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Abstract: In this work, we consider robotic systems for which the mass tensor is identified to be the
metric in a Riemannian manifold. Cost functional invariance is achieved by constructing it with
the identified metric. Optimal control evolution is revealed in the form of a covariant second-order
ordinary differential equation featuring the Riemann curvature tensor that constrains the control
variable. In Pontryagin’s framework of the maximum principle, the cost functional has a direct impact
on the system Hamiltonian. It is regarded as the performance index, and optimal control variables are
affected by this fundamental choice. In the present context of cost functional invariance, we show that
the adjoint variables are the first-order representation of the second-order control variable evolution
equation. It is also shown that adding supplementary invariant terms to the cost functional does
not modify the basic structure of the optimal control covariant evolution equation. Numerical trials
show that the proposed invariant cost functionals, as compared to their non-invariant versions, lead
to lower joint power consumption and narrower joint angular amplitudes during motion. With our
formulation, the differential equations solver gains stability and operates dramatically faster when
compared to examples where cost functional invariance is not considered.

Keywords: optimal control; robotics; Riemannian geometry; Riemann curvature tensor; invariance;
multibody dynamics

MSC: 49S05; 51P05; 53A35; 70E60

1. Introduction

Three of the main preoccupations in robotics have for a long time been the modeling,
the planning, and the control of robots. Indeed, motion planning is about finding a path
for the modeled system, which satisfies the desired task. Subsequently, control enables the
robot to follow the planned trajectory by guaranteeing its feasibility [1]. Thus, naturally,
some of the most influential books in the field are dedicated to analyzing these matters [2–5].

Optimal control can be considered to be a bridge between planning and control in
the sense that the planned motion does not purely obey geometrical considerations in the
task space. Configuration parameters and their derivatives, as well as forces, are often
taken into account [6,7]. This implies that restrictions on these parameters can also be
taken into account during the planning stage, so that the controller focuses mainly on the
stability and robustness of the trajectory tracking process. Among the optimal control
methods, the application of Pontryagin’s maximum principle [8–10] is certainly one of the
most broadly used (some robotics-related examples can be found in [11–15]). It provides an
optimality condition that requires to be met at each time during the trajectory. The method
generally involves restrictions in the form of ordinary differential equations (ODE), which
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are usually of the first order, therefore limiting the computational cost of their solution up
to a certain extent (as implied in [10]).

One particular class of robots that has historically received much attention is that of
robotic manipulators. These are typically used for industrial purposes, to perform repetitive
“pick-and-place” tasks in order to increase production [16,17]. However, these have also
been commonly used in more complex situations, serving for example as the upper limbs
of some humanoid robots [18,19].

When deriving the equations of motion of robotic manipulators from a Lagrangian
perspective, an underlying geometric structure is easily recognizable. Indeed, Christoffel
symbols (of the first kind) arise and describe the effect of Coriolis and centrifugal forces on
the robot links [3,5,16], even with classical model representations. Unsurprisingly, differen-
tial and Riemannian geometry have been previously used to model robotic systems [20–24].
These geometric formulations of robot motion dynamics have given important insights.
For example, it has been previously identified that the robot mass tensor defines a Rie-
mannian metric [20,21,24,25]. However, perhaps a rather interesting result is that when
a manipulator mass tensor (the metric) has a vanishing Riemannian curvature, such as
a balanced two degrees of freedom (DOF) manipulator, there exists a set of coordinates
in which the motion equations become very simple [20]. The emergence of the Riemann
curvature tensor in robot modeling is not common, and for this particular result, the author
states that it should be more useful for manipulator analysis and design than for their direct
control [20]. We shall see in this paper that the Riemann tensor naturally emerges in the
context of the optimal control of robotic manipulators.

It is undeniable that geometry enables a certain understanding of physical phenomena.
A remarkable analysis of the role that geometry plays in the process of motion generation
(be it human or robotic) can be found in [26]. In our work, we propose a geometric
formulation of Pontryagin’s maximum principle as applied to the optimal control problem
of a robotic manipulator. We take up the idea that the robot mass tensor is the Riemannian
metric and therefore construct an invariant running cost function where the policy is
both torque and energy consumption minimization. Through variational principles first,
and through Pontryagin’s maximum principle then, we propose an intrinsic covariant
evolution of the optimal force required to produce motion. These equations that we call
“covariant control equations” feature geometric objects, including the Riemann curvature
tensor. The latter is enabled by our choice of an invariant cost function. Simulations of
optimal motion show the benefits of our approach from a numerical perspective as well as
from the resulting motion characteristics perspective. Our focus is on computing the forces
required to cause optimal motion. Therefore, other applications of the maximum principle
such as tracking problems or output feedback [27] are not discussed in the present work.

We begin by setting up our framework in Section 2 by introducing the chosen metric,
the manifold tools, and the system modeling in a Riemannian formulation. Then, the back-
ground of our optimal control formulation is presented in Section 3, and we propose
an invariant cost function for the optimal control of robotic manipulators in Section 4.
A second-order covariant time evolution for the optimal forces required to cause motion
is proposed with the corresponding proof. It is shown that a basic geometric structure is
preserved with respect to previous developments. Then, Section 5 is devoted to giving a
Riemannian formulation of Pontryagin’s maximum principle for the optimal control of
robotic manipulators using our invariant cost functions. Physical interpretation for one of
the adjoint variables results from the optimality condition. We also prove that the adjoint
variables are fundamentally related and lead to our proposed covariant control equations.
Finally, the impact of our Riemannian formulation of the maximum principle, on a general
purpose ODE solver, is evaluated through numerical simulations of optimally controlled
motion in Section 6. This last section presents the advantages on numerical robustness and
on the resulting motion characteristics.
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2. Riemannian Manifold

We regard robotic manipulators as multibody dynamical systems parameterized by a
finite number n of configuration parameters qi where i ∈ [1, n]. Focus is set on the class of
serial manipulators in which each joint supports another one further down the chain. Thus,
each joint motion is ensured by an actuator placed between two neighboring segments,
which exerts torque action. Q denotes the set of states q ≡ {qi}. In the whole document,
we will rely on tensor notation and apply Einstein’s summation convention on repeated
indices [28,29].

2.1. Metric

Our framework relies on deriving robot dynamics from the system kinetic energy K,
which is a quadratic and strictly convex form of q̇i, where the overdot denotes the rate of
change with respect to time. The coefficients of K define a positive definite, configuration-
dependent Hessian M(q), called the mass tensor. Mass tensor components are formed by
nonlinear regular functions of the state q ∈ Q. The system kinetic energy is expressed as

K(q, q̇) =
1
2

Mkl(q)q̇k q̇l . (1)

The mass tensor M(q) is a measure of the mass distribution and inertia of the multi-
body system [30]. Being symmetric and positive definite, it constitutes a perfect candidate
to define a metric g in a Riemannian manifold, and it has previously been identified to be
one in the context of robot modeling [20,21,24,25]. Therefore, we set

gkl(q) ≡ Mkl(q). (2)

2.2. Manifold Tools

Therefore, the space of states Q has the structure of a Riemannian manifold in which
the following tools of Riemannian geometry apply (see [28,29]).

(a) Covariant space derivation ∂j ≡ ∂
∂qj .

(b) Contravariant space derivation ∂k = Mjk∂j.

(c) Relationship between a vector basis ej, and its dual ek such that 〈ej, ek〉 = δ
j
k.

(d) Components of the inverse mass tensor M−1 = Mjl such that Mij Mjl = δl
i .

(e) The connection Γl
ik = 1

2 Mjl(∂i Mlk + ∂k Mli − ∂l Mik) is symmetric Γj
ki = Γj

ik and de-

fines the differentials dej = Γl
jk dqkel and dej = −Γj

kl dqkel .

(f) The relationship between covariant components ϕj and contravariant components
ϕk is established through the metric: ϕj = Mjk ϕk, ϕk = Mkj ϕj.

(g) Covariant differential of a vector field ϕ ≡ ϕjej: dϕ =
(

∂l ϕ
j + Γj

lk ϕk
)

dqlej.

(h) Covariant differential of a covector field ϕ ≡ ϕlel : dϕ =
(

∂k ϕl − Γj
kl ϕj

)
dqkel .

(i) Ricci’s identities {
∂j Mkl = Γp

jk Mlp + Γp
jl Mkp

∂j Mkl = −Γk
jp Mpl − Γl

jp Mpk.
(3)

(j) Covariant derivative of a scalar field: dV = ∂lV dql = 〈∇V, dqjej〉 and∇V = ∂lVel .
(k) Covariant derivative of a covector field ϕ = ϕlel : dϕ ≡ 〈∇ϕ, dqjej〉 and ∇ϕ =(

∂k ϕl − Γj
kl ϕj

)
ekel .

(l) Second covariant derivative of a scalar field V: ∇2V = ∇(∇V) becomes

∇2V =
(

∂k∂lV − Γj
kl∂jV

)
ekel . (4)
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(m) Components Rj
ikl of the Riemann curvature tensor:

Rj
ikl = ∂lΓ

j
ik − ∂kΓj

il + Γp
ikΓj

pl − Γp
ilΓ

j
pk. (5)

(n) Anti-symmetry of the Riemann curvature tensor: Rj
ikl = Rj

ilk.

2.3. Manipulator Dynamics

Along with the kinetic energy defined by (1), we consider the gravitational potential
V = V(q), which is configuration dependent. This potential models gravity actions and is
defined as a product between the system mass, the local gravitational field intensity, and
the center of mass height.

The system Lagrangian is defined as L(q, q̇) = K(q, q̇)−V(q). When a forcing control
ui is exerted at the joint (typically a torque for our class of robots), the Euler–Lagrange
equations that describe the dynamics for each of the generalized coordinates

d
dt

(
∂L
∂q̇i

)
− ∂L

∂qi = ui (6)

must be satisfied (see [24,30]). Upon inserting (1), the covariant second-order equations of
motion are found [24,31,32]:

Mkl

(
q̈l + Γl

ij q̇
i q̇j
)
+ ∂kV = uk. (7)

Thus, the robotic manipulator motion is governed by Equation (7). By recalling that
uj = Mjiui, the contravariant components of the torques u can be formulated:

q̈j + Γj
kl q̇

k q̇l + Mjl∂lV = uj. (8)

Note that Equations (7) and (8) can be presented in a more compact form. This is
achieved by noticing that the first two terms of the above equations compose the second
covariant time derivative of the configuration parameter q. Recall that

dq
dt

= q̇iei. (9)

This expression can be differentiated again by considering property (e) of Section 2.2:

d2q
dt2 =

d
dt

(q̇iei) = q̈iei + q̇i dei
dt

=
(

q̈i + Γi
jk q̇j q̇k

)
ei. (10)

Therefore, the covariant components (7) of the generalized force take the compact form

Mkl

(
d2q
dt2

)l

+ ∂kV = uk, (11)

and the contravariant components (8) become(
d2q
dt2

)j

+ ∂jV = uj. (12)

Finally, the system dynamics can be established as a first-order system by introducing
a variable ζ, so that, according to (8),{

q̇j − ζ j = 0
ζ̇ j + Γj

klζ
kζ l = uj −Mjl∂lV.

(13)
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3. Riemannian Formulation of Optimal Control Background

Our optimal control problem can be summarized as the following: we wish to take
the robotic system from an initial state to a final state in a prescribed time T such that the
control action minimizes a chosen performance index. We select the performance index (as
called in [7]) or cost functional (as called in [10]) to be an integral of the type

J(u) =
T∫

0

γ(u(q, q̇, q̈))dt, (14)

where u denotes the control variable. Let U denote the set of controls u ≡ {ui}, which are
assumed to belong to a restricted class of smooth, sufficiently differentiable functions in the
domain [0, T]. It is deemed admissible if it satisfies the imposed boundary conditions [9].
Such control action can be constrained by minimizing (14) either by applying traditional
variational techniques or by applying Pontryagin’s maximum principle [8,10]. The function
γ = γ(u) is control dependent and defines the running cost [10]. It is assumed to be
continuously differentiable in t ∈ R, q ∈ Q and u ∈ U. In our work, we will refer to
J(u) as the performance index and to γ as the running cost function. We will refrain from
addressing to J(u) as cost functional in order to avoid confusion with the running cost
function γ.

The running cost function γ can be selected to be convex in order to ease the minimiza-
tion of (14). Additionally, in order to preserve a Riemannian structure, γ should be chosen
to be invariant and preferably composed by the metric M(q). By choosing the particular
running cost function γ1 = uiui, the performance index is

J(u) =
T∫

0

γ1(u)dt =
T∫

0

1
2

Mkl(q)ukul dt. (15)

It has been shown [31,32] that the optimal control variable evolves according to the
following second-order nonlinear ODE:(

d2u
dt2

)
j
+ Ri

kl j q̇
k q̇lui +

(
∇2

jkV
)

uk = 0, (16)

where from [32] (Equation (17)),(
d2u
dt2

)
i
= üi − Γk

ij

(
uk q̈j + 2u̇k q̇j

)
−
(

∂lΓ
k
ij − Γm

ji Γk
ml

)
q̇j q̇luk. (17)

Equation (16) is a result that was first established in the framework of the classical
calculus of variations in [33]; it was later established in the framework of Pontryagin’s
maximum principle in [31], further proving the equivalence of both techniques; and it was
recently experimentally applied to the optimal control of a robotic manipulator in [32]
through the framework of the classical calculus of variations. We shall refer to (16) as the
“covariant control equations”, where we shall notice the explicit presence of the Riemann
curvature tensor. The emergence of this quantity, although uncommon in robot modeling
and control, confirms that since we have the metric and the connection (see properties (e)
and (f) in Section 2.2), the curvature is never far away. This curvature can be interpreted as
a robot dynamic response sensitivity measure to certain inertial parameters [20].
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Therefore, when the selected running cost function is γ1, the optimal control problem
becomes that of solving a coupled system of nonlinear second-order ODE involving the
manipulator equations of motion (11) and the covariant control Equation (16):

(
d2q
dt2

)
j
+ ∂jV = uj(

d2u
dt2

)
j
+
(
∇2

jkV
)

uk = Ri
kjl q̇

k q̇lui,
(18)

with selected initial and final conditions on q and q̇. The system (18) is contravariant in the
states q and covariant in the control variable u. This set of equations can be solved with
an appropriate ODE solver, Runge–Kutta-based integrators [34], or Finite Element-based
methods such as the one presented in [35].

4. Optimal Dynamics with a Velocity Cost

We wish to further generalize the previous result of Equation (16). In particular, we are
interested in adding a velocity cost to the performance index (15) in order to diminish
motion amplitude. We will show in the present section that adding an invariant function of
the generalized velocities does not modify the basic structure of Equation (16).

4.1. Generalization of Covariant Control Equations Structure

Let us consider the following performance index.

J(u) =
∫ T

0

1
2

[
uiui + αq̇i q̇i

]
dt, (19)

where α is a scalar that ensures homogeneity. Let us call its integrand γ2, which is the
running cost function. By property (f) of Section 2.2,

γ2 =
1
2

[
Mij(q)uiuj + αMij(q)q̇i q̇j

]
. (20)

The first term is an invariant convex function of the control variable u. The second
term is an invariant convex function of the generalized velocities q̇, which corresponds to
the system kinetic energy, scaled by α.

Proposition 1. Covariant control equations: optimal force evolution.
With the above performance index (19), the optimal generalized forces u satisfy the following

time evolution: (
d2u
dt2

)
i
+ (∇2

ilV)ul = Rk
jli q̇

j q̇luk + α

(
d2q
dt2

)
j
. (21)

Proof of Proposition 1. According to (7) and (8), u = u(q, q̇, q̈). Therefore, we can apply
the so-called Euler–Lagrange equations to the proposed performance index (19) as:

d2

dt2

(
∂γ2

∂q̈i

)
− d

dt

(
∂γ2

∂q̇i

)
+

∂γ2

∂qi = 0. (22)

Then, we have that

∂γ2

∂q̈i =
1
2

Mjk
d

dq̈i (u
juk) = Mjk

duj

dq̈i uk = Mjkuk = uj

∂γ2

∂q̇i = 2Γk
ij q̇

juk + αMij q̇j

∂γ2

∂qi =
1
2
(∂i Mjk)ujuk + uj∂iuj +

α

2
(∂i Mjk)q̇j q̇k,

(23)
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where from (7),

uj∂iuj = uj
[
(∂i Mjk)q̈k + (∂i Mjm)Γm

kl q̇
k q̇l + Mjm(∂iΓm

kl)q̇
k q̇l + (∂i∂jV)

]
= uj

[
∂i Mjk(q̈k + Γk

jl q̇
j q̇l) + Mjm(∂iΓm

kl)q̇
k q̇l + (∂i∂jV)

]
= uj

[
∂i Mjk(uk −Mkl∂lV) + Mjm(∂iΓm

kl)q̇
k q̇l + (∂i∂jV)

]
.

(24)

Using Ricci’s identities (3) on Equations (23) and (24) terms which involve the mass
tensor derivative, it follows that

∂i Mjk q̇j q̇k = Γl
ij q̇

j q̇l + Γl
ik q̇l q̇k = 2Γk

ij q̇
j q̇k = 2Γk

mi q̇
m q̇k,

∂i Mjkujuk = Γl
iju

jul + Γl
ikuluk = 2Γk

iju
juk = 2Γk

miu
muk,

∂i Mjkujuk = −Γj
ilujul − Γk

ilu
luk = −2Γk

ilu
luk = −2Γk

miu
muk.

(25)

Therefore,

∂γ2

∂qi = Γk
miu

muk +
[
(∂iΓk

jl)q̇
j q̇l − Γk

mi M
mj∂jV

]
uk +

(
∂i∂lV − Γj

li∂jV
)

ul + αΓk
mi q̇

m q̇k, (26)

where the last term of the first line above corresponds to the second covariant derivative of
V according to (4). Inserting the first two lines of (23) and (26) into (22) yields

üi − Γk
ij(q̈

juk − 2q̇ju̇k)− 2
∂Γk

ij

∂ql q̇j q̇luk +
∂Γk

jl

∂qi q̇j q̇luk + (∇2
ilV)ul

+Γk
miuk

(
um −Mmj∂jV − q̈m

)
− αMil

(
q̈l + Γl

jk q̇j q̇k
)
= 0,

(27)

where the term inside the parenthesis, of the penultimate term, can be identified as Γm
jl q̇j q̇l

from (8); and the last term inside the parenthesis corresponds to the i-th second covariant
time-derivative component of q (see Equation (10)). Thus, Equation (22) reduces to a
second-order nonlinear ODE:

üi − Γk
ij(q̈

juk − 2q̇ju̇k)− (∂lΓ
k
ij)q̇

j q̇luk +
(

∂iΓk
jl − ∂lΓ

k
ij + Γk

miΓ
m
jl

)
q̇j q̇luk

+(∇2
ilV)ul + α

(
d2q
dt2

)
i
= 0 .

(28)

Note that the Riemann curvature tensor forms in the fourth term of the above equation
if Γm

ji Γk
ml q̇

j q̇luk is subtracted from it. Note that by doing this, another equal term has to be

added and the second covariant time derivative of the torque tensor
(

d2u
dt2

)
i

also reveals
(see Equation (17)). Therefore, the optimal control obeys the following covariant evolution
equation (

d2u
dt2

)
i
+ Rk

jil q̇
j q̇luk + (∇2

ilV)ul − α

(
d2q
dt2

)
i
= 0, (29)

which confirms (21). Thus, the optimal force evolution equation preserves the basic struc-
ture of the covariant control Equation (16) in the first three terms of (29).

4.2. Optimization Procedure

When the running cost function γ2 (20) is selected, the optimal control problem
becomes that of solving a coupled system of nonlinear second-order ODE involving
the manipulator equations of motion (11) and the newly proposed covariant control
Equation (21):
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(

d2q
dt2

)
j
+ ∂jV = uj(

d2u
dt2

)
j
+
(
∇2

jkV
)

uk = Ri
kjl q̇

k q̇lui + α

(
d2q
dt2

)
j
,

(30)

with selected initial and final conditions on q and q̇.

5. Optimal Dynamics through Pontryagin’s Maximum Principle

Let us consider the performance index (19) in order to control the dynamics (8).

5.1. Pontryagin’s Maximum Principle

This method [8,10] introduces Lagrange multipliers, which are regarded as adjoint
states (or co-states) to form a Hamiltonian function H of the states and the co-states. Let us
introduce this function H such that

H(ẋ, λ, γ) = λẋ− γ, (31)

where x = {q, ζ} = {q, q̇} is the vector of states which are continuous quantities; λ = {p, ξ}
is the vector of co-states or adjoint parameters, and are also continuous quantities; γ is the
selected cost function.

Proposition 2. Physical interpretation of one adjoint variable.
When the performance index (19) is stationary, the adjoint variable ξ j is equal to the force

required to cause the optimal motion uj:
ξ j = uj. (32)

Proof of Proposition 2. With the selected running cost function γ2, the Hamiltonian func-
tion H(ẋ, λ, γ) is formed as

H(ẋ, λ, γ) = pjζ
j + ξ j

[
−Γj

klζ
kζ l −Mjl∂jV + uj

]
− 1

2
Mklukul − α

2
Mklζ

kζ l (33)

By applying Pontryagin’s maximum principle, i.e., by nulling the derivative of the
above Hamiltonian with respect to the control variable ui, ∂H

∂ui = 0, an explicit interpretation
of one adjoint variable is obtained:

ξ j = Mjlul = uj. (34)

We can see that one of the adjoint states is exactly the control variable, which corre-
sponds to the joint torque. This further generalizes the result proposed in [31] (Proposition 4)
and proves that adding a velocity cost does not modify the nature of this adjoint vari-
able.

At the optimum, i.e., when condition (34) holds, the Hamiltonian can be explicited as

H = pjζ
j + ξ j

[
−Γj

klζ
kζ l −Mjl∂jV

]
+

1
2

Mklξkξl −
α

2
Mklζ

kζ l . (35)

Motion equations describing the states derive from the above Hamiltonian. They are
given by the symplectic first-order ODE

q̇j =
∂H
∂pj

, ζ̇ j =
∂H
∂ξ j

. (36)

Adjoint equations describing the co-states also derive from the Hamiltonian. They are
given by the symplectic first-order ODE



Mathematics 2022, 10, 1117 9 of 22

ṗj(t) = −
∂H
∂qj , ξ̇ j(t) = −

∂H
∂ζ j . (37)

Equation (36) expresses the system dynamics (13) as a first-order system. Following
Equations (35) and (37), we explicit the set of two first-order nonlinear ODE governing the
adjoint variables as

ṗj =
(

∂jΓi
kl

)
ζkζ lξi + ∂j

(
Mil∂lV

)
ξi −

1
2

(
∂j Mkl

)
ξkξl +

α

2
(
∂j Mkl

)
ζkζ l (38)

ξ̇ j = 2Γi
kjζ

kξi + αMkjζ
k − pj. (39)

Using Ricci’s identities (3) (see Equation (25)), the expression (38) can be further
developed as:

ṗj = (∂jΓi
kl)ζ

kζ lξi +
(
∇2

jlV
)

ξ l + Γi
jk

(
ξk −Mkl∂lV

)
ξi + αΓi

jkζkζi

= (∂jΓi
kl)ζ

kζ lξi +
(
∇2

jlV
)

ξ l + Γi
jk(ζ̇

k + Γk
mlζ

mζ l)ξi + αΓi
jkζkζi

= (∂jΓi
kl)ζ

kζ lξi +
(
∇2

jlV
)

ξ l + Γi
jkξi

(
dζ

dt

)k
+ αΓi

jkζkζi,

(40)

where the covariant time derivative of ζ arises from (10) and (13).

Proposition 3. Second-order representation of the adjoint variables.
Covariant control Equation (21) is the second-order representation of the first-order system

composed of Equations (39) and (40).

Proof of Proposition 3. An expression of pj can be obtained from ξ̇ j (39) as

pj = 2Γi
kjζ

kξi + αMkjζ
k − ξ̇ j. (41)

The above can be differentiated with respect to time in order to obtain another expres-

sion of ṗj =
dpj
dt :

ṗj = 2(∂lΓ
i
kj)ζ

kζ lξi + 2Γi
kj ζ̇

kξi + 2Γi
kjζ

k ξ̇i + α(∂l Mkj)ζ
kζ l + αMkj ζ̇

k − ξ̈ j. (42)

Therefore, Equations (40) and (42) can be confronted because they require to be equal.
By developing this equality and organizing terms, we have that:

ξ̈ j − Γi
kj

(
ζ̇kξi + 2ζk ξ̇i

)
− (∂lΓ

i
kj)ζ

kζ lξi + (∇2
jlV)ξ l − αMij

(
ζ i + Γi

jkζ jζk
)

+
(

∂jΓi
kl − ∂lΓ

i
kj

)
ζkζ lξi + Γi

jmξi

(
ξm −Mml∂lV − ζ̇m

)
= 0,

(43)

which is equivalent to

ξ̈ j − Γi
kj

(
ζ̇kξi + 2ζk ξ̇i

)
− (∂lΓ

i
kj)ζ

kζ lξi + (∇2
jlV)ξ l − α

(
d2q
dt2

)
j

+
(

∂jΓi
kl − ∂lΓ

i
kj + Γm

klΓ
i
mj

)
ζkζ lξi = 0.

(44)

We can observe that a Christoffel symbol product is missing in the last term inside the
parenthesis above in order to complete the Riemann tensor. By adding and subtracting
Γm

kjΓ
i
mlζ

kζ lξi to the above equation, not only does the Riemann tensor Ri
kl j appear but also

the second covariant time derivative of ξ (see Equation (17)). Thus, the covariant control
Equation (21) arises:
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(
d2ξ

dt2

)
j
+ (∇2

jlV)ξ l − α

(
d2q
dt2

)
j
+ Ri

kl jζ
kζ lξi = 0. (45)

Therefore, the adjoint variables ṗj and ξ̇ j are the first-order representation of the
covariant control Equation (21).

5.2. Optimization Procedure

Equipped with (13), (39) and (40), the optimization procedure consists in solving the
following set of first-order nonlinear ODE:

q̇j = ζ j

ζ̇ j = uj − Γj
klζ

kζ l −Mjl∂lV

ṗj = (∂jΓi
kl)ζ

kζ lξi +
(
∇2

jlV
)

ξ l + Γi
jkξi

(
dζ

dt

)k
+ αΓi

jkζkζi

ξ̇ j = 2Γi
kjζ

kξi + αMkjζ
k − pj.

(46)

This first-order system comes from applying Pontryagin’s maximum principle to the
performance index (19). It is important to note that the proof of Proposition 3 implies that
the first-order system (46) is equivalent to the second-order system (30).

6. Some Advantages of the Riemannian Formulation

This section is devoted to evaluating the performance of our optimal control formu-
lation by carrying out simulations of optimally controlled motion on a two DOF robotic
manipulator. Figure 1 shows a diagram of the robotic manipulator presented in [36],
where values for parameters (mi, Ii, ai, l) are provided. These parameters were used for our
motion simulations.

O1

O2

x2

x1 y1

y2

z1

z2

q1

q2

C1

(m1, I1)

C2

(m2, I2)

‖ ~O1C1‖ = a1
‖ ~O1O2‖ = l
‖ ~O2C2‖ = a2

~g

Figure 1. Two DOF robotic manipulators. Robot parameters are: i-th link mass mi; i-th moment of
inertia Ii; distance from joint to center of mass of the i-th link ai; first link length l; states qi (i-th link
configuration parameter). Vector ~g represents the direction of gravity action.

Equations of motion can be retrieved using Equation (7) by considering the following
mass tensor components:

M11 = m1a1
2 + I1 + m2l2 + m2a2

2 + I2 + 2m2a2l cos(q2)
M12 = M21 = m2a2

2 + I2 + m2a2l cos(q2)
M22 = m2a2

2 + I2.
(47)

We will split this section into two parts. Firstly, the followed methodology to carry out
our simulations will be explained. Secondly, the results will be presented and analyzed.
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6.1. Simulations Methodology

Our simulation methodology consists of evaluating the impact of our Riemannian
formulation of Pontryagin’s maximum principle on a commercial ODE solver. We begin
by presenting the evaluated running cost functions. Then, the optimal control method is
summarized for each running cost function case. Then, a four-step evaluation methodology
is proposed.

6.1.1. Running Cost Functions

Let us recall that the goal is to minimize the performance index (14) where the running
cost function γ is selected to be a convex function of the control variable. Our methodology
relies in selecting a running cost function that is invariant. In the previous sections, two
such functions were presented:

• γ1 (Equation (15));
• and γ2 (Equation (20)).

These enabled the analyses presented in the previous sections. We now wish to
evaluate how these invariant running cost functions repercute the optimization process.
Therefore, it is necessary to compare them with more traditionally used cost functions that
are non-invariant. Recounts of frequently used cost functions for the optimal control of
multibody systems can be found in [37,38]. Therefore, running cost functions γ1 and γ2
can be compared with the following ones:{

γ3 = 1
2 Aklukul

γ4 = 1
2 Aklukul +

1
2 Bkl q̇k q̇l ,

(48)

(γ3 is used in [11,38–41] and γ4 is part of the cost in [38,42]). Let us remark that the running
cost functions of (48) are not invariant because A and B do not define a metric. These are
square matrices instead, with constant weighting components often taken to be unitary.
Therefore, it is impossible to preserve a Riemannian structure by using either γ3 or γ4.
Without loss of generality, all of our numerical trials will be performed by setting A and B
as the identity matrix.

6.1.2. Optimal Control Method

In order to optimally control the robotic manipulator motions, it suffices to find a
solution to a set of ODE with fixed boundary values. The set of ODE to solve depends on
the selected cost function.

• If γ1 (15) is selected, there are two possibilities: either solve the second-order sys-
tem (18) to directly find the main trajectory variables (qj, uj) or, as proposed in [31],
solve the following set of nonlinear first-order ODE :

q̇j = ζ j

ζ̇ j = uj − Γj
klζ

kζ l −Mjl∂lV

ṗj = (∂jΓi
kl)ζ

kζ lξi +
(
∇2

jlV
)

ξ l + Γi
jkξi

(
dζ
dt

)k
ξ̇ j = 2Γi

kjζ
kξi + αMkjζ

k − pj.

(49)

to find variables (qj, ζ j, pj, ξ j). Solving the system (49) also directly provides the
main trajectory variables because ξ j = uj (see Proposition 4 in [31]). It is important
to remark that systems (18) and (49) are equivalent and lead to the same optimal
trajectory when solved.

• If γ2 (20) is selected, there are also two possibilities. Either solve the set of nonlinear
second-order ODE (30) to directly find the main trajectory variables (qj, uj) or solve
the set of nonlinear first-order ODE (46) to find variables (qj, ζ j, pj, ξ j). Again, solving
the system (46) directly provides the main trajectory variables because ξ j = uj (see
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Proposition 2). It is important to remark that systems (30) and (46) are equivalent and
lead to the same optimal trajectory when solved (see Proposition 3). Without loss of
generality, we will take the homogeneity factor as α = 1 m−2 s−2.

• If γ3 (48) is chosen, then

H = pjζ
j + ξ j

[
−Γj

klζ
kζ l −Mjl∂jV + uj

]
− 1

2
Aklukul , (50)

and therefore, optimal motion according to the above Hamiltonian can be found by
solving the coupled set of nonlinear first-order ODE resulting from
Equations (36) and (37).

• If γ4 (48) is chosen, then

H = pjζ
j + ξ j

[
−Γj

klζ
kζ l −Mjl∂jV + uj

]
− 1

2
Aklukul −

1
2

Bkl q̇k q̇l , (51)

and therefore, optimal motion according to the above Hamiltonian can be found by
solving the coupled set of nonlinear first-order ODE resulting from
Equations (36) and (37).

• All of the above should be submitted to fixed boundary values in positions and velocities:

{q(0), q̇(0)} = {a0, b0}, {q(T), q̇(T)} = {a1, b1}. (52)

6.1.3. Evaluation Methodology

In order to evaluate the impact of each of the running cost functions γ1 and γ2,
all simulations must be carried out under very close conditions. Therefore, a specific
methodology will be followed for all tests. Let us remark that we will focus on solving
the first-order systems (46) and (49) for our evaluations. This is because when using γ3 or
γ4 (48), the application of Pontryagin’s maximum principle leads to systems of nonlinear
first-order ODE similar to those of (46) and (49). Cost function evaluation will be carried
out by taking the following steps.

Step 1. By increasing T of 0.1 s for each test (beginning with T = 0.1 s), solve the ODE
system (49) when using γ1; (46) when using γ2; or the one resulting from (36)
and (37) when using either γ3 or γ4. Fixed boundary values are taken as follows
to determine each solution.

Case (a). Upward motion:
{q1(0), q2(0)} = {0, 0} rad
{ζ1(T), ζ2(T)} = {0, 0} rad s−1

{q1(0), q2(0)} = {0.8, 1.0} rad
{ζ1(T), ζ2(T)} = {0, 0} rad s−1.

(53)

Case (b). Downward motion:
{q1(0), q2(0)} = {1.1, 0.9} rad
{ζ1(T), ζ2(T)} = {0, 0} rad s−1

{q1(0), q2(0)} = {0.3, 0.2} rad
{ζ1(T), ζ2(T)} = {0, 0} rad s−1.

(54)

Step 2. Compute the Root Mean Square (RMS) torque for each trajectory as

uRMS =

√∫ T
0 ∑n

i=1 ui
2

T
. (55)
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Step 3. Compute the RMS power for each trajectory as

PRMS =

√∫ T
0 ∑n

i=1(ui q̇i)2

T
. (56)

Step 4. Determine the computation time for each trajectory.

Since our focus is on evaluating the impact of each cost function on the optimization
process, a readily available ODE solver will be used to determine a solution to each of the
encountered ODE systems. Wolfram Mathematica’s NDsolve ODE solver (version 12.3.1)
was selected to perform these operations. This solver is able to function with a diversity
of methods, among which shooting methods are found. This option would have been
a natural candidate, but it was previously tried in [35], and the performance was not
satisfactory. Instead, our results were obtained by calling the Runge–Kutta time integration
method of NDSolve.

The time taken by the ODE solver to compute an optimal trajectory is referred to as
computing time in our work. It is processor-dependent and determined using Mathematica’s
AbsoluteTiming function. All simulations were held on a 1.8 GHz 4-Core Intel Core i7
processor unless specified otherwise.

6.2. Results

The results of the above numerical trials will be presented and analyzed for an upward
motion and a downward motion (see Step 1 of Section 6.1.3 above). Note that some results for
the upward motion (Case (a)) were recently presented in the conference proceedings [43,44].

6.2.1. Increased Numerical Stability over Growing Values of T

Table 1 presents the maximum value of prescribed trajectory time T that NDSolve was
able to reach with each of the four running cost functions that were tested. The table shows
that our invariant running cost functions γ1 and γ2 are the ones that confer the solver an
increased stability over extended prescribed trajectory times.

Table 1. Maximum prescribed times T for which NDSolve computes trajectories meeting conditions (53)
and (54). The use of γ2 allows the solver to reach higher values of T as compared to the other running
cost functions. Note that both γ1 and γ2 are invariant; γ3 and γ4 are not.

Running Cost
Function γi

Criterion Maximum T Value for
Upward Motion

Maximum T Value for
Downward Motion

γ1 = 1
2 uiui Torque 4.9 s 5.7 s

γ2 = 1
2

(
uiui + αq̇i q̇i

)
Torque & velocity 20.0 s 9.5 s

γ3 = 1
2 uiuj Torque 2.4 s 1.7 s

γ4 = 1
2

(
uiuj + q̇i q̇j

)
Torque & velocity 0.7 s 0.5 s

Simulation results are shown for the following: RMS torques in Figures 2a,b and 3a,b;
RMS power in Figures 2c,d and 3c,d; and CPU computing time in Figures 2e and 3e; each
one was plotted versus the increasing prescribed time T. In order to better appreciate some
results, Figure 2b,d show zoom-in versions of Figure 2a,c, respectively. In the same manner,
Figure 3b,d are zoom-in versions of Figure 3a,c, respectively.

First, note that not all curves attain the same prescribed time T. Let us begin with the
upward motion. Only with γ2 was NDSolve able to determine a solution up to T = 20 s
(see Table 1). Let us now focus on the case of γ3. Curves corresponding to this running cost
function display gaps because of numerical issues such as stiffness (which is quite common
in similar cases [6]). This means that the solver is unable to compute a solution with γ3
for certain trajectory durations T. Similar observations can be made for the downward
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motion: it is with γ2 that the highest value of T was reached. However, this time, we see
gaps in every curve because the solver struggles more than with the upward motion. Even
so, robustness is still increased by using γ1 and γ2 instead of γ3 and γ4. These results
confirm that our Riemannian formulation improves the solver stability with respect to the
increasing prescribed times T.
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(a) RMS torque evolution for the upward motion
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(b) Zoom-in: RMS torque evolution for the upward motion
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(c) RMS power evolution for the upward motion
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(d) Zoom-in: RMS power evolution for the upward motion
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(e) CPU Time (logarithmic scale) for the upward motion

Figure 2. Upward motion (see Step 1 of Section 6.1.3): numerical solution of the optimal control of a
two DOF robotic manipulator. Results for growing values of the prescribed trajectory time T: (a) RMS
torque evolution; (b) cropped and zoomed-in version of (a); (c) RMS power evolution; (d) cropped
and zoomed-in version of (c); (e) required time to compute a solution. Benefits of our invariant cost
functions γ1 and γ2: lower RMS power values; improved solver stability with uninterrupted results
up to T = 4.9 s for γ1 and past T = 10 s for γ2; substantially lower computing times.
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(a) RMS torque evolution for the downward motion
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(b) Zoom-in: RMS torque evolution for the downward motion
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(c) RMS power evolution for the downward motion
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(d) Zoom-in: RMS power evolution for the downward motion
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(e) CPU Time (logarithmic scale) for the downward motion

Figure 3. Downward motion (see Step 1 of Section 6.1.3): numerical solution of the optimal control of a
two DOF robotic manipulator. Results for growing values of the prescribed trajectory time T: (a) RMS
torque evolution; (b) cropped and zoomed-in version of (a); (c) RMS power evolution; (d) cropped
and zoomed-in version of (c); (e) required time to compute a solution. Benefits of our invariant cost
functions γ1 and γ2: lower RMS power values; improved solver stability with uninterrupted results
up to T = 5.7 s for γ1 and up to T = 9.5 s for γ2; substantially lower computing times.

6.2.2. RMS Torque, RMS Power, and CPU Computing Time

According to Figure 2a, which shows the evolution of RMS torques for the upward
motion, lowest torque consumption is achieved with γ3 followed by γ4. However, accord-
ing to Figure 2c, which shows the evolution of RMS power for the upward motion, the
lowest power consumption is achieved with γ1 followed by γ2. The same observations can
be made for the downward motion (see Figure 3).

Then, we have compared computing times tγi between similar running cost functions—
γ1 and γ3 use a torque criterion; γ2 and γ4 use a torque plus velocity criterion—by calcu-
lating the ratios between such times. These ratios are reported in Table 2 and characterize
the performance increase resulting from our formulation in terms of CPU computing time.
In other words, they quantify how the solver was able to determine a solution a number of
times faster with the invariant running cost functions than with the non-invariant ones. We
have also performed our tests on a 2.3 GHz 8-Core Intel Core i9 processor to get additional
computing times (processor-dependent).
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Table 2. NDSolve computing time decrease factor: ratio between comparable running cost functions.
The decrease in computing time resulting from our invariant running cost functions γ1 and γ2

is noticeable.

Motion Upward Upward Downward Downward
Ratio tγ3/tγ1 (Torque) tγ4/tγ2 (Torque and Velocity) tγ3/tγ1 (Torque) tγ4/tγ2 (Torque and Velocity)
Processor i7-8550U i9-9880H i7-8550U i9-9880H i7-8550U i9-9880H i7-8550U i9-9880H

Base Value 4 5 60 55 18 29 56 57
Average 51 73 205 138 99 85 142 146

According to these results, our formulation enables a considerable CPU time decrease.
In particular, let us take the computing times tγ(T) required by our two processors to solve
our optimal control exercise using γ1 and γ2, restrict the prescribed trajectory time window
between 0.4 and 2 s, and plot such values. Figure 4 shows these curves for both the upward
and the downward motion. Note that the values that remain below the solid straight line
correspond to CPU computing times for which tγ(T) < T. Optimal trajectories for which
this is the case take less time to compute than the time T they require to complete. In other
words, for some of these prescribed time T values, not only could real-time optimal control
eventually be considered but also motion replanning.
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(a) CPU computing time for the upward motion
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(b) CPU computing time for the downward motion

Figure 4. CPU computing time required to obtain a solution with γ1 and γ2. Results for two
processors: Intel i7-8550U and Intel i9-9880H on a prescribed trajectory time window comprised
between 0.4 and 2 s. Values that remain below the solid straight line correspond to optimal trajectories
that take less time to compute than they require to complete (tγ(T) < T). Real-time optimal control
or motion replanning could be considered in these cases.

6.2.3. Observed Motion Characteristics

We now compare the results obtained with running cost functions that share simi-
larities in their criteria. We focus on the trajectory positions in order to analyze motion
characteristics. According to Figure 5, the invariant running cost functions γ1 and γ2
stabilize motion by narrowing the overall angular amplitude during the trajectory. This is
valid for either the upward or the downward motion.

For further analysis, consider Figures 6 and 7, which show the curves of optimal torque
and position along trajectories for the upward and downward motion. We have selected
four simulated trajectories for T = 0.7 s, T = 2.4 s, T = 4.9 s, and T = 10 s (upward motion);
T = 0.5 s, T = 1.7 s, T = 5.7 s and T = 9.5 s (downward motion). These values of T corre-
spond to those of Table 1, which are the maximum values at which NDSolve successfully
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determined a solution with the exception of T = 10 s for the upward motion with γ2, which
was selected to improve curve readability.

Note that as T increases, a similar tendency can be observed with each running cost
function. Positions oscillate toward and around the goal. However, as previously shown,
oscillations tend to be narrower with our invariant running cost functions γ1 and γ2
than with their non-invariant counterparts γ3 and γ4. Torques oscillate in a similar fashion
but around zero because torque consumption is being minimized.
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Figure 5. Comparison of positions along optimal trajectories, resulting from invariant running cost
functions (γ1 and γ2) versus non-invariant ones (γ3 and γ4). Functions γ1 and γ3 share a torque
criterion; functions γ2 and γ4 share a torque plus velocity criterion. The invariant running cost
functions stabilize motion by narrowing angular amplitude. (a) Joint 1 positions with γ1 and γ3 for
the upward motion. (b) Joint 2 positions with γ1 and γ3 for the upward motion. (c) Joint 1 positions
with γ2 and γ4 for the upward motion. (d) Joint 2 positions with γ2 and γ4 for the upward motion.
(e) Joint 1 positions with γ1 and γ3 for the downward motion. (f) Joint 2 positions with γ1 and γ3 for
the downward motion. (g) Joint 1 positions with γ2 and γ4 for the downward motion. (h) Joint 2
positions with γ2 and γ4 for the downward motion.
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Figure 6. Numerical solution of the optimal control for an upward motion (see Step 1 of Section 6.1.3).
Optimal torque and position evolution along four simulated trajectories: T = 0.7 s, T = 2.4 s, T = 4.9 s,
and T = 10 s. Trajectory durations correspond to values of T in Table 1, which are the maximum
values at which NDSolve successfully determined a solution with the exception of T = 10 s for γ2.
Higher values of T and narrower motions are achieved with the invariants γ1 and γ2.
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Figure 7. Numerical solution of the optimal control for a downward motion (see Step 1 of Section 6.1.3).
Optimal torque and position evolution along four simulated trajectories: T = 0.5 s, T = 1.7 s, T = 5.7 s,
and T = 9.5 s. Trajectory durations correspond to values of T in Table 1, which are the maximum
values at which NDSolve successfully determined a solution. Higher values of T and narrower
motions are achieved with the invariants γ1 and γ2.

7. Conclusive Remarks

This paper presented a Riemannian formulation of Pontryagin’s maximum principle
for the optimal control of robotic manipulators where an invariant running cost function
was selected under the criteria of torque and energy minimization. The presented optimal
control methodology is an indirect method where the problem becomes that of solving a
first-order system of ODE, which is contravariant in the states and covariant in the co-states.

By regarding the running cost as a function of the configuration parameter and its first
and second time derivatives, Euler–Lagrange equations are applied. This results in a time
evolution equation for the optimal torque, which is a covariant of the second order (see
Proposition 1). These equations feature the Riemann curvature tensor and are addressed to
as the covariant control equations.

Then, by applying Pontryagin’s maximum principle, it is further proved that the
adjoint variables are in fact a first-order representation of the second-order covariant
control equations mentioned above (see Proposition 3). This establishes an equivalence
between the application of the Euler–Lagrange equations and Pontryagin’s maximum
principle for our problem, which is made possible with the choice of our invariant running
cost functions. A physical interpretation is also provided for one of the adjoint variables,
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which turns out to be exactly the required torque to cause motion. This means that further
calculations are unnecessary in order to retrieve this physical quantity, which is needed for
torque control.

Finally, the impact of our Riemannian formulation on a commercial ODE solver
was briefly examined. Since the analyses in this document were enabled by the choice
of invariant running cost functions, controlled motion simulations were conducted on
a robotic manipulator for which four running cost functions were evaluated. Two non-
invariant running cost functions (γ3 and γ4) were compared with our invariant running cost
functions (γ1 and γ2). Then, their effect on the resulting robot motion and on a commercial
ODE solver was examined. From the numerical perspective, our formulation provides
these interesting benefits:

• efficient motions requiring less power (see Figures 2c and 3c);
• faster operation of the ODE solver resulting in shorter computing times (see

Figures 2e and 3e, and Table 2);
• improved stability of the ODE solver with respect to trajectory time T (see Table 1 and

Figures 2, 3, 6 and 7);
• narrower joint motions (see Figure 5).

Additionally, it has come to our attention that some of the obtained optimal trajectories
could be considered for real-time optimal control or even motion replanning (see Figure 4).
This results from the substantial decrease in computing time, which is made possible with
our formulation.

The presented method is currently devoted to compute the optimal positions and
torques along a trajectory on the premise that a tracking controller ensures that the optimal
path is being followed by the robot. However, our method could be enhanced by consid-
ering tracking and output feedback. In future developments, this could enable an online
optimal control strategy.

Our proposal conjugates geometry with principles of minimum force and minimum
energy (as it is recommended in [26]). The result is an efficient and robust way to plan for the
optimal motion of robotic manipulators. As an outlook, we recall that our proposed running
cost function γ2 combines torque and energy policies. In order to preserve homogeneity
in this combination, a scaling factor α had to be used. This number was set to be unitary
for the sake of generality in this work. However, this factor provides a supplementary
DOF to the running cost function. Therefore, we shall analyze the effects of a variable α in
future research.
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