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Abstract

With known cause of death (CoD), competing risk survival methods are applicable in estimating
disease-specific survival. Relative survival analysis may be used to estimate disease-specific survival
when cause of death is either unknown or subject to misspecification and not reliable for practical
usage. This method is popular for population-based cancer survival studies using registry data and
does not require CoD information. The standard estimator is the ratio of all-cause survival in the
cancer cohort group to the known expected survival from a general reference population. Disease-
specific death competes with other causes of mortality, potentially creating dependence among the
CoD. The standard ratio estimate is only valid when death from disease and death from other causes
are independent. To relax the independence assumption, we formulate dependence using a copula-
based model. Likelihood-based parametric method is used to fit the distribution of disease-specific
death without CoD information, where the copula is assumed known and the distribution of other
cause of mortality is derived from the reference population. We propose a sensitivity analysis, where
the analysis is conducted across a range of assumed dependence structures. We demonstrate the
utility of our method through simulation studies and an application to French breast cancer data.

Keywords— Competing risks, Copula, Dependence Modelling, Net survival, Relative survival

1 Introduction

Cancer patients including breast, prostate, endometrial and thyroid cancer are at higher risk of dying from heart
disease and stroke than the general population. As the number of cancer survivors increases, so is the rate
of cardiovascular deaths (Sturgeon et al., 2019). A patient’s survival burden can be quantified either by the
distribution of cancer-specific death in the presence of death from other causes or by the cancer-specific mortality
in the absence of failure types other than the disease of interest. This quantity, also known as net survival (under
independence assumption), is controversial but meaningful to many practitioners and researchers for comparisons
of survival across populations with different background mortality.

With improvement in medical treatment and long follow-up in population-based disease registries, patients
may either experience disease-specific death or death from non-disease related causes (Brinkhof et al., 2010). In
such competing risk settings where one death type precludes the occurrence of other types, standard methodology
assumes that cause of death is known (Gichangi and Vach, 2005). In the analysis of competing risks events
from registry data, accurate documentation of death is essential (Percy et al., 1981; Welch and Black, 2002; and
Mieno et al., 2016). A challenge is that documentation either may not be available, or may be incomplete or
incorrect for cause of death, resulting in problems distinguishing disease and non-disease related mortality. The
issue is pronounced in Europe, where comparison of disease-specific survival across countries is of interest. The
World Health Organization (World Health Organization, 1977) defines cause of death as ”the disease or injury
which initiated the train of morbid events leading directly to death”. However, population-based disease registries
may not be harmonized across countries, leading to imprecise cause of death definitions and different levels of
documentation for cause of death information. Often, the underlying cause of death may be unclear as hospital
coding of cancer death may not agree with the death certificate coding. As an example, Welch and Black (2002)
reported that 41% of deaths that occurred (within one month of cancer diagnosis and cancer directed surgery)
were not attributable to the coded cancer in the registry. When reliable cause of death information is available,
it is often located in separate databases, which may be costly to obtain and difficult to link with registry data.

Suppose that T = min{Tk : k = 1, 2, 3, · · · ,K} is the potentially observable failure time and ε = {k : T = Tk}
the failure type where T1, T2, · · · , TK , are the latent failure types associated with K failure types. In registry data,
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K = 2 and ε = 1 implies death from cancer and ε = 2 implies death from other competing causes. Standard
methods for independently right censored survival data without competing risks cannot generally be used to make
inference about disease-specific survival. Under dependent competing risks, where T1 and T2 are dependent, the
Kaplan-Meier (Kaplan and Meier, 1958) curve estimates a function of the cause-specific hazard function, defined
in Section 2. The logrank test (Bland and Altman, 2004) assesses group differences between the cause-specific
hazard function, while the standard proportional hazards model (Cox, 1972) formulates the effects of covariates
on the cause-specific hazard function. The cumulative incidence function, defined in Section 2, gives disease-
specific survival in the presence of competing events. This quantity has been widely adopted in applications, with
the Aalen-Johanson estimator (Aalen and Johansen, 1978), Gray’s test (Gray, 1988), and the Fine-Gray model
(Fine and Gray, 1999), providing analogs to the Kaplan-Meier curve, the logrank test, and the proportional
hazards model for the cumulative incidence function. Without cause of death information, these methods are not
applicable.

To address disease-specific survival without reliable cause of death information, relative survival methods
have been proposed. Relative survival, SR(t), is the ratio of the observed survival rate in a group of cancer
patients, during a specified period, to the expected survival rate in a general reference population, (Ederer, 1961).
Mathematically,

SR(t) =
SO(t)

SP (t)
(1)

where at time t, SO(t) is the observed survival probability from the registry and SP (t) is the expected survival from
mortality tables. Existing literature has focused exclusively on the estimation of SR(t) under the independence
assumption, T1 ⊥ T2. Under independence, SO(t) = ST1(t) · ST2(t), with SP (t) = ST2(t) which implies SR(t) =
ST1(t) where ST1(t) and ST2(t) are the survival probabilities corresponding to T1 and T2 respectively. The
relationship (1) can be rewritten in terms of hazard functions as λO(t) = λE(t) +λP (t) (Cronin and Feuer, 2000),
where λO(t) is the hazard in the disease registry, λE(t) is the so called excess hazard among the cancer cohort,
and λP (t) is the hazard from mortality tables. Under independence, λE(t) = λT1(t) and λP (t) = λT2(t), where

λTj (t) =
−dlogSTj (t)

dt
, j = 1, 2, are the net hazard functions for cancer and other cause mortality, respectively. The

net survival probability (under independence assumption) ST1(t) is the target of relative survival analysis and
corresponds to a hypothetical population in which death from competing causes does not exist. It differs from the
cumulative incidence function which is commonly used to quantify disease-specific survival in analyses with known
cause of death information. Under dependence, SR(t) in (1) has an excess hazard (Suissa, 1999) interpretation
since the estimator eliminates the effect of background risk, and is no longer the survival probability ST1(t).

Relative survival method was pioneered by Berkson and Gage (1950), and Ederer et al. (1961) for nonpara-
metric estimation of ST1(t). A variant of this method was proposed by Hakulinen (1982) to address the bias due
to heterogeneity of patient withdrawal within subgroups. Pohar Perme et al., (2012) demonstrated that these
classical methods may be biased under certain censoring patterns. For example, in population comparisons, such
bias may arise from unmeasured covariates affecting the cancer cohort group and the reference population from
which rates of expected mortality are drawn. Rebolj Kodre and Pohar Perme, (2013) studied biases associated
with censoring and age distribution (at the time of cancer diagnosis) and proposed weighting corrections. Nixon et
al. (1994) documented that event times and censoring times are dependent on the age of the patients in a cancer
study. Stratified methods (Sasieni and Brentnall, 2017) based on age standardization of relative survival ratios
may reduce such biases. Hakulinen et al., (2011) developed alternative estimators valid under weaker assumption.

Several authors (Bolard, et al., 2002; Giorgi, et al. 2003; Nelson et al., 2007; Mahboubi, et al., 2011) proposed
variations of spline functions to address some of limitations of earlier methods. These models include mainly
flexible parametric functions that examine the effects of covariates that potentially influence the estimation of
the excess survival. Charvat et al., (2016) introduced spline models for grouped data, where they fitted flexible
excess hazard models to cluster data, while Rubio et al., (2019) proposed extensions (beyond proportional hazard
method) to the general parametrization of hazard functions and implemented flexible parametric distribution in
modelling the event time. However, the above estimation methods for SR(t) do not model the dependence event
times concurrently.

To relax the independence assumption, we formulate the dependence between the latent failure times dis-
tributions for death from disease and death from competing causes using copula models (Deheuvels, 1978). A
copula function generates a joint distribution for the two event times, taking as input their marginal distributions.
Copulas allow a broad range of dependence structures and have been employed widely in survival analysis, in-
cluding bivariate event times (Oakes, 1982), competing risks with known cause of failure (Heckman and Honoré,
1989), and semi-competing risks where one event time censors the other but not vice versa (Fine et al., 2001).
We employ such models with competing risks data from disease registries where cause of death information is
either not reliable or not available. Because the joint distribution of the latent failure times is nonparametrically
nonidentifiable (Tsiatis, 1975), we treat the copula function as known. The marginal distribution of the time
to disease-specific death is modelled parametrically with the distribution of death from other causes drawn from
the reference population. Likelihood-based inference is proposed. Because the joint distribution is unidentifiable
nonparametrically and unverifiable from the observed registry data, a sensitivity analysis is suggested in which
disease-specific survival is estimated across a range of rich dependence structures, specified via the copula func-



tion. To our knowledge, this is the first attempt in modelling dependence between T1 and T2 in relative survival
analysis.

The main purpose of this method is to provide an alternative estimator for net survival (survival in a hypo-
thetical world where other competing causes of death do not exist) under dependence between cancer mortality
and other cause mortality. This is accomplished by explicitly modelling the dependence between cancer mortality
and other cause mortality. The rest of this paper proceeds as follows. In section 2, we present the data and
copula model formulation for competing risks data. Section 3 describes the likelihood estimation and inference
procedure without cause of death information, as well as the proposed sensitivity analysis. In section 4, we present
the numerical illustrations including simulation results and application to French breast cancer data. Section 5
discusses and concludes the paper.

2 Data and Model

We begin by defining traditional endpoints for competing risk data with known cause of death. The cause-specific
hazard, λk(t) is the instantaneous failure rate for occurrence of event ε = k at time t (Prentice et al., 1978),

λk(t) = lim
δt→0

P (t ≤ T < t+ δt,K = k|T > t)

δt
(2)

and the cumulative incidence function Ck(t) is the proportion of patients who died from cause k by time t in the
presence of patients who might die from other causes. The cumulative incidence function can be expressed as
Ck(t) = P (T ≤ t, ε = k) =

∫ t
0
λk(s) · S(s)ds where S(t) = P (T > t) is the overall survival probability. Standard

competing risks methods with known cause of failure focus on estimation of λk(t) and Ck(t).
Without cause of death information, the registry data is simply time to death from any cause, T, which may

be right censored by lost to follow up. Let C be the time to right censoring, with the common assumption being
that T and C are independent. The observed data consist of Xi = min(Ti, Ci) and δi = I(Ti ≤ Ci), where Ti and
Ci are the failure and censoring times on individual i = 1, 2, 3, · · · , n. Relative survival methods employing such
data do not focus on the traditional competing risks endpoints λk(t) and Ck(t) but rather on the latent failure
time distributions with the corresponding survival functions ST1(t) and ST2(t).

To capture the dependence between T1 and T2, we employ copula models, which completely describe the
dependence structure and provide scale invariant measures of association (Venter, 2002; Müller, 1996; Bäuerle
and Müller, 1998; and Denuit et al., 1999). Suppose ψ is a copula generator function defined such that ψ :
[0, 1] → [0,+∞], then the j-dimensional copula function is given by C(u1, · · · , uj) = ψ

(
ψ−1(u1), · · · , ψ−1(uj)

)
with marginal distributions, uj = P (Tj ≤ tj) = FTj (tj) = 1 − STj (tj), ∀j ∈ N. When j = 2, then, the copula
model for the joint distributions of T1 and T2 is:

C(u1, u2) = P (T1 ≤ t1, T2 ≤ t2) = ψ
(
ψ−1(u1) + ψ−1(u2)

)
= FT1,T2(t1, t2)

where ψ−1 is the inverse of ψ and ψ satisfies the Laplace-Stiltjes transform and Bernstein (1929) theorem. McNeil
and Nešlehová (2009) showed that the generator function ψ is completely monotone for non-negative random
variables with ψ(0) = 1, ψ′(·) < 0 and ψ′′(·) < 0.

The most widely used scale invariant measures of association to characterize dependence are Spearman’s rho
(ρS) and Kendall’s tau (τken) correlation coefficients. The connection between the latter and the copula generator
function was shown by Genest and MacKay, (1986) as:

τken = 1 + 4

∫ 1

0

ψ−1(u)

ψ−1(u)′
du = 1− 4

∫ ∞
0

u(ψ(u))2du

with ψ−1′
being the derivative of ψ−1. While in theory, any copula may be used to link the marginal distributions

of T1 and T2, in this paper, we focus on two popular Archimedean copulas, indexed by a single dependence
parameter θ having simple interpretations. The Gumbel copula is:

C(u1, u2) = exp
[
−{(−log(u1))θ + (−log(u2))θ}

1
θ

]
(3)

with θ ∈ (1,+∞) and the Clayton copula is:

C(u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ (4)

with θ ∈ (0,+∞). A special case of product copula model: C(u1, u2) = u1 · u2 is obtained when θ = 1 and when
θ → 0 for Gumbel and Clayton copulas respectively. The product copula model gives independence of T1 and
T2. When θ > 0, the Clayton copula is bounded by: C(u1, u2) ≤ θ(1 − u1 − u2) + (1 + θ)u1u2. As dependence
increases, that is θ → +∞, the Clayton copula approximates the Frećhet-Hoeffding upper bound, (Fréchet, 1951;
and Hoeffding, 1940) giving perfect positive dependence.



3 Likelihood Estimation and Inference

We first formulate our model without covariates for the potentially dependent latent failure times T1 and T2. In
the sequel, the distribution of T1 involves an unknown parameter η, while that of T2 is assumed from a reference
population. The distribution of T implicitly involves η via T = min(T1, T2). The survival function for all-cause
mortality at time t given η is:

ST (t|η) = ST1(t|η) + ST2(t)− 1 + FT1,T2(t, t|η)

= 1− FT1(t|η)− FT2(t) + FT1,T2(t, t|η) (5)

with the corresponding density function using FT (t|η) = FT1(t|η) + FT2(t)− FT1,T2(t, t|η))

fT (t|η) = fT1(t|η) + fT2(t)− fT1,T2 (t, t|η) (6)

where fT1(t|η) =
dFTj (t|η)

dt
, fT1,T2(t, t|η) =

dFT1,T2 (t,t|η)

dt
and fT2(t) is derived from the reference population. If

censoring of T by C is noninformative, then the likelihood contribution for individual i is:

Li = fXi,∆i(Xi, δi|η) = [fT (Xi|η)]δi [ST (Xi|η)]1−δi (7)

From equation (7), the full log-likelihood function based on n independent observations is:

l(X,∆|η) =

n∑
i=1

(δi ∗ log fT (Xi|η) + (1− δi) ∗ logST (Xi|η))

=

n∑
i=1

δi ∗ log [fT1(Xi|η) + fT2(Xi)− fT1,T2 (Xi, Xi|η)]

+

n∑
i=1

(1− δi) ∗ log [ST1(Xi|η) + ST2(Xi)− 1 + FT1,T2(Xi, Xi|η)] (8)

where (X,∆) = (Xi,∆i, i = 1, 2, 3, · · · , n).
We specify a parametric model for FT1(t), with finite dimensional parameter of interest η. The general

form of the probability density function for T1 at time t is fT1(t|η) with survival probability ST1(t|η) = 1 −
FT1(t|η) =

∫∞
t
fT1(s|η)ds. The distribution of T2 is assumed known and extracted from the reference population

with the usual assumption that disease-specific death is negligible in this reference population (Ederer, et al.
1961). This is illustrated in the French breast cancer data analysis in section 4.2. The copula distribution
linking FT1(t|η) and FT2(t) may be specified using simple parametric copula models such as the Archemedean
copulas. The parameters in the copula model may be chosen for a pre-specified dependence between T1 and T2,
for example, Kendall’s tau (τken). In the numerical illustrations, T1 was assumed to follow an exponentiated

Weibull distribution with parameter η = (λ, κ, α) and probability density function f(t : λ, κ, α) = ακ
λ
·
(
t
λ

)κ−1 ·
exp

{
−
(
t
λ

)κ} (
1− exp

{
−
(
t
λ

)κ})α−1
because of its versatility to accommodate a wide range of hazard shapes.

We consider the Gumbel and Clayton copulas for the joint distribution of T1 and T2 as both copulas exhibit tail
behaviours that mimic the mortality trend observed in the cancer registry data. The bivariate joint distribution
and density functions under the Gumbel copula are given below.

FT1,T2(t|η, t) = exp

{
−
(

(−log (FT1(t|η)))θ + (−log(FT2(t)))θ
) 1
θ

}
fT1,T2(t|η, t) = FT1,T2(t|η, t) ·

((
− log (FT1(t|η))θ

)
+
(
−log (FT2(t))θ

)) 1
θ
−1

×
((
− log(FT1(t|η))θ−1 · fT1(t|η)

FT1(t|η)

)
+

(
−log (FT2(t|η))θ−1 · fT2(t)

FT2(t)

))
(9)

Under the Clayton copula, the bivariate joint distribution and density functions are:

FT1,T2(t|η, t) =
(
FT1(t|η)−θ + FT2(t)−θ − 1

)− 1
θ

fT1,T2(t|η, t) =
FT1,T2(t|η, t)

(FT1(t|η)−θ + FT2(t)−θ − 1)
·
(

fT1(t|η)

FT1(t|η)θ+1
+

fT2(t)

FT2(t)θ+1

)
(10)

The maximum likelihood estimator (MLE) of η can be obtained by maximizing the log-likelihood function in
(8) using any optimization algorithm such as Nelder-Mead (Nelder and Mead, 1965) or better. In the simulation
in section 4.1, and because the model is highly nonlinear for hazard shapes and the estimation of dependent
parameter θ, we suggest using multiple starting values and taking the MLE to be the maximizer giving the
largest value of the log likelihood across all starting values. Under a fixed and correctly specified copula, the



usual regularity conditions for the MLE holds and the estimator converges in probability, that is η̂
P−→ η and is

asymptotically normal, η̂ ∼ N
(
η, IO(η)−1) with variance estimated using the inverse of the observed information

matrix

IO(η̂) = −∂
2l(X,∆|η)

∂η∂ηT
|η=η̂

= −

{
δi ·

n∑
i=1


[fT (Xi|η)] ·

[
∂2

∂η2
fT (Xi|η)

]
−
[
∂
∂η
fT (Xi|η)

]T [
∂
∂η
fT (Xi|η)

]
[fT (Xi|η)]2


+(1− δi) ·

n∑
i=1


[ST (Xi|η)] ·

[
∂2

∂η2
ST (Xi|η)

]
−
[
∂
∂η
ST (Xi|η)

]T [
∂
∂η
ST (Xi|η)

]
[ST (Xi|η)]2


}
|η=η̂

(11)

Since the dependence structure for time to disease-specific mortality (T1) and time to other competing mor-
tality (T2) is nonidentifiable and unverifiable from the observed registry data, we propose a sensitivity analysis,
where the analysis is conducted across a range of assumed dependence structures. The levels of dependence
represent the varying levels of dependent competing mortality possible in the observed registry data. For each
copula dependence structure with known θ, we estimate η with η̂ and compute FT1(t|η̂) to estimate relative
survival. The corresponding standard errors are obtained as the square root of the Delta method variance:

V ar(ŜT1(X)) = g(ŜT1(X)) · IO(η̂)−1 · gT (ŜT1(X)) where g(η) is the derivative of ST1(t|η) with respect to η. Due
to the complex nature of the likelihood, numerical approximation is used to estimate the information matrix in
the numerical illustrations in Section 4.

In the presence of informative censorship where T and C are dependent, we propose conditioning on additional
covariates Z in FT2 , (Sasieni and Brentnall, 2017; and Pohar Perme et al., 2012), where FT2(t|Z) is the conditional
distribution of T2 given Z. Such covariates might include age, sex, period, as well as other relevant demographic
variables. Let Zi be the covariate observed on individual i = 1, · · · , n. The log-likelihood function (8) is easily
modified, where the likelihood contribution for individual i (= 1, · · · , n) is (7) with FT2(t|Zi) replacing FT2(t) in
fT (Xi|η) and ST (Xi|η). Here, we estimate η in FT1(t|η) conditionally on Z to mitigate against the bias (caused by
informative censoring) associated with these covariates (Pohar Perme et al, 2012; and Sasieni and Brentnall, 2017,
Schaffar, et al., 2017). The usual likelihood regularity conditions continue to hold, with the resulting estimator
η̂ being consistent and asymptotically normal with variance which may be estimated using the inverse of the
observed information matrix evaluated at η̂.

4 Numerical Illustrations

4.1 Simulation Studies

To evaluate the performance of our proposed method, first, we simulated a general survival time data Tj ∼
ExpWeibull(λj , κj , αj), and second, to mimic the French breast cancer data set for sample sizes; 1000, 2500 and
5000 with 500 replications. The latent failure times for Tj with probability density function defined above in
Section 3 and parameters as in figure 1. The exponentiated Weibull distribution degenerates to a 2-parameter
Weibull distribution when α = 1. The parameters for the reparametrized Weibull distribution for T1 were
λ1 = 0.182 and α1 = 1.609, while those for T2 were λ2 = 0.742 and α2 = 0.693. In the estimation of λ1, α1 for
T1, λ2, α2 are assumed known for T2 and vice versa for the estimation of λ2 and α2. Noninformative censoring
times were generated from a uniform distribution (0, γ), where γ was chosen for 10, 30 (omitted from table)
and 50% censoring. We consider the Gumbel copula with Kendall’s tau, τken = 1 − 1

θ
= 0, 0.25, 0.50, and

0.75. Initial parameter values were randomly chosen from uniform distributions, with multiple starting values
(wherever possible) as described in Section 3. We also simulated data from the Clayton copula. The results are
similar to those for the Gumbel copula and are described in the appendix. Tables 1, 5 and 6 show the results
for estimation of the model for T1 treating T2 as a competing event and for T2 treating T1 (for brevity, tables 5
and 6 show results for selected sample sizes) as a competing event. The bias is small decreasing to zero as the
sample size increases for each of the censoring levels. The empirical variance and the model based variance tend
to agree and the coverage is close to the nominal 0.95 level, particularly at larger sample sizes. The empirical
variance decreases as the sample size increases at roughly the expected root n rate. Table 4 shows the robust
survival estimates for the mis-specified model (data simulation from exponentiated Weibull but Weibull survival
estimated instead) for T1 treating T2 as competing risk. We presented the results for the lower, mean and upper
quantiles for each of the sample sizes and dependence levels. This shows decreasing bias for increasing sample
sizes for each of the quantiles.



Table 1: Estimated parameters for the exponentiated Weibull model for T1 across samples sizes (N),
dependence levels (τken) and for 15% censoring treating T2 as a competing event. η̂: estimated parameters:
λ, scale,α, and κ are shape parameters, ModB: model-based variance, EMP: empirical variance, CP: 95%
coverage probability.

τken N η̂ Mean Bias ModB EMP CP

0.00 1000 λ̂ 2.936 -0.064 0.069 0.056 0.960
κ̂ 4.198 0.198 8.663 3.873 0.848
α̂ 0.120 0.020 0.004 0.003 0.942

2500 λ̂ 2.965 -0.035 0.025 0.023 0.949
κ̂ 4.180 0.180 2.839 2.305 0.885
α̂ 0.109 0.009 0.001 0.002 0.894

5000 λ̂ 2.994 -0.006 0.012 0.012 0.947
κ̂ 4.264 0.264 1.446 1.250 0.947
α̂ 0.100 1.6e-4 0.001 0.001 0.931

0.25 1000 λ̂ 3.001 0.001 0.051 0.062 0.924
κ̂ 4.912 0.912 3.042 14.274 0.922
α̂ 0.101 0.001 0.002 0.002 0.896

2500 λ̂ 3.005 0.005 0.019 0.018 0.960
κ̂ 4.213 0.213 0.765 0.829 0.958
α̂ 0.100 0.000 0.000 0.001 0.928

5000 λ̂ 2.998 -0.002 0.009 0.008 0.960
κ̂ 4.082 0.082 0.300 0.297 0.958
α̂ 0.100 1.0e-5 2.0e-4 2.5e-4 0.958

0.50 1000 λ̂ 3.003 0.003 0.036 0.038 0.954
κ̂ 4.376 0.376 1.645 1.898 0.952
α̂ 0.100 3.3e-4 0.001 0.001 0.920

2500 λ̂ 3.006 0.006 0.014 0.014 0.950
κ̂ 4.147 0.147 0.439 0.523 0.938
α̂ 0.100 1.7e-5 2.6e-4 0.001 0.934

5000 λ̂ 3.002 0.002 0.007 0.007 0.964
κ̂ 4.072 0.072 0.185 0.187 0.948
α̂ 0.099 -5.7e-4 1.2e-4 1.4e-4 0.940

0.75 1000 λ̂ 3.003 0.003 0.027 0.042 0.942
κ̂ 4.266 0.266 1.101 1.146 0.950
α̂ 0.102 0.002 0.001 0.007 0.926

2500 λ̂ 3.006 0.006 0.011 0.010 0.942
κ̂ 4.132 0.132 0.323 0.330 0.954
α̂ 0.099 -0.001 2.0e-4 2.0e-4 0.938

5000 λ̂ 3.004 0.004 0.005 0.005 0.952
κ̂ 4.066 0.066 0.145 0.145 0.956
α̂ 0.099 -0.001 9.7e-5 1.1e-4 0.934



Table 2: The 2, 5, 10 and 15-yr overall net survival for French women diagnosed with breast cancer
between 1980 and 2011. a : ×10−2, b : ×10−3, τken: dependence, PP: Pohar-Perme, ST1(t): survival
estimate at year t, SE: standard error for the relative survival estimate.

Independent Competing Risks Dependent Competing Risks
τken 0.00 0.25 0.50 0.75

t PP a ST1
(t)a SEb ST1

(t)a SEb ST1
(t)a SEb ST1

(t)a SEb

2 95.6 96.0 6.99 95.8 6.96 95.4 7.23 94.7 7.74
5 84.8 87.4 9.01 86.6 9.10 85.5 9.31 84.0 9.53

10 71.0 72.8 11.01 71.4 10.99 69.8 10.91 68.0 10.67
15 59.5 59.5 12.22 57.9 12.08 56.3 11.74 54.9 11.19

4.2 Application to French Breast Cancer Data

In this section we analyze data from women between the ages of 18 and 96 years surviving breast cancer in France
from 1980 to 2011. The data were obtained from the Institut Curie breast cancer database. This database contains
records from 24, 458 nonmetastatic breast cancer patients treated at the Institut Curie. Out of the 24, 458 breast
cancer patients, 9, 885 (40.4%) died while 14, 573 were alive and administratively censored on December 31st 2011.
Five age group categories were considered for the estimation of relative survival. 3, 970 were between the ages of
15− 44, 6, 895 between the ages of 45− 54, 6, 420 between the ages of 55− 64, 4, 675 between the ages of 65− 74
and 2, 498 were in the 75− 99 age group category. We individually matched the observed death or censoring time
in the disease cohort group with a corresponding time in the general reference population on age, sex, and year
(date of diagnosis and the date of death or censored) for each participant and for each follow-up period. The
background mortality data from the Human Mortality Database (https://www.mortality.org) was last modified
on June 28, 2018. Within each follow-up year, we assumed that λP (t) is piecewise constant (Dickman et al.,
2004) for each period up to time X. The cumulative hazard for each period based on λP (t) is calculated from
the background survival function at the beginning and end of the period. The cumulative hazard is then used
to obtain λP (t) under the piecewise constant assumption. The goal of matching in determining λT2 = λP is to
mitigate the impact of age and calendar year on potentially dependent censoring by C (Pohar Perme et al., 2012).
Thus, our approach is stratified by age, sex and year. We estimate 2, 5, 10, and 15−year relative survival assuming
a Weibull distribution for T1 and a Gumbel copula model with differing levels of dependence to specify the joint
distribution for T1 and T2. We compared our estimates with estimates from Pohar Perme et al. (2012), which
require independence of T1 and T2 with ST2(t) derived from the background reference population.

Tables 2 and 3 show the estimates of ST1(t) for cancer mortality both overall and stratified by age. The
parametric estimates under independence are similar to those from the Pohar-Perme method. This suggests that
the Weibull assumption is a reasonable fit to the data. One observes that as dependence increases, cancer survival
generally decreases. For a fixed dependence level, younger women tend to have higher cancer survival rates than
do older women, with marked reductions for the 65-74 and 75-99 age groups. There is some instability in survival
estimates at 15 years, especially for the older age groups, as evidenced by the large standard errors. This may be
due to small numbers of patients at risk at longer follow-up times.

The net survival function for cancer corresponds to a hypothetical world where the only cause of death is
breast cancer. This quantity can only be estimated under unverifiable dependence assumptions between T1 and
T2 using disease registry data. To account for uncertainty in dependence, we recommend reporting a range of
probabilities corresponding to differing levels of dependence. For example, using results from table 2, the overall 5
year net breast cancer survival from 1980−2011 is estimated to be between 84.0-87.4% under dependence ranging
from Kendall’s tau equal to 0 (independence) to 0.75 (strong dependence). These cancer survival probabilities
may be meaningfully compared with those in other populations having different background mortality rates and
different dependence levels between T1 and T2.

The sensitivity analysis was conducted across different levels of dependence representing different competing
mortality potentially observable in the registry data. Figures 2 and 3 show the 2, 5, 10 and 15-yr overall net
breast survival plots across a spectrum of dependence structures for women between the ages of 18 and 96-yr
living in France during 2008 and 2011. As the dependence level increases, the net breast cancer survival decreases
dramatically. Perhaps, this might be due to increase hazard for the patients compounding the effect of competing
mortality hereby decreasing the chances of survival.

5 Discussion and Conclusion

Our model formulation for competing risk data without cause of failure information is general, permitting arbitrary
but known copula functions. The distribution of other cause mortality is obtained from external reference data

(Sarfati et al., 2010; Pohar Perme et al., 2012; Sasieni and Brentnall, 2017). We have undertaken preliminary
investigations of simultaneous estimation of the dependence parameter and the parameter in the disease-specific
survival distribution. There is evidence of instability in the estimation process especially at the boundary values,



Table 3: The 2, 5, 10 and 15-yr age group specific net breast cancer survival among French women
diagnosed between 1980 and 2011. a : ×10−2, b : ×10−3, τken: dependence, PP: Pohar-Perme, ST1

(t):
relative survival estimate at year t, SE: standard error for the relative survival estimate.

Independent Competing Risks Dependent Competing Risks
τken 0.00 0.25 0.50 0.75
t Agegp PP a ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb ST1(t)a SEb

2 15-44 95.8 94.9 20.90 94.9 20.73 94.8 20.73 94.8 20.68
45-54 97.1 96.6 16.44 96.5 16.13 96.3 16.27 96.2 16.40
55-64 95.7 96.1 13.72 96.0 13.49 95.7 13.70 95.3 14.12
65-74 95.1 97.0 08.50 96.8 08.54 96.2 09.61 95.1 11.60
75-99 91.5 96.5 07.94 95.6 08.93 93.4 12.44 89.9 17.16

5 15-44 85.1 86.9 23.70 86.8 23.64 86.7 23.62 86.7 23.35
45-54 88.6 90.4 19.39 90.1 19.36 89.8 19.45 89.7 19.28
55-64 85.8 88.1 17.72 87.6 17.71 86.9 17.87 86.6 17.66
65-74 84.1 86.9 16.71 85.8 17.01 84.2 17.71 82.5 18.09
75-99 72.3 77.1 24.21 72.7 24.85 67.1 25.08 61.7 24.00

10 15-44 71.9 74.4 26.88 74.2 26.84 74.0 26.75 74.1 26.62
45-54 78.3 80.1 22.83 79.6 22.80 79.2 22.73 79.2 22.34
55-64 73.4 74.5 22.03 73.5 21.97 72.7 21.74 72.7 21.08
65-74 68.4 67.2 25.38 65.0 25.32 63.0 24.72 62.3 23.20
75-99 44.6 43.1 34.83 37.0 32.55 33.0 28.61 31.1 24.35

15 15-44 62.5 63.2 29.03 63.0 28.96 62.9 28.83 63.0 28.72
45-54 70.8 70.5 25.31 69.8 25.24 69.4 25.00 69.6 24.51
55-64 63.5 61.9 24.81 60.7 24.62 59.9 24.11 60.3 23.20
65-74 50.3 48.7 30.06 46.2 29.46 44.7 27.92 45.3 25.47

Table 4: Robust survival probability for a misspecified exponentiated Weibull model for T1 across
samples sizes (N), dependence levels (τken) and for 16% censoring treating T2 as a competing event. Ŝw:
estimated Weibull survival probability, and associated bias at the 0.25, 0.50, and 0.75 quantiles.

Survival Quantiles Bias Quantiles

τken N ŝw.25 ŝw.50 ŝw.75 Bias.25 Bias.50 Bias.75
0.00 1000 0.373 0.532 0.751 -19.5e-4 25.4e-3 11.7e–3

2500 0.372 0.532 0.750 -16.8e-4 26.0e-3 12.3e-3
5000 0.372 0.532 0.751 -15,1e-4 26.1e-3 12.3e-3

0.25 1000 0.363 0.533 0.755 -14.7e-3 18.5e-3 68.6e-4
2500 0.362 0.532 0.754 -14.2e-3 19.1e-3 74.9e-4
5000 0.362 0.532 0.754 -13.6e-3 19.6e-3 78.0e-4

0.50 1000 0.345 0.527 0.758 -17.1e-3 17.8e-3 31.2e-4
2500 0.345 0.527 0.758 -16.7e-3 18.4e-3 36.2e-4
5000 0.345 0.527 0.758 -16.3e-3 18.7e-3 38.7e-4

0.75 1000 0.326 0.521 0.761 -74.6e-4 22.5e-3 -5.1e-4
2500 0.325 0.519 0.761 -64.8e-4 23.4e-3 -1.9e-05
5000 0.325 0.519 0.761 -61.6e-4 23.8e-3 2.1e-05



with care needed in the model specification to aid estimability of the model parameters. This is expected (see
Zahl, 1997 for challenges), as there are similar issues even when the cause of failure is known. The proposed
sensitivity analysis is a practical solution to this issue, providing a range of estimates across different dependence
levels not requiring simultaneous estimation of the dependence parameter. The parametric model for disease-
specific mortality is restrictive but may be flexible enough for applications where the hazard is smooth over time,
which is the case in cancer registry data. Estimating expected hazard or the distribution of T2 from life tables is
limiting as mismatches in covariates and other stratifying variables may also induce biases, Rubio et al (2021).
However, it is important to note that our estimator is robust and arguably invariant to the parameter estimates
under different specifications of the copula models as shown in the parameter estimates for both Gumbel and
Clayton copulas (tables 5 and 6). To relax the parametric assumption, nonparametric techniques are currently
being developed for use in more complex failure patterns.

The focus of relative or net survival analysis is the distribution of the latent event time for death from dis-
ease. This endpoint has been advocated by many practitioners (Slud et al., 1988; Reason, 1990; and Louzada et
al., 2015), as it removes the impact of other cause mortality on the risk of disease-specific mortality, permitting
comparisons across populations with different background mortality. As an alternative, other work has considered
estimation of the crude disease-specific survival, Ck(t), using the relative survival estimates and the known refer-
ence hazard for other cause mortality (Cronin and Feuer, 2000). An analogous procedure could be implemented
using our copula based estimate of the distribution of T1 and would provide an assessment of the sensitivity of the
estimator of Ck under independence of T1 and T2. Such procedure would be of interest to individuals who prefer
crude disease-specific mortality to net disease-specific mortality. This and time-dependent models are topics for
future research.

Our proposed estimator performed well overall and by subgroup analysis. We observed that in cases of elderly
patients, long-term survival decreases dramatically as expected. Perhaps this might be due to elderly patients
experiencing higher expected mortality rates than younger patients particularly in terms of higher risk of death
from other competing causes leading to loss of patients at longer follow-up times. This loss of information induces
higher variability in net survival estimates for this elderly populations, thereby inducing a higher variability as
observed in the variance. Net survival under dependence competing risk assumption is observable and does not
require additive model as in the case for net survival (in hypothetical world) under the independence assumption.
Our estimator modelled both the dependence between times to disease-specific event and competing risk event
with covariates like age, sex, and period (date of diagnosis and date of event: death or censored). Since it’s
been known (Nanieli, et. al., 2012) that such covariates affect both excess and expected hazards estimates.
We conditioned on these covariates (Pohar-Perme (2012) by matching cancer cohort data with registry data to
alleviate biases associated with informative censoring as done in multivariable modelling techniques (Bolard, et.
al., (2002), Giorgi, et. al., (2003), Lambert, et. al., (2005), Remontet, et. al., (2007)) where estimators are
adjusted for life-table covariates. Researchers are encouraged to use a patients’ medical history in determining
the levels of competing risks and use a corresponding dependence survival estimate (independence, low, moderate
or high) as a measure for disease-specific prognosis.

In conclusion, our proposed methodology provides estimates for net survival under both independent and
dependent competing mortality. On the contrary, Pohar-Perme et al., (2012) estimator is only valid under the
independent competing risk assumption. Additionally, Pohar-Perme et al., (2012) estimator may exceed 1 in
the left tail. Schaffar et al., (2017) showed that these erratic results may occur with longer follow-up times.
Our estimator provides comparable relative or net survival estimates under both independent and dependent
competing risk assumptions without the need for cause of disease-specific event in the competing risks setting.
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Appendix

Simulation Results for Gumbel and Clayton Copula Models

We simulated data to mimic the French breast cancer data set for sample sizes; 1000, and 5000 with 500 repli-
cations. The latent failure times for Tj ∼ Weibull(αj , λj) with probability density function defined in section
3. The parameters for the Weibull distribution for T1 were λ1 = 0.182 and α1 = 1.609, while those for T2

were λ2 = 0.742 and α2 = 0.693. In the estimation of λ1, α1 for T1, λ2, α2 are assumed known for T2, and
vice versa for estimation of λ2 ,α2. Noninformative censoring times were generated from a uniform distribution
(0, γ), where γ was chosen for 10, 30 and 50% censoring. We consider the Clayton copula with Kendall’s tau,
τken = θ

θ+2
= 0, 0.25, 0.50, 0.75. Initial parameter values were randomly chosen from uniform distributions,

with multiple starting values as described in section 3. The simulation results based on the Clayton copula are
presented in the table 4 below.



Table 5: Gumbel Model: Estimated parameters of the Weibull model for T1 across samples sizes (N),
dependence levels (τken) and levels of censoring (C) treating T2 as a competing event and vice versa.
η̂: estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage
probability. a : ×10−3.

C 0.10 0.50
τken N η̂ Mean Biasa ModBa EMP a CP Mean Biasa ModBa EMPa CP

0.00 1000 λ̂1 0.182 -0.080 0.090 0.090 0.940 0.182 -0.290 0.150 0.170 0.928
α̂1 1.610 0.790 1.420 1.560 0.938 1.611 1.980 2.620 2.720 0.950

5000 λ̂1 0.182 -0.050 0.020 0.020 0.948 0.182 0.050 0.030 0.030 0.958
α̂1 1.610 0.520 0.280 0.280 0.954 1.610 0.290 0.520 0.530 0.956

1000 λ̂2 0.748 5.980 9.940 10.270 0.936 0.746 3.650 14.410 15.320 0.922
α̂2 0.694 0.840 6.790 7.020 0.944 0.697 4.070 8.490 0.010 0.948

5000 λ̂2 0.743 0.630 1.870 1.640 0.962 0.743 1.000 2.700 2.460 0.968
α̂2 0.693 0.100 1.340 1.210 0.962 0.693 0.280 1.680 1.530 0.958

0.25 1000 λ̂1 0.182 -0.480 0.080 0.080 0.948 0.182 -0.450 0.140 0.130 0.954
α̂1 1.610 1.490 1.310 1.340 0.952 1.613 3.960 2.480 2.840 0.934

5000 λ̂1 0.182 -0.050 0.020 0.020 0.956 0.182 -0.130 0.030 0.030 0.940
α̂1 1.609 -0.250 0.260 0.240 0.956 1.610 0.590 0.500 0.460 0.950

1000 λ̂2 0.753 10.920 14.700 14.430 0.938 0.760 18.430 20.460 20.810 0.946
α̂2 0.690 -3.170 8.240 7.930 0.954 0.687 -5.930 10.080 9.900 0.944

5000 λ̂2 0.741 -0.950 2.690 2.530 0.950 0.742 0.260 3.620 3.580 0.964
α̂2 0.695 1.940 1.610 1.480 0.958 0.695 2.260 1.960 1.940 0.948

0.50 1000 λ̂1 0.182 -0.030 0.070 0.070 0.956 0.182 -0.260 0.120 0.120 0.954
α̂1 1.611 2.270 1.270 1.300 0.948 1.613 3.840 2.380 2.710 0.928

5000 λ̂1 0.182 0.010 0.010 0.020 0.946 1.824 0.040 0.020 0.030 0.956
α̂1 1.609 -0.340 0.250 0.240 0.954 1.610 0.450 0.480 0.510 0.932

1000 λ̂2 0.759 17.440 19.080 20.140 0.932 0.767 25.540 25.050 25.330 0.932
α̂2 0.688 -5.180 9.440 9.910 0.944 0.684 -9.170 11.210 11.510 0.940

5000 λ̂2 0.740 -1.580 3.360 3.380 0.944 0.744 1.620 4.340 4.660 0.946
α̂2 0.695 1.720 1.820 1.870 0.936 0.692 -0.750 2.150 2.270 0.944

0.75 1000 λ̂1 0.182 -0.200 0.060 0.070 0.956 0.182 -0.260 0.100 0.100 0.948
α̂1 1.610 0.490 1.060 1.520 0.936 1.612 2.660 2.090 2.370 0.942

5000 λ̂1 0.182 0.050 0.010 0.010 0.948 0.182 -0.020 0.020 0.020 0.952
α̂1 1.609 -0.010 0.210 0.210 0.944 1.609 -0.120 0.420 0.450 0.948

1000 λ̂2 0.760 17.780 20.190 20.360 0.938 0.766 24.200 26.040 25.790 0.952
α̂2 0.689 -4.600 9.870 10.440 0.946 0.685 -7.510 11.580 11.590 0.956

5000 λ̂2 0.742 -0.190 3.540 3.770 0.946 0.743 0.830 4.440 4.540 0.950
α̂2 0.694 0.550 1.900 1.990 0.930 0.693 0.350 2.210 2.280 0.944



Table 6: Clayton Model: Estimated parameters of the Weibull model for T1 across samples sizes (N),
dependence levels (τken) and levels of censoring (C) treating T2 as a competing event and vice versa.
η̂: estimated parameters, ModB: model-based variance, EMP: empirical variance, CP: 95% coverage
probability. a : ×10−3.

C 0.10 0.50
τken N η̂ Mean Biasa ModBa EMP a CP Mean Biasa ModBa EMPa CP

0.00 1000 λ̂1 0.182 0.000 0.080 0.090 0.948 0.182 -0.340 0.140 0.160 0.930
α̂1 1.610 0.710 1.390 1.520 0.942 1.611 1.820 2.490 2.540 0.948

5000 λ̂1 0.182 -0.020 0.020 0.020 0.942 0.182 0.060 0.030 0.030 0.946
α̂1 1.610 0.520 0.280 0.280 0.956 1.610 0.710 0.500 0.510 0.952

1000 λ̂1 0.747 5.910 9.750 9.910 0.940 0.746 3.570 14.010 14.150 0.922
α̂1 0.694 0.780 6.720 6.950 0.948 0.696 3.840 8.360 8.590 0.956

5000 λ̂1 0.742 0.690 1.840 1.610 0.962 0.742 0.880 2.640 2.380 0.964
α̂1 0.693 0.050 1.330 1.200 0.962 0.693 0.320 1.650 1.490 0.956

0.25 1000 λ̂1 0.182 -0.010 0.070 0.080 0.952 0.182 -0.670 0.130 0.110 0.964
α̂1 1.610 0.560 1.280 1.410 0.930 1.611 1.870 2.390 0.220 0.952

5000 λ̂1 0.182 -0.180 0.010 0.010 0.946 0.182 -0.120 0.020 0.020 0.940
α̂1 1.609 -0.310 0.230 0.230 0.950 1.609 -0.030 0.430 0.450 0.958

1000 λ̂1 0.751 9.200 16.630 17.220 0.924 0.749 7.170 21.000 1.610 0.914
α̂2 0.693 0.200 8.520 8.840 0.940 0.696 2.890 10.090 10.680 0.942

5000 λ̂2 0.742 0.460 2.980 2.690 0.952 0.744 2.080 3.840 3.690 0.940
α̂2 0.693 0.550 1.660 1.54 0.950 0.693 0.140 1.980 1.930 0.942

0.50 1000 λ̂1 0.182 -0.090 0.060 0.050 0.956 0.182 -0.440 0.100 0.100 0.964
α̂1 1.608 -0.980 1.030 1.090 0.952 1.612 2.580 2.020 2.060 0.968

5000 λ̂1 0.182 -0.180 0.010 0.010 0.936 0.182 -0.180 0.020 0.020 0.940
α̂1 1.609 -0.190 0.200 0.210 0.952 1.610 0.240 0.400 0.410 0.948

1000 λ̂2 0.750 9.020 17.470 18.370 0.924 0.748 6.530 21.500 22.090 0.912
α̂2 0.693 0.390 8.850 9.390 0.928 0.696 3.120 10.350 11.080 0.930

5000 λ2 0.742 0.070 3.170 2.870 0.948 0.744 2.400 3.970 3.760 0.944
α2 0.693 0.460 1.730 1.620 0.950 0.693 -0.080 2.040 1.960 0.948

0.75 1000 λ̂1 0.182 0.130 0.040 0.040 0.944 0.182 -0.050 0.080 0.080 0.937
α̂1 1.609 0.030 7e-04 0.860 0.924 1.610 1.120 1.410 1.450 0.947

5000 λ̂1 0.182 -0.120 0.010 0.010 0.940 0.182 -0.040 0.020 0.020 0.948
α̂1 1.609 0.040 0.140 0.160 0.936 1.610 0.780 0.270 0.320 0.926

1000 λ̂1 0.747 4.900 13.000 14.790 0.924 0.744 1.780 16.030 17.270 0.928
α̂1 0.694 1.460 8.370 9.630 0.924 0.697 4.230 9.660 10.980 0.932

5000 λ̂1 0.743 1.160 2.440 2.120 0.966 0.744 1.920 3.040 2.590 0.966
α̂1 0.693 -0.090 1.650 1.490 0.970 0.693 -0.470 1.910 1,700 0.962
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Figure 1: Bathtub shape hazard for the exponentiated Weibull distribution for the event time t
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Figure 3: Changes in Net Breast Cancer Survival for Increasing Dependent Competing Risks
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