer (n=101,279). NutriNet-Santé cohort, France, 2009-19^a

Abbreviations: BMI, body mass index; CI, confidence interval; HR, hazard ratio; SD, standard deviation; SFA, saturated fatty acid.

^aCox proportional hazard models adjusted for age (timescale), sex (in models for overall and colorectal cancer only), height, BMI, baseline type 2 diabetes, prevalent hypertriglyceridemia, prevalent hypercholesterolemia, energy intake without alcohol, sugar intake, sodium intake, fruits and vegetables intake, whole foods, red and processed meat consumption, non-dairy calcium intake, non-dairy SFA intake, alcohol intake, number of 24 h dietary records, smoking status, educational level, physical activity, and family history of cancer. Breast cancer models were additionally adjusted for menopausal status, use of hormonal treatment for menopause, oral contraception use, number of children, age at menarche, and age at first birth. ^bHRs are given for an increase of 1 SD in intake (SD:5.09 g/d for SFAs from dairy products, and 248.9 mg/d for calcium from dairy products).