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a b s t r a c t

The time-harmonic propagation of elastic waves in layered media is simulated numerically by means of a
modal-based Partition of Unity Finite Element Method (PUFEM). Instead of using the standard plane
waves or the Bessel solutions of the Helmholtz equation to design the discretization basis, the proposed
modal-based PUFEM explicitly uses the tensor-product expressions of the eigenmodes (the so-called Love
and interior modes) of a spectral elastic transverse problem, which fulfil the coupling conditions among
layers. This modal-based PUFEM approach does not introduce quadrature errors since the coefficients of
the discrete matrices are computed in closed-form. A preliminary analysis of the high condition number
suffered by the proposed method is also analyzed in terms of the mesh size and the number of eigen-
modes involved in the discretization. The numerical methodology is validated through a number of test
scenarios, where the reliability of the proposed PUFEM method is discussed by considering different
modal basis and source terms. Finally, some indicators are introduced to select a convenient discrete
PUFEM basis taking into account the observability of cracks located on a coupling boundary between
two adjacent layers.
� 2022 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of engineering tools to find cracks on the
interfaces between different layers materials is fundamental to
the early detection of defects in some widely used mechanical
structures in industry (for example, pipes with a coating [32], mul-
tilayer panels in aeronautic shields [9], or in structures involving
multiple layers of functionally graded materials [12,11]). Currently,
ultrasonic testing [5] and Foucault currents [1] propagating
transversally through the coupling interfaces are common inspec-
tion techniques. In both cases, their effectiveness and practical
application is limited by the fact that the excitation source must
be placed close to the crack location for its correct detection. In
order to overcome that limitation, the use of Love waves to find
a defect far from the source has been recently analysed (see, for
instance, [14,31,19], and references therein). In this framework,
Love modes are surface waves associated with the coupling inter-
face, whose motion is transverse to the direction of wave propaga-
tion (see [28] for a detailed description).

To achieve high crack detection rates by using Love waves (see
[10]), it is crucial the a priori knowledge of a high accurate predic-
tion of the mechanical behaviour of the problem without a crack.
However, typical numerical approximations based on finite differ-
ences or finite element methods suffer from the numerical pollu-
tion effects at high frequency regime [17], where despite the grid
or the mesh could be refined enough to capture the wave-like
oscillations of the model solution, the accumulation of phase-lag
errors introduce spurious deviations on the approximated numer-
ical results [18]. Other high-order techniques such as high-order or
spectral finite element methods [4,13] could mitigate these
numerical pollution phenomena but they still involve a high com-
putational cost since the mesh used in the discretization problem
should be conformal with respect to the internal coupling inter-
faces of the multilayered media [29].

The present work is focused on the numerical approximation of
the solution of a non-destructive testing problem involving a bilay-
ered medium without the presence of a crack. The proposed
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numerical method deals with both challenging drawbacks
described above. For this purpose, Love and interior modes (com-
puted in closed-form from a simplified auxiliary transverse prob-
lem) are used in combination with a partition of unity finite
element method (PUFEM) discretization. This approach avoids
any undesirable numerical pollution effects [16] and simultane-
ously does not require the use of refined meshes to obtain accurate
numerical results even in the case of considering thin layers.

The family of PUFEM methods was introduced in [24], where
the standard polynomial-based discretization of a classical finite
element method (FEM), is used as a partition of unity. In that man-
ner, instead of computing a polynomial approximation of the exact
solution, every local polynomial basis is multiplied by an exact
solution of a target model leading to an enriched discrete space
where some exact local solutions of the model are naturally
included. Typically, in the case of the two-dimensional Helmholtz
model stated in a homogeneous medium (with a constant
wavenumber), this enrichment procedure involves the multiplica-
tion of piecewise polynomials functions (defined on a triangular
mesh) by plane waves [25,27,20], radial solutions (written in terms
of Bessel functions) [25], or two-dimensional eigenfunctions [3].
Further developments on the use of the PUFEM technique applied
to heterogeneous media have been analysed recently (see [8,23]).
However, those approaches use conformal meshes with respect
to the position of the coupling interfaces, and since the enriched
functions used in the discretization are only local solutions within
a particular layer of the model, special treatments are required to
impose the coupling conditions among layers.

For the application of the proposed approach, the compatibil-
ity between the system of spatial coordinates used to write the
mechanical model (in this case, the Helmholtz equation) and the
mathematical description of the coupling boundaries of the
layered material plays a key role. More precisely, it is assumed
that: (H1) the global governing partial differential equation
(holding in the entire computational domain) involves some
piecewise (constant per layer) coefficients and (H2) this equation
admits a tensorial representation such that the normal and tan-
gential spatial coordinates with respect to the coupling bound-
aries can be identified. For instance, such assumptions are
usually fulfil in isolation sandwich panels utilized in building
acoustics (where a Cartesian system of coordinates is used and
the coupling boundaries are planar) or in pipelines with coatings
(where cylindrical coordinates are applied to be compatible with
the curved coating shape).

Thanks to both assumptions (H1)-(H2) written above, the
enriched modal-based PUFEM discretization can be designed as
tensor products by using a splitting of eigenmodes derived from
an auxiliary spectral problem in the normal direction and a stan-
dard piecewise polynomial basis acting on the tangential coordi-
nates. For the sake of simplicity in the exposition, this work is
focused on a Cartesian system of spatial coordinates in a two-
dimensional setting, where a bilayered material with planar cou-
pling boundaries is studied.

The outline of this manuscript is as follows: the model problem
and its variational formulation is presented in Section 2. In Sec-
tion 3, the computation of Loves and interior modes is described
in a detailed and pedagogical manner from an auxiliary spectral
problem. The description of the modal-based PUFEM approach,
its associated discrete problem, and its matrix description is
included Section 4. Additionally, an analysis of the condition num-
ber of the PUFEM stiffness matrix is included. Section 5 includes a
wide variety of numerical tests in order to illustrate the numerical
behaviour of the proposed modal-based PUFEM method. Finally, a
criterion to identify a convenient combination of Love and interior
modes in the PUFEM basis is described in Section 6 and some con-
clusions are discussed in Section 7.
2

2. Model problem

Throughout this work, a bilayered elastic material domain will
be considered, where an excitation will be imposed to polarize
both layers transversally. So, the computational domain X � R2 is
split in two layers, denoted respectively by Xþ and X�, where dif-
ferent physical properties are settled (see an schematic view in
Fig. 1). More precisely, the transverse propagation speed c is
defined as a piecewise-constant function given by

c xð Þ ¼ cþ if x 2 Xþ;

c� if x 2 X�;

�
ð1Þ

where it is assumed 0 < c� < cþ. In addition, the exterior boundary
of the computational domain X is split in four disjoint parts,
@X ¼ Ce [ Cs [ Cþ [ C�.

Under the assumptions of small perturbations of the displace-
ment field and the stress tensor, the mechanical vibrations of bilay-
ered structures can be modelled by a linear elastic model, where
only the transverse component of the displacement field is
involved. Taking into account a frequency domain model, i.e., if
the external forces are harmonic in time with frequency x > 0,
the time-harmonic problem is stated as follows:

Find the displacement field u : X ! C such that it holds

�x2u� div c2ru
� � ¼ f in Xþ [X�; ð2Þ
c2

@u
@m

¼ g on Cþ [ C�; ð3Þ
� ixbuþ c

@u
@m

¼ r on Ce [ Cs; ð4Þ
ujX� ¼ ujXþ on CI; ð5Þ

c2�
@u
@m

����
X�

¼ c2þ
@u
@m

����
Xþ

on CI; ð6Þ

where f ; g, and r are respectively volumetric and surface external
loads.

Here m denotes the unit normal vector outwards to X� and
CI ¼ Xþ \X� is the coupling boundary. It is straightforward to
derive the variational formulation of this frequency-domain
problem:
For given x > 0, find u 2 H1 Xð Þ such that

Ab u;/ð Þ �x2
Z
X
u�/dx ¼ L /ð Þ ð7Þ

for all / 2 H1 Xð Þ, with

Ab u;/ð Þ ¼ RX c2ru � r�/dx� ixb
R
Ce[Cs

c u�/dr;
L /ð Þ ¼ RX f �/dxþ RCþ[C� g

�/drþ RCe[Cs
c r�/dr:

All variational terms in this weak problem are well-posed assuming

that f 2 L2 Xð Þ, and the boundary loads r 2 H�1
2 Ce [ Csð Þ and

g 2 H�1
2 Cþ [ C�ð Þ.

The main goal of the present work is the description of a modal-
based PUFEM method to solve the variational problem (7) in a
bilayered setting. With this purpose, a basis consisting in eigen-
modes of an auxiliary spectral problem will be computed in the
sections below.

3. Spectral characterization of the auxiliary problem

As we announced in the introduction, the key ingredient on the
modal-based PUFEM discretization consists in the computation of
closed-form expressions for the eigenvalues and eigenfunctions
of an auxiliary problem involving the same partial differential
equations and coupling conditions introduced in the target prob-
lem (2)–(6), but possibly with different boundary conditions. In
that manner, the use of an eigenmode expansion for the solution



Fig. 1. Computational domain of the bilayered elastic material described in terms of
the Cartesian coordinates x1; x2ð Þ.
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of target problem (2)–(6) could be challenging an potentially it
would exhibit a poor asymptotic convergence with respect to the
number of modes used (since the target problem (2)–(6) could
not be associated with a self-adjoint compact resolvent operator).
However, since the auxiliary problem will be stated in such a
way that its eigenmodes form a complete functional L2-basis, they
will provide a suitable functional setting to be combined locally
with a partition of unity method.

In what follows, the spectral characterization of this new global
problem is analysed, where the Robin boundary conditions with
b – 0 in problem (2)–(6) are replaced for simpler Neumann bound-
ary conditions (with b ¼ 0):

Find the eigenpairs w; kð Þ;w– 0, such that
� kw� div c2rw
� � ¼ 0 in X; ð8Þ

@w
@m

¼ 0 on @X; ð9Þ

wjX� ¼ wjXþ on CI; ð10Þ

c2�
@w
@m

����
X�

¼ c2þ
@w
@m

����
Xþ

on CI: ð11Þ

In comparison with the original model problem (2)–(6), this
auxiliary problem (8)–(11) have Neumann boundary conditions
on @X and hence, the linear resolvent operator associated to this
spectral problem is self-adjoint and compact. Hence, a standard
spectral analysis shows there is an infinity numerable set of posi-
tive eigenvalues kn;j

� �
n;j2N (without any accumulation point),

which are associated with the angular resonance frequencies
xn;j ¼ i

ffiffiffiffiffiffiffi
kn;j

p
(see [22] for further details).

Despite the present modal-based PUFEM discretization is appli-
cable to arbitrary computational domains, which could be
described by a Cartesian product in a general local orthogonal sys-
tem of coordinates (such as polar or more general convex coordi-
nates), for simplicity on its description, a typical Cartesian
system of coordinates will be used to introduce the computational
domain. More precisely, throughout this work, a bi-layered compu-
tational domain is considered. More precisely, the layered media is
given by X ¼ �a;Hð Þ � 0; Lð Þ with a; L; H > 0, and the upper and
lower layers are Xþ ¼ 0;Hð Þ � 0; Lð Þ and Xþ ¼ �a;0ð Þ � 0; Lð Þ,
respectively (see Fig. 1).

Under this assumption, the analytic computation of these
eigenpairs can be performed by a classical separation of variables
procedure. Then, if we assume that the non-null eigenfunctions
are given by w x1; x2ð Þ ¼ q x1ð Þp x2ð Þ, since the profile of the speed
of sound c that we are considering is piecewise constant, the Helm-
3

holtz equation in Xþ ¼ 0; Lð Þ � 0;Hð Þ can be rewritten as
�c2þq

00p� c2þp
00q ¼ kqp.

Straightforward computations show that there exists a
sequence of eigenpairs ln; qn

� �� �
n2N (normalized with respect

the L2 0; Lð Þ norm) defined by

q0 x1ð Þ ¼
ffiffiffi
1
L

r
; l0 ¼ 0; ð12Þ

qn x1ð Þ ¼
ffiffiffi
2
L

r
cos

ffiffiffiffiffiffi
ln

p
x1

� �
; ln ¼ np

L

	 
2
; n 2 N; n – 0: ð13Þ

For each eigenpair ln; qn

� �
, the x2-dependent factor p ¼ pn must be

computed. If the differential equation satisfied by pn is completed
with the homogeneous Neumann boundary conditions at x2 ¼ �a
and x2 ¼ H;pn satisfies

� c2p0
n

� �0 � kn � c2ln

� �
pn ¼ 0 in �a;0ð Þ [ 0;Hð Þ; ð14Þ

p0
n �að Þ ¼ p0

n Hð Þ ¼ 0; ð15Þ

pn 0þ� � ¼ pn 0�ð Þ; ð16Þ

c2þp
0
n 0þ� � ¼ c2�p

0
n 0�ð Þ: ð17Þ

For each fixed value of n 2 N, there exist a sequence of eigen-
pairs kn;j; pn;j

� �� �
j2N which are solution of the spectral differential

problem (14)–(17). To describe them, two different cases should
be considered: Love and interior modes.

Remark 1. The proposed modal-based PUFEM approach requires
the closed-form expressions of those Love and interior modes.
Hypothesis (H1)-(H2) guarantee this explicit knowledge on the
transverse modes, which is fulfil for multilayer structures with
coupling planar boundaries (discussed in detail in this work), but
also in cylindrical layers, or spherical coating materials, or in any
other geometrical configuration associated with local-orthogonal
system of coordinates.
3.1. Love modes

This first case corresponds to eigenmodes which can be under-
stood as interface waves, the so-called Love waves, which satisfy
lnc

2
� < kn;j < lnc

2
þ. In this case, the solutions of Eq. (14), can be

written

pn;j x2ð Þ ¼

C1 cos Kn;j
� x2 þ að Þ

	 

þ C2 sin Kn;j

� x2 þ að Þ
	 


if x2 2 �a;0ð Þ;
D1 cosh Kn;j

þ x2 � Hð Þ
	 


þ D2 sinh Kn;j
þ x2 � Hð Þ

	 

if x2 2 0;H½ Þ;

8>>>>>>><>>>>>>>:
being C1;C2;D1, and D2 constants to be determined and where the
positive wave numbers in each subdomain are given by

Kn;j
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

nn;j
c�

� �2

� 1

 !vuut ; Kn;j
þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1� nn;j

cþ

� �2
 !vuut ; ð18Þ

with nn;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn;j=ln

p
and variables nn;j 2 c�; cþð Þ.

Taking into account boundary and interface conditions, (15)–
(17), it follows that the eigenfunctions pn;j (normalized to satisfy
pn;j 0ð Þ ¼ 1) are given by

pn;j x2ð Þ ¼
cos Kn;j

� x2það Þð Þ
cos Kn;j

� að Þ if x2 2 �a;0ð Þ;
cosh Kn;j

þ x2�Hð Þð Þ
cosh Kn;j

þ Hð Þ if x2 2 0;H½ Þ:

8>><>>: ð19Þ
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3.2. Interior modes

The second type of eigenmodes are the interior modes. They
correspond to those eigenmodes whose associated eigenvalue sat-
isfies kn;j > lnc

2
þ. Having into account this condition, the solutions

of Eq. (14) for this case can be written as follows:

pn;j x2ð Þ ¼

eC1 cos eKn;j
� x2 þ að Þ

	 

þ eC2 sin eKn;j

� x2 þ að Þ
	 


if x2 2 �a; 0ð Þ;eD1 cos eKn;j
þ x2 � Hð Þ

	 

þ eD2 sin eKn;j

þ x2 � Hð Þ
	 


if x2 2 0;H½ Þ;

8>>>>><>>>>>:
being eC1; eC2; eD1, and eD2 constants to be determined and where the
positive wave numbers in each subdomain are given by

eKn;j
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

fn;j
c�

� �2

� 1

 !vuut ; eKn;j
þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

fn;j
cþ

� �2

� 1

 !vuut : ð20Þ

In the expressions written above fn;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn;j=ln

p
and hence

fn;j 2 cþ;þ1ð Þ.
Taking into account boundary and interface conditions, (15)–

(17), it follows that, in this case, the eigenfunctions pn;j (normalized
to satisfy pn;j 0ð Þ ¼ 1) are given by

pn;j x2ð Þ ¼

cos eKn;j� x2það Þ
� �
cos eKn;j� a
� � if x2 2 �a; 0½ �;

cos eKn;j
þ x2�Hð Þ

� �
cos eKn;j

þ H
� � if x2 2 0;H½ �:

8>>><>>>: ð21Þ

Fig. 2 illustrates two different kind of eigenmodes, a Love mode
(left plot) and an interior mode (right plot) with respect to the x2-
axis through the computational domain X (see Fig. 1). The speed of
sound has been settled to c� ¼ 1=2 in X� and cþ ¼ 1 in Xþ. In this
example, the geometrical dimensions of the computational domain
are given by L ¼ 1; a ¼ 0:2 and H ¼ 0:8. The Love eigenmode wn;j

(with n ¼ 15 and j ¼ 5) has an oscillatory behaviour in �a;0ð Þ
and decays exponentially in 0;Hð Þ, as it can be observed in the left
plot. The right plot illustrates the interior eigenmode with n ¼ 15
and j ¼ 5. It has an oscillatory behaviour in the whole domain,
although the oscillation changes when the wave crosses the inter-
face at x2 ¼ 0.

To distinguish the eigenpairs kn;j;wn;j
� �� �

n;j2N which correspond

to interior modes from those ones which are associated with Love
modes, for each index n 2 N, which fixes the mode qn with the x1-
dependency, the corresponding indexes j 2 N are split in two dis-
joint sorted subsets: thosewn;j with j 2 In � N are considered inte-
rior modes whereas if j 2 Ln � N then they are Love modes. The
Fig. 2. Love mode pn;j from Eq. (19) (left) and interior mode pn:j from Eq. (21) (right) plotte
the Love mode and the oscillatory behaviour of the interior mode in 0;Hð Þ, being H ¼ 0

4

ordering of subsets Ln and In are given by the natural ascending
order with respect to the magnitude of their associated eigenval-
ues kn;j.

Remark 2. Despite the spectral problems with b ¼ 0 and b > 0
share similar variational formulations, the change of nature on the
boundary condition type (from Robin to Neumann boundary
condition on Ce [ Cs) implies that the eigenfunctions of the
auxiliary spectral problem (8)–(11) are not eigenfunctions of the
spectral problem associated with the target problem (2)–(6).
Moreover, even in the case of constant functions, it is straightfor-
ward to show that the spectral problem associated with (2)–(6)
for b > 0 does not admit eigenfunctions of type w x1; x2ð Þ ¼ p x2ð Þ,
since the non-null constant functions do not satisfy the Robin
condition (4).
4. Modal-based PUFEM method

The main idea of the proposed PUFEM methodology consists in
the use of the information of the eigenmodes computed from an
auxiliary spectral problem to be combined with a standard piece-
wise polynomial finite element discretization. Typically, any
PUFEM discretization applied to a two-dimensional problem
would involve a triangular or quadrilateral mesh of the computa-
tional domain. However, due to the tensor product representation
and the assumptions (H1)-(H2) required to the computational
domain (tangent to the coupling interface), the partition of unity
can be settled only in one spatial coordinate direction, reducing
the number of degrees of freedom used in the discretization and
simultaneously keeping the information of the coupling phenom-
ena of the layered material, which is already included in the com-
putation of the eigenmodes.

4.1. Discrete space

Before the detailed description of the modal-based PUFEM dis-
crete space, a preliminary analysis must be performed on the
eigenmodes computed in Section 3. Firstly, those redundant eigen-
modes which belong to the polynomial discrete finite element
space should be removed from the PUFEM modal basis. In the par-
ticular case analysed in Section 3, q0 is a constant function, so it
belongs to the standard piecewise linear polynomial finite element
space in the x1-coordinate. Its inclusion in the PUFEM discrete
space does not add any new feature to the classical discrete FEM
approximation, so it will be neglected from the discrete space.

Regarding the rest of eigenfunctions (n > 0), if expressions
qn x1ð Þ were used directly to define the enrichment of the PUFEM
discrete space, since the eigenmodes wn;j satisfy homogeneous
d with respect to x2, for n ¼ 15 and j ¼ 5. It can be observed the exponential decay of
:8.
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Neumann boundary conditions on Ce [ Cs, a lack of convergence
will arise around the boundaries where the Robin conditions are
considered in the target problem (2)–(6). To avoid this drawback,
qn is rewritten in terms of complex exponential of different sign,

qn x1ð Þ ¼
ffiffiffi
2
L

r
1
2
qþ
n x1ð Þ þ 1

2
q�
n x1ð Þ

� �
; n 2 N; n – 0;

where qþ
n x1ð Þ ¼ exp i

ffiffiffiffiffiffiln
p

x1
� �

and q�
n x1ð Þ ¼ exp �i

ffiffiffiffiffiffiln
p

x1
� �

. Taking
into account this new rewriting of the modes qn using complex
exponential expressions, if both functions qþ

n and q�
n are involved

separately in the PUFEM discrete basis, it is guaranteed that any
boundary condition on Ce [ Cs (located at x1 ¼ 0 and x1 ¼ L) could
be satisfied by a linear combination of type C0qþ

n þ C1q�
n with ade-

quate constants C0 and C1.
Obviously, as it has been already discussed in the section above,

for each n 2 N, the eigenmodes wn;j; j 2 In, associated with the
interior modes are infinite (but countable) and for discretization
purposes, this set of modes In must be truncated only considering
a finite number of eigenmodes with the smallest magnitude. The
truncated finite set of indexes for the interior modes will be
denoted by ~In � In, being Jn the number of interior modes used
in the discretization. The criterion to truncate the infinite sequence
of interior modes corresponds to keep in the discretization only
those interior eigenvalues kn;j which satisfy

c2þln 6 kn;j 6 c20ln for n ¼ 0; . . . ;N; ð22Þ
where c0 is a truncation parameter, which upper limits the values of
the interior modes kn;j used in the discrete space. In the case of the
eigenpairs associated with the Love modes, its dispersion equation
only admits a finite number of solutions and so, for a fixed value
n 2 N, all the Love eigenmodes are considered in the discretization.
The number of Love eigenmodes included in the subset Ln will be
denoted by Ln. Using this notation, if kn;j is an eigenvalue of the aux-
iliary spectral problem and its corresponding eigenmode is used in
the PUFEM discretization, then there exists a k-th family of
eigenmodes such that the pair of indexes n; jð Þ 2 J N ¼ kf g�f
Lk [ ~Ik

� �gNk¼1, or equivalently

n 2 1;2; . . . ;Nf g and j 2 1; . . . ; Ln|fflfflfflfflffl{zfflfflfflfflffl}
j2Ln

; Ln þ 1; . . . ; Ln þ Jn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j2I

�
n

8>><>>:
9>>=>>;: ð23Þ

To describe precisely the proposed modal-based PUFEM
method, a one-dimensional finite element mesh must be intro-
duced. For simplicity, an uniform mesh of size h will be used
throughout the rest of the present work, this is, a mesh withM ele-
ments and whose nodes are given by ym ¼ hm : m ¼ 0; . . . ;Mf g �
0; L½ �. Clearly, such mesh has M þ 1 nodes and a mesh size
h ¼ L=M. In addition, the partition of unity consists in the local
polynomial basis umf gMm¼0, which is the standard Lagrange P1

(piecewise linear) finite element basis, defined by the nodal
relation um ylð Þ ¼ dlm, where dlm is the Kronecker’s delta. Hence,
the discrete modal-based PUFEM space Xh is defined by the span
of a tensor product basis as follows:

Xh ¼ umq
þ
n

� �� pn;j; umq
�
n

� �� pn;j; m ¼ 0; . . . ;M; n; jð Þ 2 J N� �� �
;

ð24Þ
where recall that umq

	
n

� �� pn;j

� �
x1; x2ð Þ ¼ um x1ð Þq	

n x1ð Þpn;j x2ð Þ and

the ordering of indexes n; jð Þ in the subsets Lk and ~I k are given
by the natural ascending order with respect to the magnitude of
their associated eigenvalues kn;j.

From the definition of Xh and since umf gMm¼0 is a partition of

unity of the interval 0; L½ �, i.e.,PM
m¼0um x1ð Þ ¼ 1, it is clearly deduced

that
5

wn;j ¼
ffiffiffiffiffiffi
1
2L

r XM
m¼0

umq
þ
n þumq

�
n

� �� pn;j 2 Xh;

with n; jð Þ 2 J N . hence, the proposed discretization inherits poten-
tially the spectral convergence of the modal basis approximations
(see Section 5 for the illustration of the numerical behaviour of the
proposed method). Simultaneously, due to the use of a partition of
unity, the functions used for the enrichment in the discrete space
has not to satisfy all the boundary conditions of the source problem,
what increases the flexibility of choice for the modal basis. In addi-
tion, taking into account to the compact support of the finite element
basis umf gMm¼0, thematrixof thediscrete problemwill be sparse,what
decreases the computational storage requirements for a typical
modal discretization which involves full discrete matrices.

Since the modal-based PUFEM enrichment is flexible enough to
select only a part of the spectral basis, the impact in the accuracy of
considering only Love modes in the discrete space has been anal-
ysed in the numerical results shown in Section 5. In this case, the
discrete space is defined by

XL
h ¼ umq

þ
n

� �� pn;j; umq
�
n

� �� pn;j; m ¼ 0; . . . ;M; n; jð Þ 2 J N� �� �
:

ð25Þ
The numerical features of the proposed modal-based PUFEM dis-
cretization with these two discrete spaces are described in detail
in the following two sections.

Remark 3. The proposed modal-based PUFEM approach and
subsequently, the associated discrete space described above can
be straightforwardly to the three-dimensional configurations. In
that case, the tensor products used in the definition of the discrete
space Xh would involve the transverse modes (depending on two
spatial variables on a tangent plane parallel to the coupling
interfaces of the multilayer material) and the finite element basis

um

� �M
m¼0 would be defined on a two-dimensional mesh on the

same tangent plane.
4.2. Matrix description of the discrete problem

To write the matrix description of the variational problem using
the discrete space Xh (and analogously XL

h ), each term of the vari-
ational formulation associated with the sesquilinear form Ab, the

L2-inner product, the source, and the boundary data contributions
(see (7)) are computed for unknown and test functions belonging
to the discrete space. Hence, the discrete variational formulation
can be stated as follows: For a fixed frequency x > 0, find
uh 2 Xh such that

Ab uh; vhð Þ �x2 uh;vhiL2 Xð Þ ¼ ‘ vhð Þ for all vh 2 Xh:
D

ð26Þ

Clearly, any function uh 2 Xh is determined by their respective dis-
crete vector

u
!

h ¼ uþ
mnj;u

�
mnj

	 

j2Ln[I

�
n

� �M

m¼0

 !N

n¼1

¼ uþ
011;u

�
011;u

þ
012;u

�
012; . . . ;u

þ
01L1þJ1

;u�
01L1þJ1

; . . . ;
	
uþ
0NLNþJN

;u�
0NLNþJN

;uþ
111;u

�
111; . . . ;u

þ
MNLNþJN

;u�
MNLNþJN



; ð27Þ

and so the vector coefficients define the discrete function, this is,

uh ¼
XM
m¼0

XN
n¼1

XLnþJn

j¼1

uþ
mnj umq

þ
n

� �� pn;j þ u�
mnj umq

�
n

� �� pn;j

	 

: ð28Þ
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The coefficient ordering in (27) has been chosen to reduce as much
as possible the bandwidth of the sparse matrices involved in the
discretization. In fact, since the degrees of freedom related to the
same finite element basis um are stored consecutively, it is straight-
forward to show that due to the compact support of the one-
dimensional finite element basis, the bandwidth of the matrix
description is given by 6 max

16n6N
Ln þ Jnð Þ.

Taking into account this basis representation in Xh, the discrete
variational formulation (26) admits the matrix description

�x2M u!h � ixbC u!h þK u!h ¼ b
!

h; ð29Þ
where the coefficients of the matrices M;C, and K (with respect to
the coordinates u	

mnj induced by the basis of Xh) are given by the
expressions written below. Taking into account the expression of
the sesquilinear form (7) and the discrete problem (26), the mass
matrix M is defined by

M½ �	

mnj; lki ¼

Z
X
umq

	
n

� �� pn;j ulq


k

� �� pk;i dx

¼
Z L

0
umulq

	
n q



k dx1

� � Z H

�a
pn;jpk;idx2

� �
;

the damping matrix C is given by

C½ �	

mnj; lki ¼

R
Ce[Cs

c umq
	
n

� �� pn;j ulq


k

� �� pk;i dr

¼ umulq
	
n q



k

� ���
x1¼0 þ umulq

	
n q



k

� ���
x1¼L

	 
 R H
�a pn;jpk;idx2

	 

;

and the stiffness matrix K is defined by

K½ �	

mnj; lki ¼

R
X c2

R
X r umq

	
n

� �� pn;j

� � � r ulq


k

� �� pk;i

	 

dx

¼ R L
0 umq

	
n

� �0 q

kul

� �0dx1	 
 R H
�a pn;jpk;idx2

	 

þ R L

0 umq
	
n q



kuldx1

	 
 R H
�a p

0
n;jp

0
k;i dx2

	 

;

for all 0 6 m; l 6 M and m; jð Þ; k; ið Þ 2 J N . It should be noted that all
the integrals stated below have been computed using one-
dimensional exact integration with closed form integral formulas
(without requiring the use of quadrature formulas). Since the
source and boundary terms, functions f ; g, and r have been approx-
imated by high-order polynomials (in the case of the source term,
such interpolation has been performed assuming a tensor product
expression), then the same exact quadrature procedure has been

also applied to the right-hand side term b
!

h. Consequently, the
right-hand side in the linear system (29) is given by

b
!

h

h i	
mnj

¼ RX f umq	
n

� �� pn;j dxþ RCþ[C� g umq	
n

� �� pn;j dr

þ RCe[Cs
c r umq	

n

� �� pn;j dr

¼ R L
0 f 1umq

	
n dx1

	 
 R H
�a f 2pn;j dx2

	 

þ pn;j �að Þ R L

0 gjx2¼�aumq
	
n dx1

þpn;j Hð Þ R L
0 gjx2¼Humq

	
n dx1 þ umq

	
n

� ���
x1¼0

R H
�a crjx1¼0pn;j dx2

þ umq
	
n

� ���
x1¼L

R H
�a crjx1¼Lpn;j dx2;

for all 0 6 m 6 M and m; jð Þ 2 J N . Obviously, from the symmetric
character of the L2-inner product and the sesquilinear form Ab for
b ¼ 0, both matrices M and K are hermitian. A direct inspection
on the coefficients of the damping matrix C also reveals it is
hermitian.

4.3. Analysis of the condition number

It is well known that the enriched methods and, in particular,
those ones which are based on a partition of unity and plane waves
suffer from a poor conditioning (see [26,4] for a detailed descrip-
6

tion of effects of the conditioning on the PUFEM numerical results).
The proposed modal-based partition of unity method also shares
this kind of conditioning drawbacks even if the PUFEM discretiza-
tion is restricted to a one-dimensional discretization in the x1-axis.

To check the origin of these conditioning issues, the condition
number j Mð Þ of the mass matrix M will be analysed in a simpli-
fied case, where it has been considered the pure Neumann problem
(with b ¼ 0) for a one-layer material (i.e. cþ ¼ c�) in the target
problem (2)–(6). Similar arguments could be also applied to the
stiffness and damping matrix K and C in the linear system (29).
To highlight the different order of magnitude of conditioning in
the proposed modal-based PUFEM method, it will be compared
with those condition numbers coming from an standard finite ele-
ment discretization.

First, notice that the condition number of the mass matrix is not
an issue in a standard piecewise linear finite element discretization
(in one-dimension with a uniform mesh). In this case, for the finite
element mass matrix, its condition number is upper bounded inde-
pendently of the mesh size h, this is, j Mð Þ ¼ O 1ð Þ (see [2] for fur-
ther details). In what follows, it will be checked that the condition
number of the modal-based PUFEM mass matrix increases when
the number of eigenmodes is enlarged and simultaneously a
refined finite element mesh is used in the partition of unity). In

fact, it will be shown that j Mð Þ ¼ O h�2
	 


.

Firstly, in the simple case of b ¼ 0 and c� ¼ cþ, the modal basis
solution of the spectral problem is given by wn;j ¼ qn � pj, where
recall that qn;n 2 N;n– 0 are defined by (13) and pj; j 2 N are
given as follows:

p0 x2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

aþ H

r
; pj x2ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

aþ H

r
cos

jpx2
aþ H

� �
; j 2 N; j – 0:

Notice that pj

� �
j2N is an orthonormal Hilbert basis in L2 �a;Hð Þ. Fol-

lowing an analogous strategy to that one used to obtain (24), the
discretization space Xh is defined by

Xh ¼ umq
þ
n

� �� pj; umq
�
n

� �� pj; m ¼ 0; . . . ;M;
��

n; j ¼ 0; . . . ;N; n – 0gi; ð30Þ
where the Hilbert basis has been truncated to the first N eigenval-
ues. Hence, the complex-valued mass matrix M of size
2N N þ 1ð Þ M þ 1ð Þ � 2N N þ 1ð Þ M þ 1ð Þ inherits the tensor product
description used in Xh, and after a reordering (permutation of rows
and columns), it can be written as a Kronecker product of matrices
M ¼ A �B (where the size of A is 2 M þ 1ð ÞN � 2 M þ 1ð ÞN and the
size of B is N þ 1ð Þ � N þ 1ð Þ) being

A½ �	

mn; lk ¼

Z L

0
umulq

	
n q



k dx1; for 0 6 m; l 6 M; 1 6 n;k 6 N; ð31Þ

and

B½ �i;j ¼
Z H

�a
pjpi dx2 for 0 6 i; j 6 N:

Trivially, from the orthogonality of the basis pj

� �
j2N, it is obtained

that B is the identity matrix I . Hence, in the simple case considered
here, M ¼ A � I . Classical linear algebra results show that the
spectrum of M and A coincides (see [21]) and so their condition
number also coincides.

Lemma 1. Let A be the matrix defined by (31). If the finite element
mesh satisfies 2 N þ 1ð Þ < M then it holds

j Að Þ P Ch�2
; ð32Þ

where C is a positive constant independent of M and N, only dependent
on L.
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Proof. With the aim of estimating j Að Þ, the numerical range of A
will be upper and lower bounded. Firstly, values m and n are fixed
taking into account that 0 6 m 6 M and 0 6 n 6 N. Then, consider
the vector v!2 C2 Mþ1ð ÞN associated with the discrete function
v � pn 2 Xh with v x1ð Þ ¼ um x1ð Þ sin np x1 �mhð Þ=Lð Þ, which corre-
sponds to the following linear combination of basis functions:

v ¼ um

2i
qþ
n

qþ
n mhð Þ �

q�
n

q�
n mhð Þ

� �
: ð33Þ

It holds

v!�A v!¼ R L
0 v x1ð Þ�v x1ð Þdx1 ¼ R L

0 u
2
m x1ð Þ sin2 np x1�mhð Þ

L

	 

dx1

¼ 2
R h
0

s2

h2
sin2 nps

L

� �
ds 6 C

R h
0

s4

h2
ds 6 Ch3

;

where each occurrence of constant C could denotes a different value
independent of h (only dependent on the ratio L=n). To obtain the
estimate above, it has been used the first order Taylor polynomial
approximation of the sine function around the origin. Now, it is
straightforward to show from (33) that the unique non-null coeffi-
cients of v! are given by 1= 2iqþ

n mhð Þ� �
;�1= 2iq�

n mhð Þ� �� �
and hence

v!� v!¼ 1
2i

e�inpL mh

���� ����2 þ 1
2i

eþinpL mh

���� ����2 ¼ 1
2
; ð34Þ

and consequently, it has been shown that there exists v!– 0
!

such
that

v!�A v!
v!� v! 6 2Ch3

:

Secondly, a different vector coordinate v! is taken into account. In
this case, once m and n are fixed with 0 6 m 6 M and 0 6 n 6 N,
consider the vector v!2 C2 Mþ1ð ÞN associated with the discrete func-
tion v � pnXh with v x1ð Þ ¼ um x1ð Þ cos np x1 �mhð Þ=Lð Þ, which corre-
sponds to the following linear combination of basis functions:

v ¼ um

2
qþ
n

qþ
n mhð Þ þ

q�
n

q�
n mhð Þ

� �
: ð35Þ

It holds

v!�A v!¼ R L
0 v x1ð Þ�v x1ð Þdx1 ¼ R L

0 u
2
m x1ð Þ cos2 np x1�mhð Þ

L

	 

dx1

¼ 2
R h
0

s2

h2
cos2 nps

L

� �
ds P eC R h

0
s2

h2
ds P eCh; ð36Þ

where each occurrence of constant eC could denote a different value
independent of h (only dependent on the ratio L=n). To obtain the
estimate above, it has been used a strictly positive lower bound
for the cosine function in the compact interval
0;h½ � � 0; L= 2 nþ 1ð Þð Þ½ �, which holds by assuming 2 nþ 1ð Þ > M
and taking into account h ¼ L=M. In the interval written above, it
is ensured that cos nps=Lð Þ is strictly positive for any n). Now, it is
straightforward to show from (35) that the unique non-null coeffi-
cients of v! are given by 1= 2qþ

n mhð Þ� �
;1= 2q�

n mhð Þ� �� �
and hence,

using (34), v!� v!¼ 1=2. So, it has been shown that there exists

v!– 0
!

such that

v!�A v!
v!� v! P 2eCh: ð37Þ

Now, if kmax and kmin are respectively the largest and smallest
eigenvalues of matrix A, using the classical property of the Ray-
leigh quotient for hermitian complex-valued matrices (which
ensures that the numerical range is a real interval with eigenvalues
as endpoints [30]), it holds

kmin 6 v!�A v!
v!� v! 6 kmax for all v!– 0

!
:

7

Then, from (37) and (36), there exist two positive constants C and eC ,
independent ofM and N (and hence also independent of h) such that

2eCh 6 kmax and kmin 6 2Ch3
:

Consequently, since A is a positive definite hermitian matrix (it is
associated with the L2-inner product in Xh), it is satisfied

j Að Þ ¼ kmax

kmin
P
eC
C
h�2

; ð38Þ

and hence (32) is obtained. h

In conclusion, from Lemma 1, since the spectrum of A and M

coincides, it is obtained that j Mð Þ ¼ O h�2
	 


, what implies a sig-

nificant increasing of the condition number as soon as the finite
element mesh is refined. This high condition number (compared
with respect to the low conditioning of standard finite element
methods) in the mass matrix could indicate the numerical mecha-
nism because of the matrix of the linear system (29) suffers for
high condition numbers. As it is reported in the following sections,
to mitigate as much as possible the conditioning issues, different
regularization techniques can be considered, the finite element
meshes have been kept as coarse as possible in most of the numer-
ical test, and also a novel criterion to limit the number of eigen-
modes used in the discrete space has been derived.

5. Numerical results

An extensive variety of numerical tests has been considered to
illustrate the performance and the numerical behaviour of the pro-
posed modal-based PUFEM method. With this aim, different sce-
narios involving different discrete settings have been used. More
precisely, Section 5.1 shows the different numerical performance
obtained with a discrete space that only involves Love modes,
and with another discrete space that includes both, Love and inte-
rior modes. Finally, in those numerical simulations where only
interior modes are involved, the eigenmodes used in the modal-
based PUFEM discretization (25) hold the condition (22) with
c0 ¼ 2cþ.

Section 5.2 illustrates the consistency of the method for solu-
tions contained in the discrete space. Finally, Section 5.3 focuses
on the deterioration of the numerical results due to the high con-
dition numbers of the discrete matrix and its potential mitigation
using regularization techniques.

Throughout the entire Section 5, the relative errors are com-
puted using a pointwise L1-norm on an 5� 5 equispaced Cartesian

grid of points yjk
� �8

j;k¼1
in the domain 0; L½ � � �a;H½ �. More pre-

cisely, the relative error is given by

�h ¼
max
16j;k65

ju yjk
� �� uh yjk

� �j
max
16j;k65

ju yjk
� �j ;

where u is the exact solution of the source problem and uh is the
approximated solution computed with the proposed modal-based
PUFEM method. Other finer grids with a larger number of points
have been also considered leading to similar relative errors. To plot
the approximated solution computed by means of the modal-based
PUFEM method, the real part of the approximation in every numer-

ical test is plotted on a 33� 33 equispaced grid of points yjk
� �33

j;k¼1
in

the domain 0; L½ � � �a;H½ �. Additionally, the pointwise relative error
with respect to L1-norm is also plotted in the computational
domain X.

If it is not mentioned explicitly other data, the numerical test
have been computed assuming that problem (2)–(6) is settled with
angular frequency x ¼ p and homogeneous Neumann boundary
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conditions have been considered on the whole boundary @X. The
computational domain X ¼ 0; Lð Þ � �a;Hð Þ with
a ¼ 0:2; H ¼ 0:8; L ¼ 1 is split in two subdomains where the speed
of sound is given by c� ¼ 1=2 in X� ¼ 0; Lð Þ � �a;0ð Þ and cþ ¼ 1 in
Xþ ¼ 0; Lð Þ � 0;Hð Þ.

5.1. Numerical comparison of discrete spaces with or without interior
modes

To illustrate the relevance of including the interior modes on
the discrete space (and consequently use the complete set of eigen-
modes computed from the auxiliary spectral problem), a detailed
comparison between the modal-based method have being carried
out using the discrete spaces XL

h (only considering Love eigen-
modes) and Xh (using Love and interior eigenmodes).

In this numerical test, the source term is given by

f x1; x2ð Þ ¼ 1 for x1; x2ð Þ 2 Xþ;

x2 for x1; x2ð Þ 2 X�;

�
and the boundary functions are fixed to g ¼ 0 and r ¼ 0. Assuming
these boundary conditions and this source term, it is straightfor-
ward to compute the exact solution in closed form. More precisely,
the exact solution is given by

u x1; x2ð Þ ¼ Aþe�ixx2=cþ þ Bþeixx2=cþ � 1
x2 if x1; x2ð Þ 2 Xþ;

A�e�ixx2=c� þ B�eixx2=c� � x2
x2 if x1; x2ð Þ 2 X�;

(
ð39Þ

being Aþ;Bþ;A�;B� coefficients that are determined by solving the
linear system

0 0 e�ixH=cþ �eixH=cþ

eixa=c� �e�ixa=c� 0 0
1 1 �1 �1
1 �1 �cþ=c� cþ=c�

0BBB@
1CCCA

A�
B�
Aþ
Bþ

0BBB@
1CCCA ¼

0
ic�=x3

�1=x2

ic�=x3

0BBB@
1CCCA;

that results from applying the boundary conditions and the cou-
pling conditions.

Table 1 shows the relative error for both, an approximated solu-
tion in the discrete space XL

h involving only Love eigenmodes and
an approximated solution in the discrete space Xh with Love and
interior eigenmodes. As it is expected, if interior and Love modes
are included in the discretization then the approximated PUFEM
solutions are much more accurate than those computed with only
Love modes. This conclusion is valid for any value of mesh size M
and any number of eigenmodes N as it can be checked in Table 1.
Figs. 3 and 4 illustrate the real part of the approximated solution
and the relative error for M ¼ 4 and N ¼ 10 computed using the
discrete space XL

h and Xh, respectively.
It is also relevant that, if the relative errors obtained with both

discrete spaces are compared for similar values of degrees of free-
dom (and hence with almost similar computational cost), the
numerical results reached with the discrete Xh outperforms those
results obtained with only Love modes in XL

h . In conclusion, the
numerical results described throughout the rest of this section, will
take into account both Love and interior eigenmodes and hence the
proposed modal-based PUFEM discretization will always use the
discrete space Xh.

5.2. Consistency of the modal-based PUFEM method with Love and
interior modes

In order to check the consistency of the modal-based PUFEM
method (using the discrete space with both interior and Love
modes), the relative error has been analysed in some numerical
8

tests where the exact solutions belong to the discrete space Xh. It
is shown here the case where the exact solution is given by an inte-
rior mode. Numerical results obtained choosing a Love mode as
exact solution are analogous to the ones shown in this section.

The solution considered in this test is the eigenmode associated
with the lowest non-null eigenvalue, this is, u ¼ w1;L1þ1, where
1; L1 þ 1ð Þ 2 J N (see (23)). To obtain such exact solution, the
source term is given by f ¼ k1;L1þ1 �x2

� �
w1;L1þ1. Obviously, from

a theoretical point of view, since the exact solution belongs to
the discrete space, the numerical approximation error should be
null. However, due to the round-off errors introduced by the dou-
ble precision arithmetic representation and the high condition
number of the discrete matrices, the relative errors shown in the

first two rows of Table 2 are reaching approximately O 10�14
	 


.

The numerical results of Table 2 also illustrate how the relative
errors are increased as the one-dimensional mesh is refined (M is
increased) and more eigenmodes are involved in the discrete space
Xh (value of N is increased). In both cases, since the condition num-
ber of the linear system grows, the relative errors are also
increased. Despite of this well-known phenomena for partition of
unity methods, it should be remarked that five digits of accuracy
are kept even in those numerical approximations where the condi-

tion number is as high as O 1018
	 


. Fig. 5 illustrates the real part of

the approximated solution and the relative error for M ¼ 10 and
N ¼ 3.

5.3. Influence of the condition number on the numerical results

In previous sections, it has been reported that the modal-based
PUFEM method suffers for large condition numbers in the linear
systems which have to be solved. Such issue represents a potential
drawback in the use of direct LU-based linear solvers. From the
numerical results described in the sections above and the theoret-
ical analysis made in Section 4.3, this conditioning problem is more
relevant as soon as the one-dimensional finite element mesh is
refined and the number of eigenmodes involved in the discrete
space is increased. However, there exists a number of methodolo-
gies to deal with high condition numbers and try to mitigate the
amplification of the round-off errors on the solution of linear sys-
tems. Three different regularization techniques have been evalu-
ated: a naive damping strategy, the classical Tikhonov filtering
(with two different strategies to choose the regularization param-
eter), and the truncated singular value decomposition method. The
latter has been already used for solving linear systems with large
condition numbers in the context of two-dimensional PUFEM dis-
cretizations (see [7]).

Now, to avoid those exact solutions which could belong to Xh,
the source term is given by

f x1; x2ð Þ ¼ cos 3px1
L

� �
for x1; x2ð Þ 2 Xþ;

1þ x2ð Þ cos 3px1
L

� �
for x1; x2ð Þ 2 X�:

(
With this source term, it is straightforward to compute the exact
solution in closed form, which does not belong to Xh, and it is given
by

u x1;x2ð Þ¼ cos
3px1
L

� � Aþe�iaþx2 þBþeiaþx2 � 1
c2þa

2
þ

if x1;x2ð Þ 2Xþ;

A�e�ia�x2 þB�eia�x2 � 1þx2
c2�a2�

if x1;x2ð Þ 2X�;

8<:
ð40Þ

where

aþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2þ
� 9p2

L2

s
; a� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c2�
� 9p2

L2

s
;



Table 1
Comparison of the relative error �h and the condition number j for two different approximated PUFEM solutions: the discrete space XL

h that only includes Love modes (left part),
and the discrete space Xh with both Love and interior eigenmodes (right part). The numerical results are shown for different values of the mesh size M, the number of eigenpair
families considered in the discretization N, and the degrees of freedom (dof) of the discrete approximation.

XL
h without interior modesð Þ Xh with interior modesð Þ

M N dof �h j dof �h j

3 16 1:65� 100 1:1� 103 60 2:14� 10�3 1:5� 108

1 5 32 2:95� 100 5:0� 104 140 3:00� 10�5 3:1� 1013

10 100 1:87� 100 9:4� 108 500 1:55� 10�5 1:2� 1019

3 40 3:53� 100 1:0� 105 150 7:28� 10�5 2:7� 1012

4 5 80 4:45� 10�1 1:1� 108 350 1:72� 10�5 5:2� 1016

10 250 3:30� 10�3 1:3� 1014 1250 3:88� 10�6 1:0� 1023

3 88 5:17� 100 3:5� 108 330 2:73� 10�5 3:6� 1015

10 5 176 6:62� 10�2 4:1� 1011 770 7:74� 10�6 2:0� 1018

10 550 3:69� 10�4 6:2� 1016 2750 1:97� 10�5 2:2� 1019

Fig. 3. Real part of the approximated solution (left) and modulus of the relative error (right), obtained from the modal-based PUFEMmethod with a one-dimensional mesh of
four elements (i.e. M ¼ 4) and considering the discrete space XL

h with N ¼ 10. The exact solution is given by (39).

Fig. 4. Real part of the approximate solution (left) and relative error (right), obtained from the modal-based PUFEM method with a one-dimensional mesh of four elements
(i.e. M ¼ 4) and considering the family of Love and interior modes wn;j with n; jð Þ 2 1; . . . ;10f g � Ln [ I Jn

n

� �
(i.e. N ¼ 10). The exact solution is given by (39).

Table 2
Relative error �h and the condition number j for different values of the mesh size M, the number of eigenmodes N considered in the discretization, and the degrees of freedom
(dof) used in the discrete approximation. The exact solution is given by the non-constant interior mode associated with the lowest eigenvalue.

M N dof �h j

1 12 1:49� 10�15 1:5� 102

1 3 60 3:81� 10�14 1:5� 108

5 140 6:60� 10�12 3:1� 1013

1 606 2:78� 10�11 2:5� 1013

100 3 3030 1:06� 10�5 1:4� 1018

5 7070 4:92� 10�6 9:5� 1018
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Fig. 5. Real part of the approximated solution (left) and modulus of the relative error (right) obtained from the modal-based PUFEM method with a one-dimensional mesh of
ten elements (i.e. M ¼ 10) and considering the discrete space Xh with N ¼ 3). The exact solution is the non-constant interior mode associated with the lowest eigenvalue.
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and Aþ; Bþ;A�;B� are the coefficients computed as solution of the
linear system

0 0 �e�iaþH eiaþH

�ia�eia�a ia�e�ia�a 0 0
�1 �1 1 1

ic2�a� �ic2�a� �ic2þaþ ic2þaþ

0BBB@
1CCCA

A�
B�
Aþ
Bþ

0BBB@
1CCCA

¼

0
1=c2�a2

�
1=c2þa2

þ � 1=c2�a2
�

�1=a2
�

0BBB@
1CCCA;

which results from applying the boundary conditions and the cou-
pling conditions.

Table 3 shows the comparison of the relative errors obtained
with a LU-based direct solver and with the naive damping algo-
rithm (adding a damping coefficient kd on the diagonal entries of
the matrix). It can be observed that both methodologies lead to
similar relative errors without any significant advantage between
both methods. In Fig. 6 we show the solution and the modulus of
the relative error for one of the analyzed cases.

Other regularization methods (truncated singular value decom-
position or Tikhonov filtering technique) lead to similar results
(see [22]).

5.4. Numerical comparison with a standard Finite Element Method

The numerical test described above has been also utilised to
compare the accuracy and the computational performance of the
proposed modal-based PUFEM discretization with respect to a
standard Finite Element Method based on piecewise linear
Table 3
Comparison of the relative error �h computed from solving the discrete linear system usin
method. The relative errors and the condition number j are reported for different values of
degrees of freedom (dof) of the discrete approximation.

M N dof kd

3 60 8:7� 10�7

1 5 140 5:3� 10�10

10 500 2:3� 10�12

3 150 2:8� 10�7

4 5 350 2:3� 10�10

10 1250 2:3� 10�12

3 330 3:8� 10�9

10 5 770 1:0� 10�12

10 2750 1:1� 10�12

10
discretization (Lagrange P1-elments) on a structured two-
dimensional triangular mesh. Fig. 7 shows the relative error com-
puted with the proposed modal-based PUFEM approach (left plot)
and those errors obtained with the FEM discretization (right plot).
It can be observed that the errors reached by the PUFEM discretiza-
tion are two order of magnitude lower than the FEM errors for any
of the c� values. Moreover, the modal-based PUFEM approach is
less prone to the presence of spurious resonances than the FEM
methodology (most of the artificial peaks on the FEM relative
errors are not present in the PUFEM numerical results). Counterin-
tuitively, due to the spectral nature of the discrete basis of the pro-
posed PUFEM discretization, the frequency values x associated
with the natural resonances of the test problem present a lower
error than the typical FEM behaviour there the error is locally
increased.

Finally, this numerical comparison between both methods has
been performed taking into account a two-dimensional 20� 20
structured triangular mesh to keep a similar size of the linear sys-
tems to be solved in the FEM and modal-based PUFEM approaches:
the size of the FEM discrete matrix is 441� 441 and it has 5842
nonzero entries, whereas the size of the PUFEM discrete matrix is
150� 150 and it has 11700 nonzero entries. In that manner, since
the computational times are driven mainly by the time required to
solve those discrete systems, the relative errors reported in Fig. 7
has been obtained with similar computational times.
6. PUFEM basis criterion based on the crack observability

The effect of the mesh and the choice of an adequate basis is
essential to obtain accurate and reliable numerical results in any
PUFEM technique due to the high condition number of the
g a LU-based direct solver and the relative error �d obtained using a naive damping
the mesh sizeM, the number of eigenmodes N considered in the discretization, and the

�h �d j

1:13� 10�3 1:14� 10�3 1:5� 108

1:24� 10�4 1:25� 10�4 3:1� 1013

1:05� 10�4 3:89� 10�5 1:2� 1019

6:79� 10�5 8:33� 10�5 2:7� 1012

4:70� 10�5 6:61� 10�5 5:2� 1016

4:70� 10�5 2:90� 10�5 3:9� 1020

1:33� 10�4 1:22� 10�4 1:5� 1015

5:47� 10�5 5:71� 10�5 3:1� 1018

4:94� 10�5 2:53� 10�5 1:2� 1019



Fig. 6. Real part of the approximate solution (using a LU-based direct solver) (left) and modulus of the relative error (right), obtained from the modal-based PUFEM method
with a one-dimensional mesh of four elements (i.e. M ¼ 4) and considering the discrete space Xh with N ¼ 3. The exact solution is given by (40).
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assembled matrices to be solved. Despite the recommendation of
using coarse meshes to define the partition of unity, it is possible
to design other criteria for selecting the most relevant eigenmodes
involved in the definition of the discrete space.

As a particular case, consider a wave propagation problem
where a crack is present in the coupling interface between a bilay-
ered material. If the main purpose of the numerical simulation is
the identification the presence of a crack, then the PUFEM dis-
cretization should only include those eigenmodes which are able
to detect and observe the crack. So, limiting the number of modes
involved in the discretization will reduce the size of the matrix lin-
ear systems and keep bounded its condition number.

A detailed numerical study of crack phenomena is beyond the
scope of this work since, even in the simplest planar and two-
dimensional setting, a variety of crack parameters can be studied,
such as the positions of the stating and ending points, its length,
etc. However, following the methodology used in [6], it is possible
to define a criterion to quantify the ability of an eigenmode to
observe a crack using the following two indicators O1 and O2:

O1 n; jð Þ ¼
Z
X
qj x1ð Þpn;j x2ð ÞT1 x1; x2ð Þdx1dx2

���� ����; ð41Þ

O2 n; jð Þ ¼
Z
X
qj x1ð Þpn;j x2ð ÞT2 x1; x2ð Þdx1dx2

���� ����; ð42Þ

with n; j 2 N, and where qj � pn;j is a Love or interior eigenmode
(used in the modal-based PUFEM discretization), and T1 ¼ S�A þ S�B
and T2 ¼ S�A � S�B. Functions S

�
A and S�B are the so-called singular dual

functions associated with the crack, which are static extensions of
the singular solutions of the scattered fields computed in the pre-
Fig. 7. Relative error computed with the proposed modal-based PUFEMmethod withM ¼
20� 20 triangular mesh for different values of c� and x. The exact solution is given by

11
sent of a crack. More precisely, if a crack with endpoints A and B
is placed on the coupling interface of the layered material, then

S�B x1; x2ð Þ ¼ gB rBð ÞS�Bloc rB; hBð Þ þ S�Bext x1; x2ð Þ;
where gB is a cut-off function centered at the crack tip B with sup-
port contained in a disc DB of radius RB; rB; hBð Þ are the local polar
coordinates centered at point B,

S�Bloc rB; hBð Þ ¼ 1
c2

1ffiffiffiffiffi
rB

p �
ffiffiffiffiffi
rB

p
RB

� �
sin

hB
2

� �
;

and finally S�Bext 2 H1 Xð Þ is the solution (defined up to a constant) of
the following problem:

�div c2rS�Bext
	 


¼ c2rgB � rS�Bloc þ div c2S�BlocrgB

	 

in X nDB;

@S�Bext
@m ¼ 0 on @X n @DB;

S�Bext ¼ 0 on @DB:

8>>><>>>:
ð43Þ

An analogous definition is also valid for S�A (see [6, Section 4.3] for a
more detailed discussion).

An standard piecewise linear finite element discretization on a
triangular mesh has been used to compute the solutions of S�Aext

and S�Bext , since no time-harmonic wave propagation phenomena
is involved in their definitions (in fact, problem (43) is elliptic).
Plots on Fig. 8 show the singular dual functions S�A and S�B for a crack
placed on the coupling interface lying on x2 ¼ 0 between two lay-
ers with tips at points A ¼ 0:6; 0ð Þ and B ¼ 0:8;0ð Þ.

The computation of indicators O1 n; jð Þ and O2 n; jð Þ have been
performed interpolating the closed-form expressions of the Love
4 and N ¼ 3 (left) and a piecewise linear FEM approximation (right) in a structured
(40).



Fig. 8. Singular dual functions S�A (left) and S�B (right) associated respectively with the endpoints A and B of the crack. The crack is set on the coupling interface between
x2 ¼ 0:6 and 0:8.

Fig. 9. The two observability indicators O1 (left) and O2 (right) for a bilayered material plotted with respect to the indices n and j. The crack is set on the coupling interface
between x2 ¼ 0:6 and 0:8. The dashed line separates the Love modes (smaller j-index) from the interior modes (larger j-index).
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and interior eigenmodes using local high-order polynomial spaces
in every mesh element (in particular, using P6-polynomials). Plots
in Fig. 9 show the values of both indicators. The dashed line sepa-
rate the Love eigenmodes (with smaller index j) from the interior
modes (with larger values of index j). For observability purposes,
these plots illustrate that it is enough to consider the Love and
interior eigenmodes with n smaller than 15. Notice also that for
n < 15, the indicator values follow a decreasing trend as soon as
n and j are increased, but their j-index decay is slower than in
the n-index direction.
7. Conclusions

In this manuscript, a non destructive testing problem in a bilay-
ered domain without a crack has been studied. A modal-based par-
tition of unity finite element method has been proposed and
described in detail. In this method the closed-form computation
of the Love and interior modes are essential to approximate the
solution of the wave propagation problem. More precisely, the dis-
crete approximation involves the tensor product of the eigen-
modes, which leads to closed-form evaluation of the element
matrices. The proposed numerical method has been illustrated
using a variety of test problems, where Love modes, interior modes
or both modes have been used in the discretization space. How-
ever, it must be notice that the present approach requires that
the elastic material of each layer is homogenenous (i.e., the phys-
ical parameters should be constant). Otherwise, the closed-form
computation of the internal and the LOve modes could not be pos-
sible. Hence, the present PUFEM methodology is not comparable
with other high-order numerical methods which are applied to
12
the wave propagation of multilayer materials with functionally
graded layers (see for instance [15]).

The modal-based PUFEM method clearly reduces the assem-
bling process but still suffers from poor conditioning (a common
feature of the planewave partition of unity enriched methods when
the number of eigenmodes is increased or the mesh is refined). The
high condition number associated with the discrete matrix have
been also analysed. Finally, some numerical results have been pre-
sented in order to illustrate the accuracy of the method, the
numerical behaviour of the modal-based PUFEM results with
respect to its condition number (using both LU-solvers and differ-
ent regularization techniques). Regularization techniques can be
used to mitigate such numerical drawbacks. Additionally, it has
been studied a feasible criterion to select a reduced basis in the
modal-based PUFEM discrete space based on the observability of
a crack placed on the coupling boundary between layers.
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