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Abstract—In this paper, we consider a Low Power Wide Area
Network (LPWAN) operating in a licensed-exempt band. The
LoRa network provides long-range, wide-area communications
for a large amount of objects with limited power consumption.
In terms of link budget, nodes that are far from the collector
suffer collisions caused by nodes that are close to the collector
during the data transmissions. Chirp Spread Spectrum (CSS)
modulation is adopted by assigning different Spreading Factors
(SF) to active sensors to help reduce destructive collisions
in LoRa network. In order to improve the energy efficiency
and communication reliability, we propose an application of
multi-agent Q-learning algorithm in the dynamic allocation of
power and SF to the active nodes for uplink communications
in LoRa. The main objective of this paper is to reduce power
consumption of the uplink transmissions and to improve the
network reliability.

Index Terms—LPWAN, LoRa, Internet of Things (IoT),
resource allocation, machine learning, Reinforcement Learning,
multi-agent Q-learning, energy efficiency.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of Machine
Learning (ML) techniques which is of great interest because
of its large number of practical applications in control engi-
neering, multi agent systems and operation research. It is an
efficient and dynamic decision-making tool.

Thanks to the environment-agent interaction scheme in RL,
it enables a system to be controlled in such a way as to
maximize a numerical measure of performance that expresses
a long-term objective [1]. It shows great potential for system
controls in real engineering cases.

In particular, we are interested in this paper in the Q-
learning which is a popular RL algorithm. It adopts off-policy
Temporal-Difference (TD) methods for agents to learn how
to act optimally to control problems. Considering multi-agent
systems in a variety of fields, including robotics, distributed
control, and telecommunications, multi agent Q-learning al-
gorithm gives outstanding performance in decision-making
problems for these complicated scenarios [2]–[5]. Based on
it, we propose in this paper to apply it to the SF and power
allocation problems in LPWAN.

LPWAN is well suited for massive IoT network deploy-
ment as it can provide long-range, wide-area, low-power
consumption communications for thousands of connected
devices. There are different types of low power wide area
communication technologies on the market, i.e unlicensed

LoRa [6]–[8] and Sigfox [9] technologies and licensed NB-
IoT technology [10], [11], etc. In this paper, we focus on
LoRa network.

LoRa technology uses Chirp Spread Spectrum modulation
which allocates spreading factors to each active sensor node
to mitigate destructive collisions in the overall network.
Higher spreading factors can protect the devices from the
interference caused by signals transmitted simultaneously
from devices closer to the collector. To improve network
reliability, we need to assign different spreading factors in
an adaptive way to the active sensors.

In LPWAN, energy efficiency always attracts a lot of
attention. Normally, a single IoT module is expected to serve
for around ten years with very low energy consumption. By
reducing power consumption during each message transmis-
sion for uplink communications in LPWAN, it can improve
the lifetime of IoT devices and offer remarkable financial
benefits. In this paper, we fully consider the energy efficiency
by select distinct transmit power values for each sensor node
for uplink communications to achieve a better power control
solution for LoRa network.

Some relative work has been done by using different
methods. For example, in [12], a power, channel and spread-
ing factor selection algorithm is proposed to avoid near-
far problem and decrease the packet error rate in LoRa
network. A distributed learning approach is introduced for
self-organized LoRa networks in [13]. Inspired by them, we
use multi-agent Q-learning approach to solve the concerned
power and SF allocation problems dynamically.

The rest of the paper is organized as following. An unli-
censed LoRa network model is defined in section II. Then,
we review in Section III the multi-agent Q-learning scheme.
Next, in section IV, multi-agent Q-learning algorithm is
applied to solve the problems of SF selection and power
allocation in LoRa network. In section V, the performance
evaluation in resource allocation with respect to network
reliability and power efficiency is presented. Finally, section
VI concludes the paper.

II. LORA NETWORK MODEL

In this section, we consider a single unlicensed LoRa
network cell. The cell coverage radius is R. Assume the
collector is located in the cell center which is marked as
origin o. Number of N active sensor nodes are randomly



distributed in the given cell. Let |x| denotes the distance
between the active sensor node x and the collector o. The
out-of-cell interference is ignored in our case. Considering
the uplink transmission of LoRa network, each active sensor
has 5 different choices for the transmission power Pt: 2, 5,
8, 11 and 14 dBm [12]. The sensor nodes and the collector
have omnidirectional antennas with 0 dBi of antenna gains.
For the sensor node x, the received power Pr at the collector
is:

Pr(x) = Ptα|x|−βAf , (1)

where α and β are respectively the attenuation factor and
the path-loss exponent that are computed from Okumura-Hata
model. Af is the random fading coefficient with Rayleigh
distribution.

The LoRa network adopts CSS modulation, which is a
spread-spectrum technology [7], [14], [15]. According to
[16], CSS modulation has several key properties, it offers
high robustness and resists the Doppler effect while having
a low latency.

In LoRa network, the active sensors located far away from
the collector suffer the collision caused by sensors that are
closer to the collector. This CSS spreading technique can
protect the cell edge sensor nodes from the nodes in the
proximity of the network collector. It features 6 possible
spreading factors (SF = 7 to 12) to the active sensors ac-
cording to the receiver sensitivity and hence by the threshold
communication ranges. Table I shows the corresponding
SINR threshold ranges according to the values of SF with
the sub-bandwidth equal to 125 kHz. With CSS modulation,
each symbol transmits SF bits, has a time duration T and
occupies a bandwidth B, we have

2SF = T ×B (2)

For the same sub-bandwidth, the high spreading factor
transmits longer time on air which means the communication
distance increases. Concern the data rate Rb (bits/s),

Rb = SF × B

2SF
4

(4 + CR)
(3)

with CR being the code rate. A high spreading factor better
prevents transmission errors, but at the cost of a reduced data
rate. LoRa network uses high spreading factors for the weak
signal or the signal suffering high interference.

TABLE I
SINR THRESHOLD γSF WITH SUB-BANDWIDTH B = 125 KHZ

SF 7 8 9 10 11 12

γSF (dB) −7.5 −10 −12.5 −15 −18 −21

In this paper, our objective is to manage the resource
allocation in a dynamic manner. Transmission power and
SF are allocated to each active sensor node to ensure the

overall network communications. We aim at increasing the
communication reliability for each sensor while keeping the
energy consumption as low as possible. In LoRa network, the
access to the shared medium is managed by Aloha protocol.
The transmitted signals on the same sub-medium interfere
with each other. The collector receives in addition to its
intended attenuated signal.

Assume that Φi denotes the set of interfering nodes. For
an intended signal sent by node x, the interferer y ∈ Φi.
The power of the interference is weighted by a correlation
factor denoted by c(x, y). The expression of the interference
is then,

Ix ≈
∑
y∈Φi

c(x, y)α|y|−βAfPt(y), (4)

where Pt(y) is the transmit power of interferer y. The
inter-correlation factor c(x, y) is calculated in [17]. Table II
presents the c(x, y) values according to different spreading
factors of the transmitter x and the receiver y with the sub-
bandwidth of 125 kHz.

The received SINR for the sensor node x at the given
collector o is calculated as follows,

SINRx =
Ptα |x|−β Af
N0 + Ix

, (5)

with N0 = KTB being the additive thermal noise. K is the
Boltzmann constant, T is the noise temperature and B is the
bandwidth.

III. MULTI-AGENT Q-LEARNING ALGORITHM

Reinforcement Learning has achieved many successes in
decision-making systems. Figure 1 demonstrates the general
RL framework. The environment and the agent can have
interaction and learn from it to make decisions. S is the
set of possible environment states. At time t, observing the
environment, a state s ∈ S is observed and passed to the
agent. Then, according to the policy π, the agent decides to
take action a ∈ A, where A is the set of actions available for
state s. As a is performed, the agent earns a reward r(s, a)
and the environment turns to a new state s′.

TABLE II
THE INTER-CORRELATION FACTOR c(x, y) WITH SUB-BANDWIDTH

B = 125 KHZ [17]

SF 7 8 9 10 11 12

7 0 16.67 18.20 18.62 18.70 18.65

8 24.08 0 19.70 21.27 21.75 21.82

9 27.09 27.09 0 22.71 24.34 24.85

10 30.10 30.10 30.10 0 25.73 27.38

11 33.11 33.11 33.11 33.11 0 28.73

12 36.12 36.12 36.12 36.12 36.12 0



Environment

Agent

State 𝒔 Reward 𝒓(𝒔, 𝒂) Action 𝒂

Policy 𝝅

Fig. 1. General Reinforcement Learning Framework

Since the agent determines a policy π, the choose of action
a in a given state s can be described as π(s) = a. To evaluate
the performance of policy π, the state-action value function
Q(s, a) is introduced as follows:

Q(s, a) = E [Gt|st = s, at = a] , (6)

where Gt is the discounted future cumulative reward,

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γn−trn, (7)

with γ as the discount factor which is a constant and γ ∈
[0, 1].

The objective of reinforcement learning is to find the
best policy π? that maximizes the state-action value function
which can be described as:

π?(s) = arg max
a∈A

Q(s, a). (8)

A. Q-learning Function

Q-learning uses a non-deterministic policy, i.e. a function
mapping each state to a set of actions so that the agent can
choose one among them, while it is based on a sampling
of other policies instead of the current policy alone. The Q-
learning process keeps an estimate and an update of the Q-
function, it can be written as follows:

Q(s, a) = Q(s, a)

+ σ

{
r(s, a) + γmax

a∈A
Q (s′, a′)−Q(s, a)

}
,

(9)

where σ ∈ [0, 1] is a learning rate.

B. Multi-Agent Q-Learning Algorithm

Assume that there are n agents in the system. At a given
time t, action a = {a1, a2, ..., an} is executed by all the
agents with ai ∈ A being the action chosen by the i-th
agent. Observing the environment, a current state s ∈ S and a
total reward r(s,a) are obtained and passed to all the agents.
Based on state s and reward r, each agent updates its own
Q-learning function and chooses a new action ai

′ for next
operation separately. Then, the action a′ = {a′1, a′2, ..., a′n}
is executed. The workflow of multi-agent Q-learning keeps
the same as the single-agent Q-learning algorithm. But the

state and reward information are distributed to all the agents
and then a decision is made by each agent independently.

IV. SF ALLOCATION AND POWER CONTROL WITH
MULTI-AGENT Q-LEARNING ALGORITHM

The framework of multi agent Q-learning is presented in
section III. In this section, we try to solve the problems of SF
allocation and power control in a licensed-exempted LoRa
network with multi-agent Q-learning algorithm. According
to the network model mentioned in section II, for each
active sensor node connected to the collector o, it must be
assigned one SF value among 6 possible spreading factors
[7, 8, 9, 10, 11, 12] and one transmit power value out of 5
achievable transmit power values including [2, 5, 8, 11, 14]
dBm.

Algorithm 1 Multi-agent Q-learning algorithm for SF allo-
cation and Power Control in LoRa Network
Input: Positions of N active sensor nodes
Output: SF and transmit power values for each active sen-

sors
1: Sort N sensor nodes by distance to the collector from

near to far;
Set n = N agents and generate n Q-learning function
Qi(S,A), i ∈ [1, n];
Initialize each Q-learning function Qi(S,A), i ∈ [1, n]
with random values;

2: for episode = 1,M do
3: Set the initial observation state s.
4: for t = 1 : until s is a terminal state do
5: For each agent:

with the probability ε select a random action ai =
(SF, Pt),
otherwise select ai = maxaQi (s, ai);

6: Execute action a = {a1, a2, ..., an} in emulator and
observe reward r and state s′;

7: If s′ is a terminal state, set the value function target
yi to r(s,a);
Otherwise set it to: yi = r(s,a) +
γmaxaQi (s′, ai);

8: Compute the critic parameter update ∆Qi = yi −
Qi(s, ai);

9: Update the critic using the learning rate σ:
Qi(s, ai) = Qi(s, ai) + σ ∗∆Qi;

10: Set the observation state s to s′

11: end for
12: end for
13: return Results

Following the multi-agent Q-learning algorithm, the LoRa
network model is the environment that provides the state s
and reward r information for the agents. We set n = N
agents for the system. Each agent corresponding to an active
sensor node. A single agent here is a Q-learning function
which selects an action for an active node. The action is a



pair of SF and Pt values with probability ε or selects an
action with probability (1− ε) by maximizing the Q value,

ai = arg max
a

Qi (s, ai) .

After the execution of the action ai, the agents obtain the
new state information s → s′ and a reward r. Considering
the network reliability and the power efficiency, the reward
ri for the i-th sensor node is calculated as follows:

ri = δi(t) · ϕ+ δi(t) · (1− ϕ) · Pt max
Pt

. (10)

where ϕ is a design parameter offering a tradeoff between
the network reliability and energy efficiency. Pt is the trans-
mit power for the i-th sensor node. δi(t) ∈ {0, 1} which
indicates whether the i-th sensor has a stable connection to
the collector o or not. With a given SF value SFi and a
transmit power Pt for the i-th sensor node, we can calculate
the SINRi on the collector side for each sensor node. In
table I, the SINR threshold γSF for different SF values is
given in detail. Hence, if SINRi > γSFi

, the i-th node can
successfully send the message to the collector. Otherwise, the
transmission fails.

δi(t) =

{
1 SINRi > γSFi

0 SINRi < γSFi

(11)

The state of the environment after the execution of the
action a is the decimal value corresponding to a binary
number consists of all the δi. For example, if the number
of agents n is equal to 5. There are 25 = 32 states ranging
from 0 to 31. At time t, if {δ1δ2...δ5} = {10110}, then the
state equals 22 which is the decimal value for this binary
number. Obviously, the terminal state is when all the δi = 1.
In case n = 5, the terminal state s = 31.

The total reward for the action a is then calculated as
follows:

r(s,a) =
1

N

N∑
i=1

ri. (12)

Algorithm 1 demonstrates the selection of SF and transmit
power for the active sensors in LoRa with multi-agent Q-
learning algorithm.

V. NUMERICAL RESULTS

We consider a single LoRa network cell with coverage
radius of R = 10 km. Assume that N sensor nodes are
activated simultaneously with random positions. The sensor
nodes and the collector have omnidirectional antennas. Nodes
transmitting in the same frequency band generate additive
interference with power. The power of the additive thermal
noise is N0 = KTB with K = 1.379×10−23 W Hz−1 K−1,
T = 290 K and B = 125 kHz. The system parameters are
shown in detail in Table III.

We assume without loss of generality a Q-learning algo-
rithm with 5 agents. Set the learning rate σ = 0.9. Following
Algorithm 1, we can obtain the expected SF and transmit

TABLE III
NETWORK PARAMETERS

Parameter Value

Carrier frequency 868 MHz
Sub-bandwidth B = 125 kHz
Coverage radius R = 10 km
Transmit power [2, 5, 8, 11, 14] dBm
Spreading factor [7, 8, 9, 10, 11, 12]
Collector height 30 m

Device average height 1 m
Antenna gain 0 dBi

Urban path-loss model α = 10−10.07, β = 3.52

Fig. 2. The distribution of active sensor nodes in a single cell with different
choices of SF and transmit power
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power values for all 5 nodes after the training. Figure 2 shows
the distribution of active nodes for 500 times of simulation
with 5 agents. There are 30 different colors which represent
30 pairs of SF and Pt values. We can notice that the joint
allocated SF and transmission power is made in a dynamic
way depending on the instantaneous network configuration.
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Fig. 4. The Cumulative distribution function of the Data Rate

To make a comparison with our multi-agent Q-learning
algorithm, we introduce a static allocation algorithm in which
the whole cell is divided into 30 rings. Within each ring, a
static SF and Pt is attributed to the active nodes depending
on its location. Low SF and low power are attributed to the
nodes in the proximity of the collector.

Figure 3 illustrates the Cumulative Distribution Function
(CDF) of the SINR. Multi-agent Q-learning algorithm out-
performs the static one which means the former has higher
reliability then the latter. Meanwhile, it also achieves higher
data rate during the transmission as shown in Figure 4.

Figure 5 presents the comparison of the CDF of transmit
power for all sensor nodes based on two different algorithms.
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Fig. 5. The Cumulative distribution function of the Transmit Power

Our multi-agent Q-learning algorithm shows large improve-
ments in the energy efficiency. Using the multi-agent Q-
learning algorithm, the average value of the transmit power
for all active sensors is equal to 4.81 dBm while for the static
algorithm it is 8.66 dBm.

VI. CONCLUSION

In this paper, we have considered the unlicensed LPWAN
LoRa network with random Aloha access to the network. We
have proposed a multi-agent Q-learning algorithm to jointly
allocate a SF and power in the uplink of LoRa network. Each
agent has interactions with the environment and based on that,
it updates dynamically the policy. We have also evaluated its
reliability and energy efficiency performance and compared
it with a static allocation algorithm. The simulation results
show the advantages of our Q-learning algorithm with respect
to SINR, data rate and transmit power.
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