
HAL Id: hal-03687119
https://cnam.hal.science/hal-03687119

Submitted on 3 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Modeling and simulation of thin-walled piezoelectric
energy harvesters immersed in flow using monolithic

fluid–structure interaction
Lan Shang, Christophe Hoareau, Andreas Zilian

To cite this version:
Lan Shang, Christophe Hoareau, Andreas Zilian. Modeling and simulation of thin-walled piezoelectric
energy harvesters immersed in flow using monolithic fluid–structure interaction. Finite Elements in
Analysis and Design, 2022, 206, pp.103761. �10.1016/j.finel.2022.103761�. �hal-03687119�

https://cnam.hal.science/hal-03687119
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Finite Elements in Analysis and Design 206 (2022) 103761

A
0
n

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

Modeling and simulation of thin-walled piezoelectric energy harvesters
immersed in flow using monolithic fluid–structure interaction
Lan Shang a, Christophe Hoareau b, Andreas Zilian a,∗

a Department of Engineering, University of Luxembourg, Luxembourg
b Laboratoire de Mécanique des Structures et des Systèmes Couplés (LMSSC), Conservatoire national des arts et métiers (Cnam), France

A R T I C L E I N F O

Keywords:
Fluid–structure interaction
Monolithic coupling
Thin-walled piezoelectric structure
Energy harvester
Pressure discontinuity

A B S T R A C T

A monolithic numerical scheme for fluid–structure interaction with special interest in thin-walled piezoelectric
energy harvesters driven by fluid is proposed. Employing a beam/shell model for the thin-walled structure in
this particular application creates a FSI problem in which an (𝑛−1)-dimensional structure is embedded in an 𝑛-
dimensional fluid flow. This choice induces a strongly discontinuous pressure field along the moving fluid–solid
interface. We overcome this challenge within a continuous finite element framework by a splitting-fluid-domain
approach. The governing equations of the multiphysics problem are solved in a simultaneous fashion in order
to reliably capture the main dynamic characteristics of the strongly-coupled system that involves a large
deformation piezoelectric composite structure, an integrated electric circuit and an incompressible viscous
fluid. The monolithic solution scheme is based on the weighted residuals method, with the boundary-fitted
finite element method used for the discretization in space, and the generalized-𝛼 method for discretization in
time. The proposed framework is evaluated against reference data of two popular FSI benchmark problems.
Two additional numerical examples of flow-driven thin-walled piezoelectric energy harvesters demonstrate
the feasibility of the framework to predict controlled cyclic response and limit-cycle oscillations and thus the
power output in typical operational states of this class of energy harvesting devices.
1. Introduction

Harvesting energy from ambient flows using piezoelectric struc-
tures has become a vibrant research area [1]. This is motivated not
only by many practical applications demonstrating that piezoelectric
energy harvesters (PEHs) are a promising alternative to conventional
batteries for low-power electronic devices, but also by scientific cu-
riosity since flow-driven PEHs are strongly coupled multiphysics sys-
tems involving complex interaction between fluid dynamics, structural
(electro)mechanics and electric circuits [2,3].

A major challenge in theoretical analyses of flow-driven PEHs con-
sists in predicting the fluid dynamics. Most previous investigations
employed potential flow models, e.g., Theodorsen’s unsteady thin air-
foil theory in [4], the unsteady vortex lattice method in [5,6], the
doublet-lattice method in [7], and the state–space model for unsteady
aerodynamics in [8]. These models are computationally efficient and
one may expect satisfactory results from them when the Reynolds
number is reasonably high [9]. However, as pointed out by [10], they
fail to precisely capture the viscous effects of the fluid. To obtain a more
accurate representation of the driving fluid forces, solving the Navier–
Stokes (N-S) equations is an option, although at the cost of greatly

∗ Corresponding author.
E-mail addresses: lan.shang@uni.lu (L. Shang), christophe.hoareau@lecnam.net (C. Hoareau), andreas.zilian@uni.lu (A. Zilian).

increased computational expense. A few papers such as [2,3,10–12]
use the N-S equations to model the incompressible viscous flow sur-
rounding PEHs, and paper [13] uses the simplified vorticity description
of N-S equations to describe the flow around electromagnetic energy
harvesting devices.

In general, numerical study of fluid–structure interaction (FSI) prob-
lems based on the N-S equations should first determine the boundary
matching method (boundary-fitted or not) and the coupling algorithm
(simultaneously solve or not) at the fluid–solid interface. This interface
is moving as the immersed structure is deformable and/or non-fixed,
so it is straightforward to explicitly track this interface by taking
advantage of the classical arbitrary Lagrangian–Eulerian (ALE) descrip-
tion [14], which allows the fluid problem to be solved on a mesh that
deforms according to the Lagrangian structure mesh. This boundary-
fitted matching approach is easy to implement and accurate, but tends
to be tricky when the structural translation/rotation is large or the
topology of the fluid domain is changed [15]. In such scenarios, non-
boundary-fitted approaches that do not require the fluid mesh to move
have been widely used, e.g., the immersed boundary method [16],
the fictitious domain method [17] and others. However, considering
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Fig. 1. Reference configuration and current configuration of a typical PEH (in parallel connection) immersed in fluid.
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non-boundary-fitted approaches cannot faithfully represent the fluid–
solid interface, in the vicinity of which, naturally, the solution accuracy
is reduced. More detailed discussion on pros/cons of different boundary
matching methods can be found in [18]. As for the coupling algorithm,
paper [19] provides a comparative investigation for three available
algorithms: partitioned, quasi-direct and monolithic. They distinguish
from each other by whether the sub-problems concerned are solved
simultaneously or not. The partitioned coupling algorithm seems more
popular in FSI community. For instance, the aforementioned papers [2,
10–13] all adopt this algorithm, while only [3] is an exception. The
reason may be that well-established fluid solvers and solid solvers can
be conveniently used for FSI problems in the partitioned algorithm,
where the solid and fluid sub-problems are solved separately and then
coupled in an iterative fashion. Nevertheless, the monolithic coupling
algorithm which solves all field equations at once would be better when
perusing improved accuracy and accelerated convergence. In summary,
if possible and accuracy is the main focus, normally a boundary-fitted
approach combined with a monolithic coupling algorithm should be an
advisable scheme to solve the FSI problem of interest. This scheme is
the choice of the current work. Actually, exactly the same as [3], in
this work, not only the fluid and structure, but also the circuit, are all
coupled in a monolithic way.

The fundamental difference between the current work and [3]
is that the latter one deals with a three-dimensional structure with
small deformation, while the structure in this work may undergo large
deformation, and more notably, because one of the most commonly
investigated configurations of PEHs is thin-walled beam models [20–
22], it would be preferable to employ a geometrically non-volumetric
representation for the piezoelectric structure to make best use of these
beam models. This representation of a structure causes additional
difficulty in FSI problems. As noted by [23], for a velocity–pressure
formulation of the N-S equations and no-slip interfacial conditions,
embedding a thin structure into a fluid field leads to a strongly discon-
tinuous pressure solution along the moving fluid–solid interface. This
difficulty is settled in [23] by a level set method. Paper [23] uses a
non-boundary-fitted approach, in which context readers are referred
to [15] for deeper discussion on handling the pressure discontinuity.
In the context of boundary-fitted approaches, this problem can be ad-
dressed by duplicating the interface pressure degrees of freedom [24].
The current paper proposes another simple method to treat pressure
discontinuity: splitting the fluid domain by the fluid–solid interface
into two parts, which then enables to use two independent pressure
variables to represent the discontinuous pressure field.

The remainder of this paper is organized as follows. In Section 2, the
governing equations for all fields of interest are introduced, and partic-
ularly, the solid is modeled using both volumetric and non-volumetric
representations. In Section 3, the monolithic solution scheme based
on the weighted residuals method, the approach to tackle strong pres-
sure discontinuity, and the time integration scheme are presented. In
Section 4, the models and associated solution scheme are validated
against two FSI benchmark examples by numerical experiments. In
Section 5, the above framework is extended to study a thin-walled PEH
interacting with a flow. Finally, Section 6 summarizes the contributions
2

and specifies the limitations of the current work. w
2. Governing equations

Fig. 1 is the schematic illustration of a flow-driven PEH. The PEH
comprises an elastic substrate structure, two piezoelectric layers which
are covered by electrodes, and a circuit. When the fluid flows, the
PEH will deform and convert mechanical energy into electric energy
through the piezoelectric effects [25]. 𝛺F, 𝛺S are the domains occupied
by the fluid and the solid in the initial undeformed state (reference
configuration), while 𝛺𝑡

F, 𝛺𝑡
S are the time dependent domains (current

configuration). In what follows, we introduce all field equations as well
as coupling conditions that govern the behavior of the multiphysics
system.

2.1. Fluid

The classical way to describe problems in continuum mechanics is
the Lagrangian method for the solid and the Eulerian method for the
fluid. In the context of FSI, a common boundary shared by the compu-
tational domains of the fluid and solid cannot be ensured (note: 𝛤 𝑡I is
he common physical boundary) if using the classical description for the
espective standalone problem. Therefore, to develop a closed mono-
ithic model for FSI, one sub-problem, either the fluid or the structure,
eeds to be formulated in a transformed coordinate system [26]. This
ystem is usually the ALE for the fluid. By ALE, further with the help of
esh motion techniques, the fluid equations can be mapped from one

onfiguration onto another. At this point, there exist two possibilities
o formulate a FSI problem in the ALE coordinate: computing the fluid
quations in a deformed domain (e.g., [24]) or in a fixed undeformed
omain (e.g., [26,27]). Although the fluid equations look much simpler
n the former one than those (Eqs. (1)–(2)) in the latter one, we adopt
he latter one by transforming all fluid equations onto the reference
onfiguration 𝛺F in this work, to facilitate Galerkin-projection based
odel order reduction as part of future research.

.1.1. ALE description of the N-S equations on the reference configuration
The flow surrounding a PEH is assumed to be viscous and incom-

ressible, and the fluid dynamics is governed by the N-S equations.
n ALE, an auxiliary displacement field 𝐮A is introduced to realize
he transformation of the fluid equations between configurations. The
LE mapping is then defined as (�̂�, 𝑡) = �̂� + 𝐮A(�̂�, 𝑡), where �̂� is the

coordinate of a point in the undeformed domain. The fluid equations
formulated on the reference configuration after ALE transformation
read [26]

𝜌F𝐽A
𝜕𝐯F
𝜕𝑡

+ 𝜌F𝐽A(∇𝐯F)𝐅−1
A (𝐯F −

𝜕𝐮A
𝜕𝑡

) − ∇ ⋅ (𝐽A𝐓F𝐅−T
A ) = 𝟎 in 𝛺F, (1)

∇ ⋅ (𝐽A𝐅−1
A 𝐯F) = 0 in 𝛺F, (2)

here 𝜌F, 𝐯F are the density and velocity of the fluid, respectively;
A ∶= ∇ = 𝐈 + ∇𝐮A is the deformation gradient, and 𝐽A = det(𝐅A)

is its determinant; 𝐓F is the fluid stress tensor, given by the following
constitutive law of a Newtonian fluid

𝐓F + 𝑝F𝐈 − 𝜇F((∇𝐯F)𝐅−1
A + 𝐅−T

A (∇𝐯F)T) = 𝟎 in 𝛺F, (3)

ith the hydrostatic pressure 𝑝 and the dynamic viscosity 𝜇 .
F F
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Fig. 2. Planar beam formulation.
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2.1.2. Mesh motion model
One basic idea of a monolithic FSI algorithm is to treat the fluid

and the solid as a surface-coupled continuum. In this sense, the dis-
placement field 𝐮A introduced above can be explained as the extension
of the structure deformation into the fluid domain, i.e., the fluid
mesh motion without any inertial effects. A number of mesh motion
models have been proposed, as seen in [28,29], from which, we choose
the biharmonic model due to its better mesh performance for large
deformation. This model is expressed as

𝛥2𝐮A = 𝟎 in 𝛺F. (4)

urthermore, a mixed formulation with an intermediate variable 𝐳A and
n artificial material parameter 𝓁 for Eq. (4) can be written as [29]

A = −𝓁𝛥𝐮A, −𝓁𝛥𝐳A = 𝟎 in 𝛺F. (5)

lthough the degrees of freedom increase in the finite element imple-
entation because of the new unknown 𝐳A when comparing Eq. (5)
ith Eq. (4), we will use Eq. (5) in the later work since it does not

equire H2-conforming finite elements [29].

.2. Elastic structure

For the solid field, we take into account two different models:
continuum model and a geometrically nonlinear beam model. The

ormer one coupled with the N-S equations forms a classical FSI setup,
hus being appropriate to serve as a reference for a FSI problem when
he latter one is used to model the structure. The electromechanical
odel of the thin-walled PEH driven by a flow under consideration is

lso built based on the latter one.

.2.1. Continuum solid model
The linear momentum balance equation of a solid undergoing large

eformation in the Lagrangian Coordinate System with respect to
w.r.t.) the fixed reference configuration 𝛺S is

S
𝜕2𝐮S
𝜕𝑡2

− ∇ ⋅ (𝐅S𝐒S) = 𝟎 in 𝛺S, (6)

where 𝜌S is the solid density, 𝐮S is the solid displacement, 𝐅S = 𝐈+∇𝐮S
is the deformation gradient, and 𝐒S is the second Piola–Kirchhoff stress
tensor given by

𝐒S − 𝜆S(tr𝐄S)𝐈 − 2𝜇S𝐄S = 𝟎 in 𝛺S (7)

using the St. Venant-Kirchhoff material law with the Green–Lagrange
strain tensor 𝐄S = 1

2 (𝐅
T
S𝐅S − 𝐈). 𝜆S, 𝜇S are the Lamé coefficients. In the

FSI coupling, the structural velocity 𝐯S but not the displacement 𝐮S is
used as the primary variable. The relation between them is

𝐯S −
𝜕𝐮S
𝜕𝑡

= 𝟎 in 𝛺S. (8)

It is pertinent to mention here that another method is available in
iterature to express the governing equations of the solid, i.e., the first-
3

rder time rate (of velocity) formulation for both Eq. (6) and Eq. (7),
s seen in [3,23,30]. The benefit of the rate formulation is that when
oupled with a flow (Eqs. (1)–(3)), a system composed of equations
oncerning only first-order differential w.r.t. time is achieved. This
roperty can help to avoid the problems with the time integration
cheme encountered in Section 3.4, but at the meantime, an additional
rimary unknown, i.e., the stress for the solid, needs to be solved.
hat is more, if large deformation is of interest, the solid displacement
ill remain in the stress expression, and thus computing the displace-
ent by integrating the velocity over time is still inevitable [23,30].
herefore, we adopt the more common formulation of the governing
quations Eqs. (6)–(7) for the solid in this work.

.2.2. Geometrically nonlinear beam model
The electromechanical model of the flow-driven PEH under consid-

ration is based on a beam model that allows for large deformation in
he 𝑂 − 𝑥𝑦 plane, as seen in Fig. 2.

A general expression for the equilibrium of a beam subject to
plane deformation in the Lagrangian Coordinate System may be for-
mulated for the deformed segment (current state) w.r.t. the reference
configuration as

𝜌S𝐆S
𝜕2𝐝S
𝜕𝑡2

−ℜ(𝐬S) − 𝐟F = 𝟎 in 𝛺S. (9)

n Eq. (9), 𝛺S is geometrically a line to represent the physical beam,
nd naturally we have 𝛺S = 𝛤I; 𝐝S = [𝑢,𝑤, 𝜓]T is a vector collecting
he axial (in the beam length direction, i.e., 𝑥-direction in Fig. 2)
isplacement 𝑢, transverse (in the beam thickness direction, 𝑦-direction)
isplacement 𝑤 and cross-section rotation 𝜓 of the beam, and in this
ase, we denote [𝑢,𝑤]T by 𝐮S, [ 𝜕𝑢𝜕𝑡 ,

𝜕𝑤
𝜕𝑡 ,

𝜕𝜓
𝜕𝑡 ]

T = [𝑢𝑡, 𝑤𝑡, 𝜓𝑡]T by 𝐝S,𝑡, and
[𝑢𝑡, 𝑤𝑡]T by 𝐯S; 𝐟F is the external fluid force acting on the beam pulled
ack to the reference configuration in a FSI context, including two
omponents (force in 𝑥- and 𝑦-direction, but no bending moment); 𝐆S
s a diagonal matrix to describe the cross-section geometry, given by

S =
⎡

⎢

⎢

⎣

𝑏SℎS 0 0
0 𝑏SℎS 0
0 0 𝑏Sℎ3S∕12

⎤

⎥

⎥

⎦

, (10)

here 𝑏S is the beam width and ℎS is the beam thickness; ℜ(𝐬S)
ndicates the elastic behavior of the beam with the internal force vector
S = [𝑁,𝑉 ,𝑀]T, where the components are the normal force, shear
orce and bending moment, respectively, given by

S = 𝐊S𝐆S𝐂S𝐞S, (11)

ith

S =
⎡

⎢

⎢

⎣

1 + 𝜀 0 𝜅
𝜏 1 0
0 0 1 + 𝜀

⎤

⎥

⎥

⎦

, 𝐂S =

⎡

⎢

⎢

⎢

⎣

𝑐S 0 0
0 𝑐S

2(1+𝜈S)
0

0 0 𝑐S

⎤

⎥

⎥

⎥

⎦

, 𝐞S = [𝜀, 𝜏, 𝜅]T.

(12)
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In Eq. (12), 𝐂S is the material parameter matrix, where 𝑐S is the
oung’s modulus and 𝜈S is the Poisson ratio; 𝐞S is a vector collecting

the beam strain measures, i.e., the axial strain 𝜀, shear strain 𝜏 and
urvature 𝜅; 𝐊S is used to transform the stress resultants obtained

directly by the constitutive law from the reference configuration to the
current configuration. Considering the strains are small, it is safe to
take 𝐊S = 𝐈. This work adopts geometrically exact kinematics [31]

ith the assumption of the rigid beam cross-section, based on which
S is expressed as

S = [(1 + 𝑢′)cos𝜓 −𝑤′sin𝜓 − 1, (1 + 𝑢′)sin𝜓 +𝑤′cos𝜓, 𝜓 ′]T, (13)

where (⋅)′ refers to the differential w.r.t. the local axial coordinate 𝑥
associated with the reference configuration.

For brevity, the elastic term ℜ(𝐬S) is not explicitly expressed in this
work, but it can be easily found in literature such as [31]. In addition,
a displacement-based weak form of the beam model deriving from
the virtual work formulated w.r.t. the reference configuration is given
in [32], which also presents a continuum-mechanics interpretation of
the geometrically exact beam model used here. One could refer to [23]
to seek the balance equation of a thin-walled structure formulated in
a form more similar to Eq. (6), i.e., the deformation gradient being
included. This form is not applied here because we would like to keep
consistent with the expression most commonly used for a beam model,
and apparently, it is also easier to compare Eq. (9) rather than the
formulation used in [23] with the authors’ previous work [33] that
focuses on building an electromechanical model for beam-like PEHs.

2.3. Piezoelectric layers

The model of the piezoelectric layers is almost the same as that of
the elastic structure shown in Section 2.2.2, with the main difference in
the constitutive relations. For piezoelectric materials, piezoelectric ef-
fects need to be included. Letting 𝐬P = [𝑁,𝑉 ,𝑀,𝐷3]T, 𝐞P = [𝜀, 𝜏, 𝜅, 𝐸3]T,

here 𝐷3 is the electric displacement and 𝐸3 is the electric field, with
he subscript 3 indicating the variable is in the 3−direction (shown in
ig. 1), the constitutive relation is

P = 𝐆P𝐂P𝐞P, (14)

ith

P =

⎡

⎢

⎢

⎢

⎢

⎣

𝑏PℎP 0 0 0
0 𝑏PℎP 0 0
0 0 𝑏Pℎ3P∕12 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐂P =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐P 0 0 −𝑒31
0 𝑐P

2(1+𝜈P)
0 0

0 0 𝑐P 0
𝑒31 0 0 𝜖𝑆33

⎤

⎥

⎥

⎥

⎥

⎦

,

(15)

where the subscript (⋅)P means the parameter is for the piezoelectric
material, and the new parameters 𝑒31, 𝜖𝑆33 are the piezoelectric constant
and permittivity, respectively.

Two other equations, i.e., the kinematics for the new variable 𝐸3
and the equilibrium for 𝐷3, should also be given to close the governing
equations of the piezoelectric layers:

𝐸3 = ℑ(𝜙) in 𝛺P, (16)
𝜕𝐷3
𝜕𝑦

= 0 in 𝛺P, (17)

where ℑ(𝜙) indicates the relation between 𝐸3 and the voltage output
𝜙, dependent on the PEH configuration [20], and Eq. (17) is the
differential form of Gauss’ law applied to a PEH where the electrodes
are perpendicular to 3-direction [20].

2.4. Electrodes and circuit

The electrodes with a negligible thickness (𝛤E in Fig. 1) covering the
surfaces of the piezoelectric layers collect free electric charges during
deformation and help to make a usable circuit. The net charge 𝑄
4

passing through the electrodes also depends on the PEH configuration
and can be given by Gauss’ law [20]. According to Ohm’s law, the
electric current in a circuit bearing a resistive load 𝑅 is 𝐼𝑐 =

𝜙
𝑅 , while

from the definition of the electric current, we have 𝐼𝑐 =
d𝑄
d𝑡 . These two

xpressions are used to form the electrode–circuit coupling condition:
d𝑄
d𝑡 −

𝜙
𝑅

= 0 on 𝛤E. (18)

2.5. Coupling conditions

For a flow-driven PEH, besides the coupling between the fluid and
structure, which can be seen as the exterior coupling, the PEH itself is
also a multiphysics system including the interior piezo-elastodynamics
coupling and electrode–circuit coupling (Eq. (18)). The focus of this
paper is on the exterior coupling, as the interior coupling of thin-
walled PEHs has been investigated in the authors’ previous work [33].
Therefore, only FSI coupling conditions are presented below.

At the fluid–solid interface 𝛤I on the reference configuration, the
following geometrical, kinematic and dynamic conditions should be
fulfilled:

𝐮A − 𝐮S = 𝟎 on 𝛤I, (19)

𝐯F − 𝐯S = 𝟎 on 𝛤I, (20)

𝐽A𝐓F𝐅−T
A 𝐧F + 𝐅S𝐒S𝐧S = 𝟎 on 𝛤I. (21)

n Eq. (21), 𝐧F,𝐧S are unit outward normal vectors opposite to each
ther (see in Fig. 1). Eqs. (19)–(20) also hold for the beam model in Sec-
ion 2.2.2, but the dynamic coupling condition Eq. (21) becomes [24]

[𝐽A𝐓F𝐅−T
A 𝐧F]] + 𝐟F = 0 on 𝛤I, (22)

here 𝛤I is the representative line of the beam itself, [[⋅]] means
he jump of the fluid dynamic stress through the immersed (non-
olumetric) thin-structure resulting from the pressure and velocity
hich are respectively strongly and weakly (gradient) discontinuous
long the fluid–solid interface [23,24]. It should also be noted that the
eam cross-section rotation 𝜓 has no coupling relation with the fluid
ield.

.6. Boundary conditions and initial conditions

In mathematics, the above governing equations make up a partial
ifferential equation (PDE) system w.r.t. the position and time. To
btain a specific solution to the PDE system, boundary conditions (BCs)
nd initial conditions (ICs) are required. The general expressions of BCs
nd ICs are available from many papers such as [3,24,30], so we do
ot repeat them here, whereas BCs and ICs for particular problems in
ections 4 and 5 will be clearly presented at corresponding parts.

. Monolithic solution scheme

We consider a monolithic solution scheme deriving from the
eighted residuals method on the reference configuration to three sub-
roblems: (I) a volumetric continuum solid, (II) a non-volumetric elastic
eam and (III) a non-volumetric PEH, all coupled with a flow. A unified
ramework applies to the three, but for the latter two, more unknown
ariables are concerned, and the strong discontinuity of the pressure
olution should be properly tackled.

.1. Weak forms

The numerical method to solve the PDE system of interest in this
ork is the finite element method, so weak forms are presented in the

ucceeding text.
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3.1.1. Fluid
Assuming Dirichlet conditions on the fluid boundary excluding the

fluid–solid interface (i.e., 𝜕𝛺F∖𝛤I) for simplicity, the weak form of the
N-S Eqs. (1)–(2) with test functions 𝛿𝐯F, 𝛿𝑝F is

∫𝛺F

(𝜌F𝐽A(
𝜕𝐯F
𝜕𝑡

+ (∇𝐯F)𝐅−1
A (𝐯F − 𝐯A)) ⋅ 𝛿𝐯F + 𝐽A𝐓F𝐅−T

A ∶(∇𝛿𝐯F))d𝑥

− ∫𝛤I
𝐽A𝐓F𝐅−T

A 𝐧F ⋅ 𝛿𝐯Fd𝑠 = 0 ∀𝛿𝐯F, (23)

∫𝛺F

(∇ ⋅ (𝐽A𝐅−1
A 𝐯F))𝛿𝑝Fd𝑥 = 0 ∀𝛿𝑝F, (24)

where d𝑥 indicates the integral is taken over the domain and d𝑠 on
he boundary, and 𝐯A = 𝜕𝐮A

𝜕𝑡 denotes the auxiliary velocity of the
LE mapping, without relation with 𝐯F. Integration by parts is used

in Eq. (23) to reduce the continuity requirement of 𝐯F while not in
Eq. (24).

The weak form of the mesh motion model Eq. (5) with test functions
𝛿𝐳A, 𝛿𝐯A is

∫𝛺F

(𝐳A ⋅ 𝛿𝐳A − 𝓁(∇𝐮A)∶(∇𝛿𝐳A))d𝑥 + ∫𝜕𝛺F

𝓁(∇𝐮A)𝐧F ⋅ 𝛿𝐳Ad𝑠 = 0 ∀𝛿𝐳A,

(25)

∫𝛺F

𝓁(∇𝐳A)∶(∇𝛿𝐯A)d𝑥 − ∫𝜕𝛺F

𝓁(∇𝐳A)𝐧F ⋅ 𝛿𝐯Ad𝑠 = 0 ∀𝛿𝐯A. (26)

Prescribing the Dirichlet boundary condition on 𝜕𝛺F∖𝛤I for 𝐮A and
accounting for Eq. (19), the boundary term in Eq. (26) will vanish.
Since the fourth-order biharmonic equation is written as two equations,
another boundary condition is required. It could be the Neumann
boundary condition (∇𝐮A)𝐧F = 𝟎 on 𝜕𝛺F, and thus the boundary term
in Eq. (25) will also vanish.

3.1.2. Continuum solid
Assuming Dirichlet boundary conditions on 𝜕𝛺S∖𝛤I and multiplying

with the test function 𝛿𝐯S, the weak form of the continuum solid model
Eq. (6) is

∫𝛺S

(𝜌S
𝜕2𝐮S
𝜕𝑡2

⋅ 𝛿𝐯S +𝐅S𝐒S∶(∇𝛿𝐯S))d𝑥−∫𝛤I
𝐅S𝐒S𝐧S ⋅ 𝛿𝐯Sd𝑠 = 0 ∀𝛿𝐯S. (27)

.1.3. Elastic beam
For the beam model Eq. (9), the weak form on the reference domain

S (= 𝛤I) with test function 𝛿𝐝S,𝑡 = [𝛿𝑢𝑡, 𝛿𝑤𝑡, 𝛿𝜓𝑡]T is

𝛺S

(𝜌S𝐆S
𝜕2𝐝S
𝜕𝑡2

⋅ 𝛿𝐝S,𝑡 + 𝐬S ⋅ 𝛿𝐞S,𝑡)d𝑥 − ∫𝛤I
𝐟F ⋅ 𝛿𝐯Sd𝑠 = 0 ∀𝛿𝐝S,𝑡. (28)

In Eq. (28), the test function for the beam internal force 𝐬S is 𝛿𝐞S,𝑡 =
𝛿( 𝜕𝜀𝜕𝑡 ), 𝛿(

𝜕𝜏
𝜕𝑡 ), 𝛿(

𝜕𝜅
𝜕𝑡 )]

T = [𝛿𝜀𝑡, 𝛿𝜏𝑡, 𝛿𝜅𝑡]T, which can be expressed by 𝛿𝐝S,𝑡
using the beam kinematics Eq. (13), and the test function for the fluid
force 𝐟F is 𝛿𝐯S = [𝛿𝑢𝑡, 𝛿𝑤𝑡]T (not 𝛿𝐝S,𝑡) since there is no bending moment
component in 𝐟F.

3.1.4. Thin-walled PEH
Integrating the model in Section 2.2.2 for the elastic substrate

structure, the model in Section 2.3 for the piezoelectric layers, and the
model in 2.4 for the electrodes and circuit, as presented in our previous
work [33], we can obtain a geometrically nonlinear model for beam-
like PEHs. The weak form of such an electromechanical system may be
written as

+ ∫𝛺S

(𝐌PEH
𝜕2𝐝S
𝜕𝑡2

⋅ 𝛿𝐝S,𝑡 + 𝐬PEH ⋅ 𝛿𝐞S,𝑡)d𝑥 − ∫𝛤I
𝐟F ⋅ 𝛿𝐯Sd𝑠 (29a)

+ ∫𝛤E
ℵ1(𝜙, 𝜅)𝛿𝜙𝑡d𝑠 + ∫𝛤E

ℵ2(𝜙, 𝜅)𝛿𝜅𝑡d𝑠 (29b)

= 0 ∀𝛿𝐝S,𝑡, 𝛿𝜙𝑡, (29c)
5

Fig. 3. Splitting domain method to account for pressure discontinuity.

where a new test function 𝛿𝜙𝑡 = 𝛿( 𝜕𝜙𝜕𝑡 ) is introduced to enforce
the electrode–circuit coupling condition Eq. (18), ℵ1(𝜙, 𝜅), ℵ2(𝜙, 𝜅) are
functions describing the electric property of the PEH, and 𝛤E = 𝛤I if the
beam surfaces are fully covered by the electrodes. The model Eq. (29)
is formulated in a manner that all variables under consideration of
the laminated piezoelectric beam are condensed onto a representative
line (it may not coincide with the representative line of a single-layer
elastic beam), and mechanical quantities associated with this line is still
denoted by the subscript (⋅)S since they have the same physical meaning
as that of a single-layer elastic beam. In Eq. (29a), 𝐌PEH is a matrix
composed of the inertial parameters of the PEH which is dependent on
𝜌S, 𝜌P and 𝐆S (Eq. (10)), 𝐆P (Eq. (15)). Similarly, 𝐬PEH can be expressed
with a matrix describing the elastic behavior as 𝐬PEH = 𝐁PEH𝐞S, and
PEH also depends on the parameters of both the substrate structure

and the piezoelectric layers.

3.2. Method to tackle strongly discontinuous pressure

If a thin-walled structure immersed in a flow is modeled to be
non-volumetric, the different values of physical quantities through
the structure thickness cannot naturally be captured using a classical
continuous finite element framework because the thickness is geomet-
rically represented by only one node. However, if this node is the
common node shared by two different field variables, the values of
the two variables at this node are independent of each other unless an
additional coupling condition is applied. Based on this idea, we propose
a simple method to tackle the strongly discontinuous pressure solution
along the fluid–beam interface. As shown in Fig. 3, the fluid domain 𝛺F
s divided into two sub-domains 𝛺F,1, 𝛺F,2 by the fluid–beam interface
I and an artificial line 𝛤AI, after which it is feasible to use two different
ariables 𝑝F,1, 𝑝F,2 to represent the pressure solution over 𝛺F. 𝑝F,1, 𝑝F,2
re continuous in their respective sub-domains 𝛺F,1, 𝛺F,2, while at the
nterface 𝛤I, their values may be different because of the immersed
tructure. By this way, the numerical model successfully preserves the
ain features of the real pressure distribution of a flow surrounding
thin-walled structure. As for the values of 𝑝F,1, 𝑝F,2 at 𝛤AI, they

re continuous since the pressure field is continuous in physics if no
erturbation takes place at 𝛤AI.

emark 1. In implementation, the artificial line 𝛤AI is necessary only
n the construction of the function space for pressure. After meshing,
AI naturally becomes one part of the interior boundary of the meshed
omain (or the exterior boundary of the two sub-domains) and there is
o need of any particular measures to eliminate this artificial line.

emark 2. We note that the proposed splitting-domain method ad-
resses the problem with pressure discontinuity by enabling different
egrees of freedom at an interface node. It does not rely on any node
anipulation (see, e.g., ‘‘node doubling’’ in [34,35]).

.3. Monolithic-weak forms for coupled problems

Following the spirit of a monolithic FSI algorithm treating the fluid
nd solid as one surface-coupled continuum, we define the velocity 𝐯
n the whole reference domain 𝛺 = 𝛺F ∪𝛺S as

=

{

𝐯F in 𝛺F (30)

𝐯S in 𝛺S.
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Since a boundary-fitted approach is used, the computational do-
mains of the fluid and solid share common nodes on their interface,
so with a global velocity 𝐯, the kinematic coupling condition Eq. (20)
is satisfied by construction. Furthermore, with a common test function
𝛿𝐯, the boundary term in Eq. (23) for the flow and that in Eq. (27)
for the solid cancel each other due to the dynamic coupling condition
Eq. (21).

The geometrical coupling condition Eq. (19) is imposed through the
addition of a Lagrangian term [36] ∫𝛤I 𝐠 ⋅ (𝐯A − 𝐯)d𝑠, to which the first
variation is

∫𝛤I
((𝐯A − 𝐯) ⋅ 𝛿𝐠 + 𝐠 ⋅ (𝛿𝐯A − 𝛿𝐯))d𝑠 = 0 ∀𝛿𝐠, 𝛿𝐯A, 𝛿𝐯. (31)

The Lagrange multiplier 𝐠 may be regarded as a ‘‘force’’ which prevents
the moving mesh and the structure from penetrating or separating.
Eq. (31) is an alternative choice to satisfy the geometrical coupling
condition other than the common method in literature, e.g., [26,27,37],
where a global variable of displacement in 𝛺 = 𝛺F ∪ 𝛺S is defined
for the mesh motion model and the structure, and thus the geometrical
coupling condition is satisfied by construction. Nevertheless, the benefit
of Eq. (31) is obvious: It expresses the geometrical coupling condition
explicitly, and the degrees of freedom are fewer since the variable
associated with the mesh motion model (𝐯A in 𝛺F) does not extend
to 𝛺S, which, further eliminates the necessity of the expression w.r.t.
𝐯A in 𝛺S.

3.3.1. A volumetric solid coupled with a flow
We can attain the monolithic-weak form of sub-problem (I) by

combining Eqs (23)–(27), (31), and it is

+ ∫𝛺F

(𝜌F𝐽A(
𝜕𝐯
𝜕𝑡

+ (∇𝐯)𝐅−1
A (𝐯 − 𝐯A)) ⋅ 𝛿𝐯 + 𝐽A𝐓F𝐅−T

A ∶(∇𝛿𝐯))d𝑥

+ ∫𝛺F

(∇ ⋅ (𝐽A𝐅−1
A 𝐯))𝛿𝑝Fd𝑥 (32a)

+ ∫𝛺F

(𝐳A ⋅ 𝛿𝐳A − 𝓁(∇𝐮A)∶(∇𝛿𝐳A))d𝑥 + ∫𝛺F

𝓁(∇𝐳A)∶(∇𝛿𝐯A)d𝑥 (32b)

+ ∫𝛺S

(𝜌S
𝜕2𝐮S
𝜕𝑡2

⋅ 𝛿𝐯 + 𝐅S𝐒S∶(∇𝛿𝐯))d𝑥 (32c)

+ ∫𝛤I
((𝐯A − 𝐯) ⋅ 𝛿𝐠 + 𝐠 ⋅ (𝛿𝐯A − 𝛿𝐯))d𝑠 (32d)

= 0 ∀𝛿𝐯A, 𝛿𝐯, 𝛿𝑝F, 𝛿𝐳A, 𝛿𝐠. (32e)

It is clear that Eq. (32) includes five primary unknowns to be solved:
uxiliary velocity 𝐯A of the fluid mesh in 𝛺F, global velocity for the
low and solid 𝐯 in 𝛺, fluid pressure 𝑝F in 𝛺F, intermediate mesh

variable 𝐳A in 𝛺F, and Lagrange multiplier 𝐠 on 𝛤I. Other variables
present in Eq. (32) such as 𝐮A,𝐮S can be expressed by the above primary
unknowns using an appropriate time integration scheme, which is
discussed later on in Section 3.4.

3.3.2. A non-volumetric beam coupled with a flow
Similarly, combining Eqs. (23)–(26), (28), (31) with the method in

Section 3.2 to account for the pressure discontinuity, the monolithic-
weak form of sub-problem (II) is stated as

+
2
∑

𝑗=1
∫𝛺𝑗

(𝜌F𝐽A(
𝜕𝐯
𝜕𝑡

+ (∇𝐯)𝐅−1
A (𝐯 − 𝐯A)) ⋅ 𝛿𝐯 + 𝐽A𝐓F,𝑗𝐅−T

A ∶(∇𝛿𝐯))d𝑥

+
2
∑

𝑗=1
∫𝛺𝑗

(∇ ⋅ (𝐽A𝐅−1
A 𝐯))𝛿𝑝F,𝑗d𝑥 (33a)

+
2
∑

𝑗=1
∫𝛺𝑗

(𝐳A ⋅ 𝛿𝐳A − 𝓁(∇𝐮A)∶(∇𝛿𝐳A))d𝑥 +
2
∑

𝑗=1
∫𝛺𝑗

𝓁(∇𝐳A)∶(∇𝛿𝐯A)d𝑥

(33b)

+ (𝜌S𝐆S
𝜕2𝐝S ⋅ 𝛿𝐝S,𝑡 + 𝐬S ⋅ 𝛿𝐞S,𝑡)d𝑠 (33c)
6

∫𝛤I 𝜕𝑡2
+ ∫𝛤I
((𝐯A − 𝐯) ⋅ 𝛿𝐠 + 𝐠 ⋅ (𝛿𝐯A − 𝛿𝐯))d𝑠 (33d)

= 0 ∀𝛿𝐯A, 𝛿𝐯, 𝛿𝜓𝑡, 𝛿𝑝F,1, 𝛿𝑝F,2, 𝛿𝐳A, 𝛿𝐠. (33e)

For sub-problem (II), 𝛺F = 𝛺 and 𝛺S = 𝛤I, so in line (33a), (33b), 𝛺F,𝑗
s simplified to be 𝛺𝑗 , and in line (33c), 𝛺S is replaced by 𝛤I. In line
33a), the subscript (⋅)𝑗 shows for the stress 𝐓F because 𝐓F is dependent
n the pressure 𝑝F, as seen in Eq. (3). Except for the five unknowns
resent also in sub-problem (I), two other unknowns, i.e., the time rate
f beam cross-section rotation 𝜓𝑡 and an additional fluid pressure field
F,1 or 𝑝F,2 have to be solved for sub-problem (II). Exactly the same as
A,𝐮S, the beam cross-section rotation 𝜓 is also computed by the time
ntegration scheme.

.3.3. A non-volumetric PEH coupled with a flow
The monolithic-weak form of sub-problem (III) is obtained by sub-

tituting line (33c) with the weak form of a thin-walled PEH Eq. (29):

+
2
∑

𝑗=1
∫𝛺𝑗

(𝜌F𝐽A(
𝜕𝐯
𝜕𝑡

+ (∇𝐯)𝐅−1
A (𝐯 − 𝐯A)) ⋅ 𝛿𝐯 + 𝐽A𝐓F,𝑗𝐅−T

A ∶(∇𝛿𝐯))d𝑥

+
2
∑

𝑗=1
∫𝛺𝑗

(∇ ⋅ (𝐽A𝐅−1
A 𝐯))𝛿𝑝F,𝑗d𝑥 (34a)

+
2
∑

𝑗=1
∫𝛺𝑗

(𝐳A ⋅ 𝛿𝐳A − 𝓁(∇𝐮A)∶(∇𝛿𝐳A))d𝑥 +
2
∑

𝑗=1
∫𝛺𝑗

𝓁(∇𝐳A)∶(∇𝛿𝐯A)d𝑥

(34b)

+ ∫𝛤I
(𝐌PEH

𝜕2𝐝S
𝜕𝑡2

⋅ 𝛿𝐝S,𝑡 + 𝐬PEH ⋅ 𝛿𝐞S,𝑡)d𝑠 (34c)

+ ∫𝛤E
ℵ1(𝜙, 𝜅)𝛿𝜙𝑡d𝑠 + ∫𝛤E

ℵ2(𝜙, 𝜅)𝛿𝜅𝑡d𝑠 (34d)

+ ∫𝛤I
((𝐯A − 𝐯) ⋅ 𝛿𝐠 + 𝐠 ⋅ (𝛿𝐯A − 𝛿𝐯))d𝑠 (34e)

= 0 ∀𝛿𝐯A, 𝛿𝐯, 𝛿𝜓𝑡, 𝛿𝜙𝑡, 𝛿𝑝F,1, 𝛿𝑝F,2, 𝛿𝐳A, 𝛿𝐠, (34f)

where one more unknown is involved if compared with sub-problem
II), i.e., the time rate of the PEH voltage output 𝜙𝑡, so finally, for

thin-walled PEH immersed in a flow, we need to solve for eight
nknowns.

.4. Time integration scheme

The monolithic-weak forms presented in Section 3.3 are ready to be
iscretized in finite dimensional sub-spaces. The obtained semi-discrete
quations are then able to be solved with the help of an appropri-
te time integration scheme. In this work, we use the generalized-𝛼
ethod, which is proposed by [38] for structural dynamics and ex-

ended by [39] to fluid dynamics. This method is also used for FSI
roblems such as [40,41], but some special issues should be noted
n such cases, particularly when working with a monolithic coupling
lgorithm, since structural dynamics equation is second-order differen-
ial w.r.t. time (Eq. (6)), while fluid dynamics equation is first-order
ifferential w.r.t. time (Eq. (1)).

In what follows, the computational time interval [0, 𝑇 ] is subdivided
nto time instants 0 = 𝑡0 < 𝑡1 < 𝑡2⋯ < 𝑡𝑁 = 𝑇 with time increment
𝑡 = 𝑡𝑛+1 − 𝑡𝑛, 𝑛 = 0, 1, 2,… , 𝑁 − 1; variables already known at 𝑡𝑛 are
enoted with the superscript (⋅)𝑛 and variables to be solved at the next
ime step with (⋅)𝑛+1; first-order differential w.r.t. time is indicated by
he subscript (⋅)dif and single integral w.r.t. time by (⋅)int .

.4.1. Generalized-𝛼 method for fluid dynamics
For fluid dynamics, we choose the velocity as the primary unknown

. The fluid acceleration at time instant 𝑡𝑛+1 is then given by [39]

𝑛+1 = 1 (𝑈𝑛+1 − 𝑈𝑛) +
𝛾F − 1

𝑈𝑛 , (35)
dif 𝛾F𝛥𝑡 𝛾F dif
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where 𝛾F is a free parameter at this point. To achieve a second-order
ccurate and unconditionally stable method, the following equations
re finally used to update the semi-discrete system of interest [39]:
𝑛+𝛼F𝑓 = 𝑈𝑛 + 𝛼F𝑓 (𝑈

𝑛+1 − 𝑈𝑛), (36)
𝑛+𝛼F𝑚
dif = 𝑈𝑛

dif + 𝛼
F
𝑚(𝑈

𝑛+1
dif − 𝑈𝑛

dif ). (37)

q. (36) is also employed to update the fluid pressure field. Parameters
F
𝑚, 𝛼

F
𝑓 , 𝛾

F are expressed using the spectral radius 𝜌F∞ ∈ [0, 1] that
specifies high frequency damping

𝛼F𝑚 = 1
2
(
3 − 𝜌F∞
1 + 𝜌F∞

), 𝛼F𝑓 = 1
1 + 𝜌F∞

, 𝛾F = 1
2
+ 𝛼F𝑚 − 𝛼F𝑓 . (38)

.4.2. Generalized-𝛼 method for structural dynamics
For the structural dynamics, we also choose the velocity and time

ate quantities (e.g., 𝜓𝑡, 𝜙𝑡) as the primary unknown 𝑈 . The acceleration
nd (equivalent) displacement as well as the velocity are then updated
y [38]

𝑛+1
dif =

(𝛾S − 1)
𝛾S

𝑈𝑛
dif +

1
𝛥𝑡𝛾S

(𝑈𝑛+1 − 𝑈𝑛), (39)

𝑈𝑛+1
int = 𝑈𝑛

int +
𝛥𝑡(𝛾S − 𝛽S)

𝛾S
𝑈𝑛 +

𝛥𝑡2(𝛾S − 2𝛽S)
2𝛾S

𝑈𝑛
dif +

𝛥𝑡𝛽S

𝛾S
𝑈𝑛+1, (40)

𝑛+𝛼S𝑚
dif = 𝑈𝑛

dif + 𝛼
S
𝑚(𝑈

𝑛+1
dif − 𝑈𝑛

dif ), (41)
𝑛+𝛼S𝑓
int = 𝑈𝑛

int + 𝛼
S
𝑓 (𝑈

𝑛+1
int − 𝑈𝑛

int ), (42)
𝑛+𝛼S𝑓 = 𝑈𝑛 + 𝛼S𝑓 (𝑈

𝑛+1 − 𝑈𝑛). (43)

arameters 𝛼S𝑓 , 𝛼
S
𝑚, 𝛾

S are still used to realize second-order accuracy
nd unconditional stability, given with the spectral radius 𝜌S∞ ∈ [0, 1]
y [38]

S
𝑚 =

2 − 𝜌S∞
1 + 𝜌S∞

, 𝛼S𝑓 = 1
1 + 𝜌S∞

, 𝛾S = 1
2
+𝛼S𝑚−𝛼

S
𝑓 , 𝛽S = 1

4
(1+𝛼S𝑚−𝛼

S
𝑓 )

2.

(44)

.4.3. Generalized-𝛼 method for monolithic FSI
We note that for the FSI problems present in Section 3.3, four more

ariables in addition to that mentioned in Sections 3.4.1 and 3.4.2, need
o be updated, i.e., the auxiliary displacement 𝐮A, auxiliary velocity
A, mesh intermediate variable 𝐳A, and Lagrange multiplier 𝐠. 𝐮A is
pdated using Eq. (42) since no formulation is available to update the
isplacement in Section 3.4.1, and thus it is natural to use Eq. (43)
ather than Eq. (36) to update 𝐯A and 𝐳A; 𝐠 is updated also with
q. (43).

Considering the kinematic and dynamic coupling conditions Eqs.
20)–(21), the fluid and solid velocity should be evaluated at the same
ime instant, otherwise the overall FSI scheme will be less stable and
ess accurate [42]. This requirement renders 𝛼F𝑓 = 𝛼S𝑓 if comparing
q. (36) with Eq. (43), thus 𝜌F∞ = 𝜌S∞. Further more, since we work
ith a monolithic algorithm, we need to evaluate the fluid and solid
cceleration also at the same time instant, which necessities 𝛼F𝑚 = 𝛼S𝑚.
f both 𝜌F∞ = 𝜌S∞ and 𝛼F𝑚 = 𝛼S𝑚 are satisfied, 𝜌F∞ = 𝜌S∞ = 1 will be the
nly choice. However, 𝜌F∞ = 𝜌S∞ = 1 means no high frequency damping
s introduced, resulting in an insufficiently robust numerical scheme
n practice. This issue may be alleviated by selecting an appropriate
F
∞ and determining both the fluid and solid parameters 𝛼F𝑚, 𝛼

F
𝑓 , 𝛼

S
𝑚, 𝛼

S
𝑓

sing Eq. (38). By this way, the fluid sub-problem is always optimally
amped, and the time integration scheme for the solid sub-problem
emains second-order accurate and unconditionally stable since the
xpressions for 𝛾S, 𝛽S in Eq. (44) still hold [40].
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n

.5. Solution algorithm

With space discretization using the Galerkin method (same trial and
est function space for a variable) and time integration using the above
eneralized-𝛼 method, we obtain a nonlinear algebraic set of equations
iven by

(𝐱) = 𝟎, (45)

here  represents the coupled system Eq. (32), Eq. (33) or Eq. (34)
fter spatial and temporal discretization, and 𝐱 is the corresponding
rimary unknowns. The Newton–Raphson (N-R) method [43] is used
o solve Eq. (45): in each time step, the following linear equation is
olved iteratively

1 = 𝐱0 − (𝐱0)
 ′(𝐱0)

, (46)

where 𝐱0 and 𝐱1 are the solution in the current and the next iteration
tep, respectively,  ′(𝐱0) = 𝜕

𝜕𝐱 (𝐱
0), until the difference between 𝐱0 and

𝐱1 smaller than the given tolerance criterion.

4. Model validation: two FSI benchmark problems

In this section, we implement two popular benchmark problems in
the FSI community to validate the monolithic solution scheme proposed
in Section 3. We restrict to two dimensions (2D) to decrease the
computational cost. The continuum solid model in Section 2.2.1 is
reduced to a 2D problem using the plane strain assumption. The beam
in Section 2.2.2 thus becomes a plate with the unit width 𝑏S = 1

, and considering the beam model is derived using the plane stress
ssumption, we modify the beam bending stiffness by multiplying with
coefficient 1∕(1 − 𝜈2S) to make it consistent with the continuum solid
odel. Finite element function spaces chosen for the primary unknowns
A, 𝐯, 𝑝F (or 𝑝F,1, 𝑝F,2), 𝜓𝑡, 𝐳A, 𝐠 are Lagrange 𝑃 2, 𝑃2, 𝑃1, 𝑃1, 𝑃2, 𝑃2. With
his choice, stable discretization of the fluid field is achieved us-
ng Taylor–Hood 𝑃 2∕𝑃 1 elements [44], and shear-locking effects are
void for the beam model [45]. All simulations are performed using
he open-source computing platform FEniCS [46] and the extension
ultiphenics. FEniCS can discretize mathematical models and generate

fficient finite element code. To solve the nonlinear weak form with
he N-R method, the automatic functional differentiation (AD) in the
nified Form Language (UFL) is employed. The resulting monolithic

ystem of algebraic equations within each Newton’s step can be solved
ith a variety of techniques available through the linear algebra back-
nd PETSc [47]. A parallel direct solver (MUMPS [48]) is used in
he following numerical examples, where the degrees of freedom are
etween 1×105 and 2×105. If the problem size is larger, preconditioning
ay be required, e.g., to simplify the Jacobian in the N-R method

y neglecting all derivatives w.r.t. the ALE deformation [49]. The
onvergence of simulation results w.r.t. the number of finite elements
nd time step size is examined for every example.

.1. Benchmark 1: a flexible structure attached to a rigid cylinder in a flow

.1.1. Problem setup
This problem is the FSI2 benchmark taken from [50]. The geomet-

ical configuration and boundary conditions are shown in Fig. 4, where
he velocity profile in 𝑥-direction at 𝛤in is

𝑥 =

{

1.5 4𝑦(0.41−𝑦)
0.412

1−cos(0.5𝜋𝑡)
2 , if 𝑡 < 2

1.5 4𝑦(0.41−𝑦)
0.412 otherwise.

(47)

The left end of the elastic structure is attached to the fixed cylinder,
with the length of 0.35 m and thickness of 0.02 m. Point A (0.6, 0.2) is
he center of the structure free end, which serves as a control point
or the numerical validation. Material parameters are: 𝜌F = 103 kgm−3,
F = 1 kg(ms)−1; 𝜌S = 104 kgm−3, 𝜇S = 5×105 Pa, 𝜈S = 0.4. The Reynolds

umber of this setup is 100. After the flow is fully developed, the

https://fenicsproject.org
https://mathlab.sissa.it/multiphenics
https://fenicsproject.org
https://fenics.readthedocs.io/projects/ufl/en/latest/manual/form_language.html#automatic-functional-differentiation
https://petsc.org/
http://mumps.enseeiht.fr/
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Fig. 4. Geometrical configuration and boundary conditions of the FSI benchmark 1, length unit [m].
Fig. 5. Comparison of the displacements at point A obtained by solution of Eq. (32) and the reference data, benchmark 1.
flexible structure will maintain vortex-induced periodic oscillations at
a constant magnitude. In addition to the physical boundary conditions
described above, we prescribe no-slip condition on 𝛤in ∪𝛤out ∪𝛤obstacle ∪
𝛤wall for the moving mesh.

4.1.2. Numerical results when using the volumetric solid
In this part, we compare the displacement of point A (0.6, 0.2) and

lift force around the cylinder and the flexible structure (flag) obtained
by solving Eq. (32) with reference data available here, as shown in
Fig. 5 and Fig. 6. The computational time interval is [0 s, 15 s], and
the time step size is 0.01 s. The number of the mesh elements 𝑁elem
is 9496, and the number of the degrees of freedom 𝑁dof is 106641.
The tolerance criterion for the N-R method is set to be 1 × 10−8. It is
clear to see from Figs. 5–6 that all quantities in the comparison are
in good agreement. For instance, the reference values for the 𝑥 and
𝑦 displacement given by [50] are (−1.458 ± 1.244) × 10−2 m, (0.123 ±
8.06) × 10−2 m, respectively; in our simulation, the two values are
(−1.479 ± 1.301) × 10−2 m and (0.125 ± 8.125) × 10−2 m, so the relative
error between the 𝑦 displacement is approximately 0.8%.

The artificial material parameter of the moving mesh is 𝓁 = 0.01
Pa. In principle, the value of 𝓁 does not influence the physical solution
as long as the associated ALE mapping is well realized. However, for
the monolithic-weak form proposed in this work, the moving mesh
equation Eq. (26) shares a common test function 𝛿𝐯A with the geomet-
rical coupling condition Eq. (31), meaning that the moving mesh is not
completely non-physical, so the value of 𝓁 should be carefully deter-
mined. The method is to choose an adequately small 𝓁 that ensures the
physical solution not sensitive to 𝓁 when 𝓁 is smaller, but apparently,
𝓁 cannot be extremely small since the mesh equation should play a
role in the coupled system. The value of the spectral radius 𝜌F∞ for the
time integration scheme does not affect the simulation result, but the
computation becomes not robust if without numerical damping. As seen
in the sub-figure of Fig. 6, when 𝜌F∞ = 1, the curve of the lift force on the
flag is not smooth after 13 s, whereas when 𝜌F∞ = 0.9, a smooth curve
for the lift force over the computational time is achieved. It seems that
at about 10 s, the curve of the reference data is not smooth, too. The
reason could be also relevant to the numerical damping of the time
integration scheme, which is however, not mentioned in the original
reference paper [50].
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4.1.3. Numerical results when using the non-volumetric beam
This part is devoted to the numerical results of sub-problem (II),

where the structure is modeled as a non-volumetric beam. The com-
parison is between Eq. (32) and Eq. (33) since Eq. (32) has been well
validated in Section 4.1.2. The same mesh with 𝑁elem = 9496 is used
in this simulation, but for Eq. (33), 𝑁dof = 121094, a bit larger than
that for Eq. (32). Except for the displacement (Fig. 7) and lift force
(Fig. 8), the pressure distribution at several time instants is also given
to show that Eq. (33) is capable of capturing the strong discontinuity
of the pressure solution, as seen in Fig . 9.

Fig. 7 shows that the displacement predicted by Eq. (33) is slightly
larger than that by Eq. (32). If taking the 𝑦 displacement obtained from
Eq. (32) as the reference, the relative error is approximately 10% (for
Eq. (33), 𝑦 displacement is (0.118 ± 8.936) × 10−2 m). This prediction is
consistent with Fig. 8, where the lift force on the flag and the cylinder is
presented. The lift on the flag when using the beam model is evaluated
along a path that coincides with the real structure shape. Eq. (33) pre-
dicts also a bit higher lift on the flag, but the lift on the cylinder is the
same, which implies that splitting the fluid domain does not impair the
accuracy of computational results. Therefore, the discrepancy between
the results of Eq. (33) and Eq. (32) may originate from the geometry
change of the flag in the two structural model. Actually, the flexible
structure in this benchmark problem is not very thin (the thickness-to-
length ratio is 5.7%), so there exists non-negligible effects of weakly
discontinuous velocity gradient along the fluid–solid interface, which,
nevertheless, is not accounted for in Eq. (33). At this point, we may
postulate that if the flexible structure is adequately thin, Eq. (33) will
predict results much more similar to that of Eq. (32). This postulation
is demonstrated in the second benchmark problem.

4.2. Benchmark 2: a flexible structure attached to a rigid square in a flow

4.2.1. Problem setup
This benchmark has been reported widely in literature. Fig. 10

shows the problem setting re-sketched based on [41]. The center of
the rigid square is fixed at point C (0.05, 0.06), and the free end of the
flexible structure is at point A (0.095, 0.06). They are initially immersed
in a uniform flow with 𝑣∞ = 0.513 ms−1. The structure length is 0.04 m
and the thickness is 0.0006 m. Material parameters are: 𝜌F = 1.18
kgm−3, 𝜇 = 1.82 × 10−5 kg(ms)−1; 𝜌 = 102 kgm−3, 𝑐 = 2.5 × 105
F S S

http://www.mathematik.tu-dortmund.de/~featflow/en/benchmarks/cfdbenchmarking/fsi_benchmark/fsi_reference.html
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Fig. 6. Comparison of the lift force obtained from the solution of Eq. (32) and the reference data, benchmark 1.

Fig. 7. Comparison of the displacement at point A obtained by solution of Eqs. (32) and (33), benchmark 1.

Fig. 8. Comparison of the lift force obtained from solution of Eqs. (32) and (33), benchmark 1.
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Fig. 9. Pressure distribution at different time instants, benchmark 1.
Pa, 𝜈S = 0.35. The Reynolds number of this setup is approximately 333.
The boundary conditions for the moving mesh are the same as that in
Section 4.1.1.

4.2.2. Numerical results for solid/beam model
For this benchmark, the computational time interval is [0 s, 12 s],

the time step size is 𝛥𝑡 = 0.006 s, the artificial material parameter
of the moving mesh is 𝓁 = 0.001 Pa, and the spectral radius is
𝜌F∞ = 0.7. The same mesh with 𝑁elem = 13536 is used for the two
simulations, and 𝑁dof = 169728 for Eq. (32) while 𝑁dof = 171450
for Eq. (33). The tolerance criterion for the N-R method is 5 × 10−8.
The displacement of the control point A is shown in Fig. 11, and as
before, the pressure distribution at different time instants obtained
from Eq. (33) is also presented (Fig. 12). It can be seen that for this
thin structure (the thickness-to-length ratio is 1.5%), no significant
difference in the long-term response is observed between the results
of the two simulations.
10
According to Table 2 of paper [13], which summarizes the numer-
ical results of this problem available from eight papers (all using a
partitioned coupling algorithm), the oscillating frequency of the flexible
structure and its maximum tip displacement in 𝑦-direction are in the
range [2.77 Hz, 3.25 Hz] and [0.0095 m, 0.014 m], respectively. In
our simulation, the frequency is approximately 3.25 Hz, and the trans-
verse vibration magnitude (Fig. 11(b)) obviously drops to the above
range. Therefore, the monolithic solution scheme given by Eq. (32) and
Eq. (33) are well validated against this benchmark problem.

5. Numerical examples of flow-driven PEHs

In the preceding section, the monolithic solution scheme developed
for a classical FSI setting (sub-problem (I), Eq. (32)) and for a special
case where a non-volumetric representation is employed for the solid
(sub-problem (II), Eq. (33)) has been validated via numerical experi-
ments. In this section, we consider sub-problem (III), i.e., a beam-like
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Fig. 10. Geometrical configuration and boundary conditions of the FSI benchmark 2, length unit [m].
Fig. 11. Comparison of the displacement at point A between Eqs. (32) and (33), benchmark 2.
EH driven by a flow, given by Eq. (34). Extension from sub-problem
II) to sub-problem (III) is straightforward, with only two revisions:
1) as seen in Eq. (34c), the matrices associated with the inertial pa-
ameters and the elastic parameters need to be tailored for a PEH, and
2) the voltage-related equation Eq. (34d) should be incorporated. This
ethod is illustrated in what follows by two numerical examples, both

aking a symmetric bimorph that bears a parallel-connection circuit
nd is fully covered by the electrodes (a PEH in this configuration is
hown in Fig. 1) to harvest flow energy. The two examples manifest
hat the proposed framework is feasible to investigate thin-walled PEHs
mmersed in fluid.

.1. PEH specific equations

With reference to our previous work [33], for a PEH in the afore-
entioned configuration, the matrices to describe its inertial and elastic
11
behavior are

𝐌PEH =

⎡

⎢

⎢

⎢

⎣

𝜌S𝑏SℎS + 2𝜌P𝑏PℎP 0 0
0 𝜌S𝑏SℎS + 2𝜌P𝑏PℎP 0

0 0
𝜌S𝑏Sℎ

3
S

12
+ 2𝜌P𝑏P(

ℎ3P
12

+ ℎP(ℎS+ℎP)
2

4
)

⎤

⎥

⎥

⎥

⎦

,

(48)

𝐁PEH =

⎡

⎢

⎢

⎢

⎢

⎣

𝑐S𝑏SℎS + 2𝑐P𝑏PℎP 0 0
0 𝑐S𝑏SℎS

2(1+𝜈S)
+ 𝑐P𝑏PℎP

(1+𝜈P)
0

0 0
𝑐S𝑏Sℎ

3
S

12
+ 2𝑐P𝑏P(

ℎ3P
12

+ ℎP(ℎS+ℎP)
2

4
)

⎤

⎥

⎥

⎥

⎥

⎦

,

(49)

where 𝑏S = 𝑏P = 𝑏 = 1 m in the 2D FSI implementation, and the
bending stiffness of the piezoelectric beam should also be corrected
to keep consistent with the plane strain assumption, as explained in
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Fig. 12. Pressure distribution at different time instants, benchmark 2.
Section 4. The voltage-related equations are

ℵ1(𝜙, 𝜅) = 𝑒31𝑏(ℎS + ℎP)𝜅 +
2𝑏𝜖𝑆33𝜙
ℎP

− 𝑒31𝑏(ℎS + ℎP)𝜅𝑡 −
2𝑏𝜖𝑆33𝜙𝑡
ℎP

−
𝜙
𝑅𝐿b

,

(50)

ℵ2(𝜙, 𝜅) = −𝑒31𝑏(ℎS + ℎP)𝜙. (51)

The time rate of the PEH output voltage 𝜙𝑡 is a new unknown variable
to be solved. The finite element ansatz function for 𝜙𝑡 is 1 since it
is independent of the space (i.e., the equipotential condition [3]).
For simplicity, some terms associated with the structural non-linearity
that almost do not reduce the model accuracy are omitted in Eqs.
(48)–(51) [33].

5.2. A PEH immersed in a cross flow

5.2.1. Problem setup
The setup of this flow-driven PEH is adapted from a heart-valve-

inspired benchmark problem [15]. The cantilevered PEH is fixed at one
end on the wall of a channel and undergoes large deformation due to
the cross flow, as seen in Fig. 13. The fluid velocity in 𝑥-direction at
𝛤in is periodically changed, given by

𝑣𝑥 = 5000𝑦(0.06 − 𝑦)sin(20𝜋𝑡). (52)

The bimorph length is 𝐿b = 2 × 10−2 m, and the total thickness
is 2 × 10−4 m, with ℎP = 8 × 10−5 m, ℎS = 4 × 10−5 m. Material
parameters are: 𝜌F = 1260 kgm−3, 𝜇F = 1.42 kg(ms)−1; 𝜌S = 2800 kgm−3,
𝑐S = 7×1010 Pa, 𝜈S = 0.35; 𝜌P = 7800 kgm−3, 𝑐P = 6.6×1010 Pa, 𝜈P = 0.35,
𝑒31 = −12.54 Cm−2, 𝜖𝑆33 = 1.3281 × 10−8 Fm−1. The resistive load in
the circuit is 𝑅 = 50 kΩ. The physical scenario of this setup may be
12
regarded as a bimorph made from aluminum alloy (the substrate) and
PZT-5A (the piezo-layers) immersed in glycerine. The Reynolds number
computed from 𝜌F𝐿b max(𝑣𝑥)∕𝜇F is 80. The boundary conditions for the
moving mesh are no-slip condition on 𝛤in∪𝛤out∪𝛤wall, and slip condition
on 𝛤symmetry.

5.2.2. Numerical results
For this practical application, we set the computational time interval

to be [0 s, 0.8 s], the time step size 𝛥𝑡 = 0.001 s, the artificial material
parameter of the moving mesh 𝓁 = 0.01 Pa, the spectral radius 𝜌F∞ = 0.9,
and 𝑁elem = 10368, 𝑁dof = 131833. The tolerance criterion for the N-R
method is 5 × 10−7.

Fig. 14 shows the displacement of the control point A and the
voltage output of the PEH. In Figs. 14(a) and 14(b), the continuum
solid model only takes into account the mechanical parameters of the
substrate structure and the piezoelectric layers (no piezoelectric effects,
no attached circuit). It can be calculated from Fig. 14(c) that the peak
power output of this PEH is approximately 0.6 W (= (max(𝜙))2

𝑅 ), which
seems too high for a real PEH. This high value can be explained from
the perspective of the physical setting. On one hand, the deformation
of the PEH is large, as seen in Fig. 14(a) or Fig. 15; on the other hand,
the surfaces of the PEH are large since the width is 1 m, and they are
fully covered by electrodes, so in this setting, a big number of electric
charges are collected and they form alternating current in the attached
circuit. Because no cancellation of the electrical outputs [51] occurs in
the deformation pattern of this PEH, we deduce that 0.6 W could be a
satisfactory power output of this PEH when compared with cases where
the piezoelectric layers are partially covered by electrodes. One could
simply modify the voltage-related Eqs. (50)–(51) to further study these
cases, but this topic is highly relevant to the interior coupling of PEHs,
which is however, not the focus of this paper, so we do not remark
more on it.
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𝑚

Fig. 13. Geometrical configuration and boundary conditions of the cross-flow-driven PEH, length unit [m].
Fig. 14. Displacement of point A and voltage output of the cross-flow-driven PEH.
Fig. 15. Deformation of the cross-flow-driven PEH at 𝑡 = 0.425 s.
5.3. A PEH immersed in an axial flow

5.3.1. Problem setup
Power extraction from limit cycle oscillations (LCOs) has attracted

much attention in recent years [5,6,10,13]. Briefly, LCOs are a self-
induced, self-sustained vibration resulting from structural or fluid non-
linearity when the flow velocity exceeds a critical value. Although
being a flutter phenomenon, LCOs are favorable in energy harvesting
because the structure continuously reaps energy from the surrounding
fluid while its vibration magnitude does not constantly increase. The
numerical example in this section is a PEH operating in LCOs.

The setup is a thin-walled PEH immersed in a uniform axial flow
with the velocity at the inlet 𝑣∞ = 15 ms−1, as shown in Fig. 16,
which is adapted from [52]. The cantilevered PEH is fixed at point C
(0.12, 0.3), and its free end is initially at point A (0.7, 0.3). The bimorph
length is 𝐿b = 5.8 × 10−1 m, and the total thickness is 5 × 10−4 m,
with ℎP = 1 × 10−4 m, ℎS = 3 × 10−4 m. Material parameters are:
𝜌F = 20 kgm−3, 𝜇F = 0.2 kg(ms)−1; 𝜌S = 2800 kgm−3, 𝑐S = 7 × 1010 Pa,
𝜈S = 0.35; 𝜌P = 7800 kgm−3, 𝑐P = 6.6 × 1010 Pa, 𝜈P = 0.35, 𝑒31 = −12.54
Cm−2, 𝜖𝑆33 = 1.3281 × 10−8 Fm−1. The resistive load in the circuit is
𝑅 = 50 kΩ. In this scenario, the structure materials are still aluminum
alloy and PZT-5A, but the fluid is an artificial material to ensure that
LCOs take place at a low Reynolds number (𝜌F𝐿b𝑣∞∕𝜇F = 870). The
fluid-to-structure mass ratio �̄�FS is defined by

̄ FS =
𝜌F𝐿b

𝜌SℎS + 2𝜌PℎP
, (53)

which influences a lot the flutter critical velocity as well as the struc-
tural deformation patterns in LCOs [52], and �̄� = 4.83 for the above
13

FS
setup. No-slip condition on 𝛤in ∪ 𝛤out and slip condition on 𝛤wall are
prescribed as the boundary conditions for the moving mesh.

5.3.2. Numerical results
In this example, the computational time interval is [0 s, 1 s], the

time step size 𝛥𝑡 = 0.001 s, the artificial material parameter of the
moving mesh 𝓁 = 0.001 Pa, the spectral radius 𝜌F∞ = 0.8, and 𝑁elem =
9576, 𝑁dof = 121611. The tolerance criterion for the N-R method is
1 × 10−8. To start the simulation, in the first 0.01 s, an acceleration
in 𝑦−direction 𝑙𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = −1000×(𝑥−0.12) ms−2 is applied to the PEH
and 𝑣∞ is set to be 0. After 0.01 s, the perturbation load is removed
and 𝑣∞ = 15 ms−1 is recovered.

Figs. 17(a)–17(b) show the electromechanical response of the PEH
over the computational time, and Fig. 17(c) shows typical deformed
shapes (snapshots) of the structure after it enters LCOs. If comparing
Fig. 17(b) with Fig. 14(c), we find that although the PEH in this setup
is much longer than the PEH in Section 5.2, the output voltage/power
(peak power value approximately 0.015 W) is much lower in this
setup. One non-negligible reason is that the deformation patterns in this
setup, as seen in Fig. 17(c) or Fig. 18, have certain strain nodes where
the dynamic strain distribution changes sign, consequently leading to
strong cancellations of the electrical outputs if electrodes continuously
cover the PEH surfaces [51]. Therefore, an optimized distribution of
electrodes is of great significance to improve the electrical performance
of the cantilevered PEH when it is operating in other than the first
vibration mode. The current simulations are time-consuming and thus
disadvantageous for optimization design, so a parameterized reduced
order model is to be developed in the future to investigate the optimal
configuration of flow-driven PEHs.



Finite Elements in Analysis & Design 206 (2022) 103761L. Shang et al.
Fig. 16. Geometrical configuration and boundary conditions of the axial-flow-driven PEH, length unit [m].
Fig. 17. Displacement of point A, voltage output, and deformed shapes of the PEH in limit cycle oscillations.
Fig. 18. Pressure distribution at different time instants of the PEH in limit cycle oscillations.
6. Conclusions

A monolithic solution scheme well tailored for thin-walled flow-
driven piezoelectric energy harvesters (PEHs) based on fluid–structure
interaction (FSI) is hierarchically presented: from the classical FSI
14
setting where volumetric representation for the structure is employed,
to the special FSI setting where the structure is thin enough to be
represented as a non-volumetric model, and finally to the specific
application where the structure is a thin-walled PEH. Besides the in-
terior multiphysics coupling involved by the PEH itself, the challenge
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arising from the specific application, when compared with the classical
FSI setting, is the strong discontinuity of the pressure solution along
the fluid–solid interface since the structure is geometrically simplified
as a line (surface). This challenge is overcome by the splitting-fluid-
domain method, which is validated against two popular FSI benchmark
problems. Two numerical examples to illustrate how to apply this
framework to typical flow-driven PEHs are provided at the end of this
work. Study on flow-driven PEHs using the Navier–Stokes equations
is limited, so the current work could be a valuable reference for the
community, especially when considering that the proposed framework
is fully monolithic, and appropriate to investigate the well established
beam-like PEH models interacting with a flow. When the Reynolds
number is high, some other computational techniques such as intro-
ducing stabilization terms or pre-conditioning methods may be needed
to obtain usable solutions from the proposed framework. Given that the
simulations in this work are computationally expensive, it is necessary
to further establish a parameterized reduced order model to realize the
optimization design of flow-driven PEHs.
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