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Abstract
A novel deterministic symbolic regression method SpaRTA (Sparse Regression of Turbulent
Stress Anisotropy) is introduced to infer algebraic stress models for the closure of RANS
equations directly from high-fidelity LES or DNS data. The models are written as ten-
sor polynomials and are built from a library of candidate functions. The machine-learning
method is based on elastic net regularisation which promotes sparsity of the inferred mod-
els. By being data-driven the method relaxes assumptions commonly made in the process of
model development. Model-discovery and cross-validation is performed for three cases of
separating flows, i.e. periodic hills (Re=10595), converging-diverging channel (Re=12600)
and curved backward-facing step (Re=13700). The predictions of the discovered models
are significantly improved over the k-ω SST also for a true prediction of the flow over peri-
odic hills at Re=37000. This study shows a systematic assessment of SpaRTA for rapid
machine-learning of robust corrections for standard RANS turbulence models.

Keywords Turbulence modelling · Machine learning · Sparse symbolic regression ·
Explicit Algebraic Reynolds-stress models · Data-driven

1 Introduction

The capability of Computational Fluid Dynamics (CFD) to deliver reliable prediction is
limited by the unsolved closure problem of turbulence modelling. The workhorse for tur-
bulence modelling in industry are the Reynolds-Averaged Navier-Stokes (RANS) equations
using linear eddy viscosity models (LEVM) [1]. The lower computational costs compared to
high-fidelity approaches, e.g. Large-Eddy (LES) or Direct Numerical Simulations (DNS),
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come at the price of uncertainty especially for flows with separation, adverse pressure gra-
dients or high streamline curvature. Data-driven methods for turbulence modelling based on
supervised machine learning have been introduced to leverage RANS for improved predic-
tions [2–4]. In [5], the source terms of the Spalart-Allmaras were learnt from data using a
single hidden layer neural network, which served as a first feasibility study. In [6], a factor
was introduced to correct the turbulent production in the k-equation of the k-ω model. This
term was found via inverse modelling and served to train a Gaussian process. While this
approach has been extended and applied to industrially relevant flows such as airfoils in [7,
8] it still relies on the Boussinesq assumption. In [9], a deep neural network was trained to
predict aij given input only from a baseline linear eddy viscosity simulation and thus replac-
ing the turbulence model instead of augmenting it. The network was designed to embed
Galilean invariance of the predicted aij . This concept of physics-informed machine learning
was extended, e.g., in [10] using random forest regression. Despite the success of the data-
driven approaches a drawback is their black box nature, which hampers the understanding
of the physics of the resulting models in order to derive new modelling ideas from it.

Recently, a method has been introduced using genetic-programming (GEP) based sym-
bolic regression to derive Explicit Algebraic Reynolds-stress Models (EARSM) directly
from high-fidelity data [11, 12]. EARSM, first introduced by [13] and further developed
by [14], are nonlinear extensions of LEVM and are commonly derived by projecting
Reynolds-stress models (RSM) onto a set of tensorial polynomials [15, 16]. These mod-
els are numerically more robust than RSM at similar computational costs as LEVM [17],
but do not show superior predictive capabilities for all kinds of flows [15]. The data-
driven GEP method retains the input quantities used to derive EARSM, but replaces the
commonly used projection method to find the formal structure of the model by an evolu-
tionary process, which makes it an open-box machine learning approach. The advantage
of such a data-driven method is that instead of relying on assumptions made during the
development of an EARSM, a model is inferred directly from data. While such a model
might not provide an universal approach for all kinds of flows as commonly aimed for
in physical modelling, it serves as a pragmatic tool to correct the flow at hand. For cases
exhibiting similar flow physics, e.g. separation, it has also been shown that the discov-
ered models provide suitable corrections indicating the predictive potential of a data-driven
approach.

Due to the non-deterministic nature of GEP it discovers for each run another model with a
different mathematical form, e.g. other terms and/or other values for coefficients, with vary-
ing complexity. It is reported that the models using only a few nonlinear terms show a low
training and prediction error as well as high numerical robustness for industrially relevant
flow cases [18, 19]. Therefore, we instead introduce a new deterministic symbolic regres-
sion method SpaRTA (Sparse Regression of Turbulent Stress Anisotropy), for which we
constrain the search towards sparse algebraic models using sparsity-promoting regression
techniques [20, 21]. SpaRTA combines functions from a predefined library of candidates
without any random recombination. It consists of four steps: (i) building a library of can-
didate functions, (ii) model selection using sparse-regression techniques, (iii) inference of
model coefficients and (iv) cross-validation of the resulting models, see Fig. 1. The first
three steps are computationally very cheap also for high-dimensional problems and allow
for rapid model discovery.

The present study provides several novel concepts for data-driven modelling, which are
organised as follows. In Section 2 we define additive model-form error terms within the k-ω
SST LEVMmodel and use k-corrective-frozen-RANS, which is an extension of the method
introduced in [12], to compute the model-form error from high-fidelity data. The novelty in
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Fig. 1 Technical flow diagram of SpaRTA (Sparse Regression of Turbulent Stress Anisotropy)

this work is that we identify not only a correction of the stress-strain relation, but also one for
the turbulent transport equations and thereby achieve excellent agreement with mean-fields
of high-fidelity data. We also validate that the model-form error is successfully captured
by adding the two terms to the solver and performing a CFD simulation. The k-corrective-
frozen-RANS does not require any iterative optimisation procedure as compared to [6] and
is therefore very efficient, but also limited to full-field data. In Section 3 we introduce the
steps of SpaRTA. The details of the test cases, the CFD setup and the sources of the high-
fidelity data are given in Section 4. In Section 5 SpaRTA is applied to the test cases, the
discovered models are presented and the best models are chosen using cross-validation.
Finally, conclusions are drawn in Section 6.

2 Model-Form Error of RANS Equations

In the following, we augment the baseline model, i.e. the linear eddy viscosity assumption
and the turbulence transport equations of the k-ω SST, with additive terms accounting for the
error due to the model-form.We introduce k-corrective-frozen-RANS, which is an extension
of the method in [12], to extract these two types of error from high-fidelity data sources
efficiently. Finally, we validate that the extracted terms reduce the error for given test cases.

Flow, Turbulence and Combustion (2020) 104:579–603 581



2.1 Identification of additive model-form error from data

The incompressible and constant-density RANS equations read

∂iUi = 0,

Uj ∂jUi = ∂j

[
− 1

ρ
P + ν∂jUi − τij

]
, (1)

where Ui is the mean velocity, ρ is the constant density, P is the mean pressure and ν is the
kinematic viscosity. The Reynolds-stress τij is the subject of modelling. This symmetric,
second-order tensor field can be decomposed into an anisotropic aij = 2kbij and isotropic
part 2

3kδij

τij = 2k

(
bij + 1

3
δij

)
, (2)

in which the baseline model, bo
ij = − νt

k
Sij , forms a linear relation between anisotropy

and the mean-strain rate tensor Sij via the scalar eddy viscosity νt . Commonly, νt is com-
puted using a transport model such as k-ω SST [15], in which k is the turbulent kinetic
energy and ω the specific dissipation rate.

In order to extract the model-form error in these models from high-fidelity data sources,
we compute the residuals of the baseline turbulence model given the data. The residual
for the constitutive relation is equivalent to an additive term bΔ

ij leading to an augmented
constitutive relation

bij = −νt

k
Sij + bΔ

ij . (3)

To evaluate bΔ
ij it is necessary to estimate νt , therefore alsoω needs to be specified. In [12,

22], ω was efficiently obtained by passively solving the ω transport equation given high-
fidelity data for Ui , k and bij . The associated νt was then used to compute bΔ

ij with Eq. 3.
This method is named frozen-RANS as only one equation is solved iteratively while the
remaining variables are frozen [23, 24]. Despite the fact that bΔ

ij also alters the production
of turbulent kinetic energy Pk , it is not evident that solving the k equation given the data
and the frozen ω should lead to the same k as present in the data. Therefore, we introduce k-
corrective-frozen-RANS for which we also compute the residual of the k equation alongside
the computation of the frozen ω. The residual is equivalent to an additive correction term,
which we define as R, leading to an augmented k-ω SST model

∂t k + Uj∂j k = Pk + R − β∗ωk + ∂j

[
(ν + σkνt )∂j k

]
, (4)

∂tω + Uj∂jω = γ

νt

(Pk + R) − βω2 + ∂j

[
(ν + σωνt )∂jω

] + CDkω, (5)

in which the production of turbulent kinetic energy is augmented by bΔ
ij and bounded

following Menter’s limiter [25]

Pk = min
(
−2k(bo

ij + bΔ
ij )∂jUi, 10β∗ωk

)
. (6)
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The corresponding eddy viscosity is νt = a1k
max(a1ω,SF2)

. The other standard terms of k-ω
SST read

CDkω = max

(
2σω2

1

ω
(∂ik)(∂iω), 10−10

)
,

F1 = tanh

⎡
⎣

(
min

[
max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2

])4
⎤
⎦ ,

F2 = tanh

⎡
⎣

(
max

(
2
√

k

β∗ωy
,
500ν

y2ω

))2
⎤
⎦ ,

� = F1�1 + (1 − F1)�2, (7)

in which the latter blends the coefficients � → (�1,�2)

α = (5/9, 0.44), β = (3/40, 0.0828), σk = (0.85, 1.0), σω = (0.5, 0.856). (8)

The remaining terms are β∗ = 0.09, a1 = 0.31 and S = √
2Sij Sij . For the iterative com-

putation of the frozen ω the variables Ui , k and bij are kept frozen in Eqs. 4 and 5. At each
iteration the term R is computed as the residual of Eq. 4 and fed back into Eq. 5. The equa-
tions are discretized using linear upwinding for the divergence terms and 2nd order central
differencing for diffusion. The fields predicted by a baseline k-ω SST were used as initial
condition for ω. For the cases studied the solver reaches convergence after a few hundred
iterations. In order to validate that the resulting fields compensate the model-form error, bΔ

ij

and R are added as static fields to a modified OpenFOAM solver [26] and a CFD simula-
tion is performed starting from the baseline solution for the flow configurations described
in Section 4, for which high-quality data is available. The mean-squared error between the
high-fidelity data and the reconstructed velocity Ui as well as the Reynolds-stress τij is low,
see Table 1. Also the stream-wise velocity profiles shown in Fig. 2 demonstrate that the
high-fidelity mean-flow data is essentially reproduced given bΔ

ij and R.
In [6, 8, 27] an inversion procedure was introduced to infer correction factors such as R

from data. For this method the data can be scarce, e.g. single profiles of experiments. How-
ever, this method is built upon a computationally-intensive optimisation problem, whereas
k-corrective-frozen-RANS only requires a single equation to be solved. This makes k-
corrective-frozen-RANS a cost-efficient way to extract the model-form error, if full-field
data of high-fidelity simulations is available.

Table 1 Mean-squared error ε of reconstructed velocity Ui and Reynolds-stress τij for different test cases
with bΔ

ij and R added as static fields to the solver

Case ε(Ui) · 10−5 ε(Ui)/ε(U
o
i ) ε(τij ) · 10−6 ε(τij )/ε(τ

o
ij )

PH10595 1.74 0.00165 36.7 0.1495

CD12600 31.4 0.0229 7.21 0.4781

CBFS13700 59.6 0.22703 1.34 0.4949

Normalisation with ε of the baseline k-ω SST results Uo
i and τo

ij . Description of cases in Section 4
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Fig. 2 Stream-wise velocity component for propagated model-form error acquired using k-corrective-frozen-
RANS
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2.2 Nonlinear eddy-viscosity models for bΔ
ij and R

In order to discover corrections for the model-form error bΔ
ij and R, we need to decide

on a modelling ansatz. Within this mathematical framework the symbolic regression tar-
gets to find specific expressions as corrections models. In [13], a nonlinear generalisation
of the linear eddy viscosity concept was proposed. This concept has been used in several
works on data-driven turbulence modelling [2, 3]. The fundamental assumption is made
that the anisotropy of the Reynolds-stress bij not only depends on the strain rate tensor
Sij = τ 1

2 (∂jUi + ∂iUj ) but also on the rotation rate tensor Ωij = τ 1
2 (∂jUi − ∂iUj ) with

the timescale τ = 1/ω. The Cayley-Hamilton theorem then dictates that the most general
form of the anisotropic part of the Reynolds-stress can be expressed as

bij (Sij , Ωij ) =
N∑

n=1

T
(n)
ij αn(I1, ..., I5), (9)

with ten nonlinear base tensors T
(n)
ij and five corresponding invariants Im. In the following,

we only consider two-dimensional flow cases, for which the first three base tensors form a
linear independent basis and only the first two invariants are nonzero [28]. Our set of base
tensors and invariants reads

T
(1)
ij = Sij , T

(2)
ij = SikΩkj − ΩikSkj ,

T
(3)
ij = SikSkj − 1

3
δij SmnSnm (10)

I1 = SmnSnm, I2 = ΩmnΩnm. (11)

Using this set for Eq. 9 we have an ansatz, which only requires functional expressions for
the coefficients αn, to model bΔ

ij . However, computing bΔ
ij using Eq. 3 requires a correct k

as discussed in Section 2.1. This aspect is taken into account in the modelling ansatz for R,
for which we take a closer look at the eddy viscosity concept.

Both linear and nonlinear eddy viscosity models provide expressions for the anisotropy
bij based on a local relation between stress and strain. Due to the restriction of this local
closure only the normal stresses 2

3kδij can account for nonlocal effects by transport equa-
tions for the turbulent quantities using convection and diffusion terms [15, 29]. The term R

provides local information to correct the transport equations. Depending on the local sign
of R it either increases or decreases the net production Pk locally. Hence, it acts as an addi-
tional production or dissipation term, which can overcome the error in k. We model it in a
similar way to the turbulent production

R = 2kbR
ij ∂jUi, (12)

which has the additional benefit that we can also use the framework of nonlinear eddy
viscosity models to model R. Given the polynomial model (9) and the set of base tensors
(10) and invariants (11) we are now left with the task of providing suitable expressions for
αn(I1, I2) for n = 1, ..., 3 to overcome the model-form error.

In [12] models identified using genetic programming were modified such that any addi-
tional contribution of the first base tensor T

(1)
ij in Eq. 9 was added with a positive sign for

the computation of Pk . This ad-hoc correction was established based on physical reasoning
to avoid very low production close to walls and led to significantly improved predic-
tions. However, in contrast to [12] we have extracted two target terms bΔ

ij and R using
k-corrective-frozen-RANS, which also make it possible to systematically study (i) how to
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obtain corrections models for each target individually and (ii) their combined effect on the
predictions. Treating the two targets separately has the disadvantage that energy is not con-
served, because Eq. 12 has no corresponding part in the momentum equation [30–32]. Also
in literature several classical [33, 34] as well as more recent data-driven [6, 12] approaches
exist, which violate conservation of energy. It has been shown that overcoming this incon-
sistency improves the predictive performance of the models [31]. Thus, a natural next step
would be to combine both targets in order to find a single model accounting for the sources
of model-form error on the level of the constitutive relation as well as within the turbulent
transport equations. This requires a multi-objective version of the deterministic symbolic
regression detailed below, which is beyond the scope of this paper.

3 Model Discovery Methodology

Deterministic symbolic regression constructs a large library of nonlinear candidate func-
tions to regress data. It identifies the relevant candidates by adopting a sparsity constraint.
Two fundamental methods have been proposed: Sparse identification of nonlinear dynam-
ics (SINDy) [20, 35] and fast function extraction (FFX) [36]. Both methods were applied in
several areas of physical modelling. In the following, we introduce the steps of the model
discovery methodology SpaRTA based on FFX, for which a library is constructed using a
set of raw input variables and mathematical operations. The model selection uses elastic net
regression. Finally, for the inference of the model coefficients the stability requirements of
a CFD solver are considered. An overview of SpaRTA is given in Fig. 1.

3.1 Building a library of candidate functions

The deterministic symbolic regression requires a library of candidate functions, from which
a model is deduced by building a linear combination of the candidates. Hence, the library is
an essential element of the entire methodology and needs to accommodate relevant candi-
dates explaining the data. We rely on the nonlinear eddy viscosity concept and aim to find
models for αn in Eq. 9 given as primitive input features the invariants I1 and I2. For the
present work we focus on a library, in which the primitive input features are squared and
the resulting candidates are multiplied by each other leading to a maximum degree of 6. In
addition to the two invariants we also include a constant function c to the set of raw input
features. The resulting vector B reads

B =
[
1, I1, I2, I

2
1 , I 22 , I 21 I 32 , I 41 I 22 , I1I

2
2 , I1I

3
2 ,

I1I
4
2 , I 31 I2, I

2
1 I 42 , I 21 I2, I1I2, I

3
1 I 22 , I 21 I 22

]T

(13)

with the cardinality of B, |B| = 16.
For the library to regress models for bΔ

ij each function of B is multiplied with each base

tensor T
(n)
ij , leading to the library of tensorial candidate functions

CbΔ
ij

=
[
T

(1)
ij , T

(2)
ij , . . . , I 21 I 22 T

(3)
ij

]T

. (14)
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In order to regress models for R the double dot product of each function in CbΔ
ij
with the

mean velocity gradient tensor ∂jUi is computed, leading to

CR =
[
T

(1)
ij ∂jUi, . . . , I

2
1 I 22 T

(3)
ij ∂jUi

]T

. (15)

The two libraries CbΔ
ij
and CR are evaluated given the high-fidelity validation data for each

test case and stored column-wise in matrices CbΔ
ij
and CR . In order to avoid large values,

a candidate function is discarded from the library, if it contains values with a magnitude
larger than 105. Finally, the target data bΔ

ij and R are stacked to vectors.

3.2 Model selection using sparsity-promoting regression

Given the above defined libraries the task is to form a linear model to regress the target data
Δ = bΔ or R by finding the coefficient vector Θ

Δ = CΔΘ, (16)

which represents a large, overdetermined system of equations. When using ordinary least-
squares regression a dense coefficient vector Θ is obtained, resulting in overly complex
models, which are potentially overfitting the data given the large libraries Eqs. 14 and 15.
Due to multi-collinearity between the candidates, CΔ can be ill-conditioned, so that the
coefficients may also display large differences in magnitude expressed in a large l1-norm
of Θ . Such models are unsuitable to be implemented in a CFD solver as they increase the
numerical stiffness of the problem and impede convergence of the solution.

Following the idea of parsimonious models we constrain the search to models which
optimally balance error and complexity and are not overfitting the data [35]. In princi-
ple, given a library a combinatoric study can be carried out, by performing an ordinary
least-squares regression for each possible subset of candidates. Starting from each single
candidate function individually, proceeding with all possible pairs up to more complex
combinations. As the number of possible models grows exponentially with the number of
candidates I = 2|CΔ| − 2 this approach becomes already infeasible for the simple libraries
Eqs. 14 and 15 with |CΔ| ≈ 48.

Hence, we follow [35, 36] and engage sparsity-promoting regularisation of the underly-
ing least-squares optimisation problem. The model-discovery procedure is divided into two
parts: (i) model selection and (ii) model inference, see Fig. 1. For the first step, the model
selection, we use the elastic net formulation

Θ = argmin
Θ̂

∥∥∥CΔΘ̂ − Δ

∥∥∥2
2
+ λρ

∥∥∥Θ̂

∥∥∥
1

+ 0.5λ(1 − ρ)

∥∥∥Θ̂

∥∥∥2
2
, (17)

which blends the l1- and l2-norm regularisation given the mixing parameter ρ ∈ [0, 1] and
the regularisation weight λ, to promote the sparsity of Θ [36, 37]. On its own, the l1-norm,
known as Lasso-regression, promotes sparsity by allowing only a few nonzero coefficients
while shrinking the rest to zero. The l2-norm, known as Ridge-regression, enforces rela-
tively small coefficients without setting them to zero, but is able to identify also correlated
candidate functions instead of picking a single one. By combining both methods, the elastic
net can find sparse models with a good predictive performance. Besides the mixing param-
eter, also the regularisation parameter λ shapes the form of the model: For a very large λ
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the vector Θ will only contain zeros independent of ρ. The amount of nonzero coefficients
increases for smaller λ values making the discovery of sparse models possible.

Given the elastic net regularisation method we need to specify suitable combinations of
the weight λ and type of the regularisation ρ, for which the optimisation problem Eq. 17
is solved. Most commonly the optimal (λ, ρ) combination is found based on a strategy to
avoid overfitting of the resulting models, e.g. using cross-validation [35], for which the data
is split into a training and a test set. While the optimisation problem given a grid (λ, ρ)

is solved on the former, only the model with the best performance evaluated on the latter
survives. For the purpose of CFD a true validation of the models can only be performed once
they are implemented in a solver and applied to a test case. In order to not overcharge the
role of the training data from k-corrective-frozen-RANS at this stage of the methodology, we
select a wide spectrum of models varying in accuracy and complexity using Eq. 17 instead
of a single one. The validation task will be performed later using a CFD solver. Following
[36] we use

ρ = [0.01, 0.1, 0.2, 0.5, 0.7, 0.9, 0.95, 0.99, 1.0]T , (18)

which ensures that we cover a substantial range of different regularisation types. The upper
limit of the regularisation weight is defined as λmax = max(|CT

ΔΔ|)/(Kρ), because for any
λ > λmax all elements in Θ will be equal to zero. The entire vector

λ = [λ0, ..., λmax]T (19)

is defined of having 100 entries between λ0 = ξλmax with ξ = 10−3 uniformly spaced
using a log-scale as defined in [36]. This provides a search space (λ, ρ), the elastic net,
which is large enough and has an appropriate resolution. At each grid point (λi, ρj ) a vector

Θ
(i,j)
Δ as a solution of Eq. 17 is found using the coordinate descent algorithm. The duration

for the model selection step given the number of data points K ∼ 15000 is of the order of a
minute on a standard consumer laptop.

Solving Eq. 17 for different (λi, ρj ) might produce Θ
(i,j)
Δ with the same abstract model

form Θ̄ , which means that the same entries are equal to zero. As the specific values of the
coefficients will be defined in the next step, the selection step of SpaRTA concludes with

filtering out the set of D unique abstract model formsDΔ =
{
Θ̄

d

Δ |d = 1, ...,D
}
.

3.3 Model inference for CFD

The abstract modelsDΔ are found using standardised candidates, because the relevance of
each candidate should not be determined by its magnitude during the model selection step.
With the aim of defining a model with the correct units, we need to perform an additional
regression using the unstandardised candidate functions for each subset determined by the
abstract model forms in DΔ, which is the purpose of the model inference step outlined in
the following.

In [35, 38, 39] this was done using ordinary least-squares regression for problems in the
domains of dynamical systems and biological networks. As mentioned above, the ability of
the CFD solver, in which the models will be implemented, to produce a converged solution
is sensitive to large coefficients, which has been reported in [11, 12, 22]. We take this
additional constraint into account by performing a Ridge regression

Θ
s,d
Δ = arg min

Θ̂
s,d

Δ

∥∥∥Cs
ΔΘ̂

s,d

Δ − Δ

∥∥∥2
2
+ λr

∥∥∥Θ̂
s,d

Δ

∥∥∥2
2
, (20)
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in which λr is the Tikhonov-regularisation parameter. The index s denotes the submatrix of
CΔ and the subvector of Θd

Δ consisting of the selected columns or elements respectively as
defined in DΔ. The elements of Θd

Δ associated with the inactive candidates are zero and
are not modified during this step.

By using the l2-norm regularisation the magnitude of the nonzero coefficients is shrunk
[35, 40]. In general, low values for λr reduce the bias introduced through regularisation,
but lead to larger coefficient values, and vice versa. Since shrinkage of the coefficients also
reduces the influence of candidate functions with a lower magnitude compared to others,
we need to find a trade-off between error of the model on the target data Δ and the like-
lihood that the model will deliver converged solutions when used in a CFD solver. The
problem of finding such an optimum is that the latter aspect can only be answered retrospec-
tively. Recently, this problem has been addressed in [41] by embedding CFD simulations in
the search for correction models guided by genetic programming. While this increases the
costs of the model search drastically, it also significantly increases the chance of delivering
models with better convergence properties. Even though this procedure provides a strong
indication, the identified models are also not guaranteed to converge a priori for any other
test case outside the training set. Via testing using the cases in Section 4, we have identified
0.01 < λr < 0.1 able to deliver coefficients in a range balancing the error on the target
data Δ and the likelihood to produce converged CFD solutions. Our efforts are based on an
empirical observation, but do not guarantee a well-behaving numerical setup under all con-
ditions. We have identified corrections of bΔ

ij as the only contribution which can do harm to
the convergence properties for the given test cases. However, at this stage of the process we
exclude models, if they are not converging on a given test case.

Finally, the resulting coefficient vector Θd
Δ is used to retrieve the symbolic expression

of the models by a dot product with the library of candidate functions CΔ in Eqs. 14 and 15

Md
Δ := CT

ΔΘd
Δ, (21)

which are implemented in the open-source finite-volume code OpenFOAM [26]. The diver-
gence terms of the equations are discretised with linear upwinding and turbulent diffusion
with 2nd order central differencing. In summary, the model discovery step of SpaRTA
selects models utilising elastic net regression in Eq. 17 and further infers the coefficients of
the selected models in Eq. 20. The latter process is guided by the aim to discover models
complying with the restrictions of a CFD solver.

4 Test Cases and High-Fidelity Data

In order to apply SpaRTA we need full-field data of Ui , k and τij , which we take from
LES and DNS studies conducted by other researchers. We have selected three test cases of
separating flows over curved surfaces in two-dimensions with similar Reynolds-numbers.
For each case fine meshes are selected, which ensure that the discretisation error is much
smaller compared to the error due to turbulence modelling.

Periodic hills (PH) Flow over a series of hills in a channel. Initially proposed by [42] this
case has been studied both experimentally as well as numerically in detail. We use LES
data from [43] for Re = 10595 (PH10595) to apply SpaRTA and test the performance of
the resulting models. In addition, we also use experimental data from [44] at a much larger
Re = 37000 (PH37000) in order to test the models outside the range of the training data.
The numerical mesh consists of 120× 130 cells. Cyclic boundary conditions are used at the
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inlet and outlet. The flow is driven by a volume forcing defined to produce a constant bulk
velocity.

Converging-diverging channel (CD) A DNS study of the flow within a channel, in which
an asymmetric bump is placed, exposed to an adverse pressure gradient was performed by
[45] for Re = 12600 (CD12600). The flow shows a small separation bubble on the lee-side
of the bump, which is challenging for RANS to predict. The numerical mesh consists of
140×100 cells. The inlet profile was obtained from a channel-flow simulation at equivalent
Re.

Curved backward-facing step (CBFS) In [46] a LES simulation of a flow over a gently-
curved backward-facing step was performed at Re = 13700 (CBFS13700). Similar to PH
also for this flow the mean effect of separation and reattachment dynamics is the objec-
tive. The numerical mesh consists of 140 × 150 cells. The inlet was obtained from a
fully-developed boundary layer simulation.

Despite the simple geometries, the mean effect of the separation and reattachment
dynamics of a flow on a curved surface is a challenging problem for steady-RANS
approaches. Especially, PH serves as an important testbed for classical and data-driven
approaches for turbulence modelling, e.g. [2, 47], but also the other two have been
introduced with the purpose of closure investigation.

5 DiscoveredModels and Cross-Validation Using CFD

In the following, the method SpaRTA introduced in Section 3 is applied to the three test
cases of Section 4. The models resulting from the model-discovery are presented and their
mean-squared error on the training data is evaluated. In order to identify the models with
the best predictive capabilities, we carry out cross-validation of the resulting models using
CFD [40]: Models identified given training data of one case are used for CFD simulations of
the remaining two case. For each case a single model is chosen as the best-performing one.
Finally, the three resulting models are tested in a true prediction for the flow over periodic
hills at Re = 37000.

The goal of the model-discovery is to identify an ensemble of diverse models with small
coefficients, varying in model-structure (complexity) and accuracy. Such an ensemble is
better-suited for the cross-validation on unseen test cases, than a selection of the best models
given only the training data. The sparse-regression for bΔ

ij applied to the three test cases
resulted in 7 distinct models for PH10595 and 8 for CD12600 and CBFS13700. For R the model
discovery resulted in 1, 3 and 4 distinct model forms for CBFS13700, PH10595 and CD12600

respectively. We identify T
(1)
ij , I1T

(1)
ij and I2T

(1)
ij as the relevant candidates to regress R, and

models combining all three give the lowest error per test case. The ensembles of discovered
models are shown in Figs. 3 and 4. Each row represents a model structure, the colours
indicate the nonzero value of the coefficient corresponding to the chosen candidate function.
If a candidate function is not selected the corresponding field is left blank. The result is
a hierarchical spectrum of models regressing the training data varying in complexity and
error.

Cross-validation tests how well models identified on training data perform on unseen
test cases [40]. This assessment allows to determine the best-predictive models from a set.
As stated above, the role of the frozen training data should not be overcharged, so that we
cross-validate using CFD. By doing so, we can assess the validity of SpaRTA as a tool
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Fig. 3 Model-structure of all discovered models using SpaRTA and mean-squared error on training data. The
matrix (l.) shows the values of the active (coloured) candidate functions (x-axis) for each model Mi with
model index i (y-axis). The mean-squared error between the frozen data bΔ

ij and the model is also shown (r.)

for model discovery as well as the predictive performance of the identified models outside
of their training set. The found correction models regress bΔ

ij and R individually and can
also be applied individually for predictions when implemented in the solver, i.e. a model
correcting bΔ

ij can be used without a correction of R and vice-versa. We can also study their
combined effect. For the cross-validation in the following, all models are applied to the
three test cases, which requires 61, 48 and 75 simulations for the cases PH10595, CD12600
and CBFS13700 respectively.

Flow, Turbulence and Combustion (2020) 104:579–603 591



Fig. 4 Selected models and their mean-squared error evaluated on the training data R

In Fig. 5 the mean-squared error of each model on the velocity field ε(U) normalised
with the mean-squared error of the baseline ε(Uo) is shown. The type of model, whether it
is providing a correction both for bΔ

ij and R or for each one individually, and from which
training data it originated, is emphasised by a unique marker form and color combination.
Most of the models show a good or even substantial improvement over the baseline. But,
for the set of models, only providing a correction for bΔ

ij , not all lead to an improvement
of the resulting velocity field. In contrast to that, if only a correction for R is deployed,
the result is a consistent, substantial improvement across all test cases. Using both a model
for bΔ

ij and R only provides a minor additional improvement for some cases. For the test
case CBFS13700 using both corrections leads to a detrimental effect, the error increases for
models identified on PH10595 and CD12600 data. Surprisingly, the best model per test case
is not always identified on the associated training data. While this expectation holds for the
cases CBFS13700 and CD12600 it is not true for PH10595, for which the other two training
sets deliver significantly better performing models. In general, the data of CD12600 and
CBFS13700 provide models, which are well performing on all test cases presented.

Fig. 5 Mean-squared error of velocity vector of each correction model normalised by the mean-squared error
of the baseline k-ω SST. The colour indicates on which high-fidelity data the models have been identified.
Full circles represent simulations using both corrections, while left-/right-filled circles represent simulations
using only correction for R or bΔ

ij respectively
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Fig. 6 The two matrices (l.) show the models Mi for bΔ
ij and R. The mean-squared error in velocity U

normalised by the mean-squared error of the baseline k-ω SST model is also shown (right)
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In Fig. 6, both the error and the model structure for the correction of bΔ
ij as well as for R

is shown. The models are ordered according to the mean-squared error on the stream-wise
velocity U . In line of the discussion of Fig. 5 three groups can be identified: a few models,
which lead to an increased error compared to the baseline; a small group of models per test
case, which are equal or similar to the baseline; and the great majority of models, which
result in an improvement. It can be observed how the error in the velocity is significantly
reduced once a correction of R is used. The best models correct the velocity up to 5 times
better in mean-squared error than the k-ω SST baseline model. This leaves still room for
further improvement compared to the error using the frozen data sets, see Table 1. But,
especially for case CBFS13700 the result is already very close to the possible correction
provided by the frozen data at least for U .

Given this cross-validation assessment we select models M(i) = (M
(i)

bΔ,M
(i)
R )T based on

the lowest ε(U) per case

M
(1)
bΔ = 0,

M
(1)
R = 0.39 T

(1)
ij , (22)

M
(2)
bΔ = 0.1 T

(1)
ij + 4.09 T

(2)
ij ,

M
(2)
R = 1.39 T

(1)
ij , (23)

M
(3)
bΔ = 0

M(3)R = 0.93 T
(1)
ij , (24)

for which further details on the corresponding training data and the rank of the model on
each test case are given in Table 2. The models M(1) and M(3) provide very simple correc-
tion of R and none for bΔ. Also for M(2) an equivalent model with a similar error using no
correction for bΔ could be found, see row number 20 in Fig. 6. Especially model M(3) per-
forms very well both on CBFS13700 (rank 1.) and PH10595 (5.). While the rank of the others
varies more between the test cases, they are still within the set of well-performing models
with ε(U)/ε(Uo) < 0.5. Their predictions of stream-wise velocityU , k, the Reynolds-stress
component τxy and the skin-friction coefficient Cf are shown in Figs. 7, 8, 9 and 10 for
the three test cases. As already stated for the error evaluated on the entire domain discussed
above, these three models show an improvement of the spatial distribution of the predicted
quantities in comparison to the baseline prediction of k-ω SST. Especially the velocity is
well-captured for all three. While k is better identified compared to the baseline, we still
observe a discrepancy between the predictions and the data. For PH10595 the three models

Table 2 Best-predictive models with rank (index i, j, k in Fig. 6) and normalised error on velocity
ε(U)/ε(Uo) for different cases

PH10595 CD12600 CBFS13700

Model index i ε(U)/ε(Uo) index j ε(U)/ε(Uo) index k ε(U)/ε(Uo)

M(1) (1.) 0.17166 (30.) 0.24839 − 0.30861

M(2) − 0.32683 (1.) 0.20612 (39.) 0.48244

M(3) (5.) 0.19737 − 0.20975 (1.) 0.32062
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Fig. 7 Predicted stream-wise velocity
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Fig. 8 Predicted turbulent kinetic energy
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Fig. 9 Predicted shear stress
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Fig. 10 Predicted skin friction coefficient

do not fit the complex spatial structure especially in the shear-layer, but together encapsulate
the data for most of the profiles. For CD12600 the models are underestimating k for x < 7
and overestimate it further downstream. For CBFS13700 the models also underestimate on
the curved surface, but fit the data better than the baseline for 3 < x < 5. The magnitude
of the Reynolds-stress component τxy is underestimated on the curved surfaces of all test
cases. For PH10595 the models fail to fit the complex spatial structure especially within the
separated shear-layer behind the hill and on the hill itself. The skin friction coefficient Cf

and the associated separation and reattachment points are better captured compared to the
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Fig. 11 Pk (coloured) and R (grey) at x = 4.0 for flow over periodic hills at Re = 10595 using correction
models

baseline k-ω SST for PH10595 and CBFS13700. For CD12600, we observe a small recircula-
tion zone as reported in the literature using M(1), but too far down-stream. However, while
the baseline k-ω SST drastically over-predicts this zone, M(2) and M(3) ignore it entirely.

Overall, the models agree well with the spatial data, which is in line with the global error
on U in Table 2. To correct the velocity prediction sufficiently only a slight modification
of the baseline k-ω SST model is necessary. A model for R using a scalar times T

(1)
ij is

sufficient for the given test cases. The resulting magnitudes of R and Pk are shown in

Fig. 12 Eddy viscosity profile at x = 4.0 for flow over periodic hills at Re = 10595 (coloured) and Re =
37000 (grey) using correction models compared to baseline k-ω SST
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Fig. 13 Predicted stream-wise velocity for flow over periodic hills at Re = 37000 using correction models
compared to baseline k-ω SST and experimental data of [44]

Fig. 11. The enhanced production Pk due to a positively-signed R induces an increase of
eddy viscosity, which makes the corrected model more dissipative compared to the baseline
k-ω SST model. This is shown in Fig. 12 for the periodic hills at stream-wise position x =
4.0. The result is an increase of shear-stress, which leads to shortening of the recirculation
bubble [47]. Consequently, the increase of eddy viscosity follows the magnitude of the
coefficients of the models, i.e. M(1) < M(3) < M(2).

In order to test how the models extrapolate to cases of larger Re, we predict the flow over
periodic hills at Re = 37000, see Fig. 13. Due to an increase of turbulence this case has a
significantly shorter recirculation zone. For this true prediction throughout the domain the
three models improve significantly compared to the baseline. Interestingly, the models M(2)

and M(3) are providing a better fit of the data than M(1), which was performing better on
the lower Re case. Also for this case, the eddy viscosity is significantly larger compared to
the baseline model, see Fig. 12, inducing the same pattern as discussed above for PH10595.

6 Conclusion and Extension

In this work SpaRTA was introduced to discover algebraic models in order to correct the
model-form error within the k-ω SST. For this novel machine learning method two additive
terms, on the level of the stress-strain relation bΔ

ij and within the turbulent transport equa-
tions R, were identified by means of k-corrective-frozen-RANS, for which the governing
equations are evaluated given high-fidelity data of three cases of separating flows. It was
validated that the computed terms are compensating the model-form error and reproduce
the high-fidelity LES or DNS mean-flow data. Hence, k-corrective-frozen-RANS is a cost-
efficient way to distill useful information directly from full-field data without the need of
an inversion procedure.

Cross-validation of the discovered models using CFD was carried out to rank the models.
While using both corrections for R as well es for bΔ

ij leads to an improvement of the pre-
dictions over the baseline, a correction only for R is already enough to achieve sufficient
results for the velocity field. This also shows the potential for a multi-objective optimisation
approach aiming to find models, which are correcting R and bΔ

ij together instead of sepa-
rately. For the best performing models on each case both the global error on U as well as
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the spatial structure on U , k and τxy was coherent. The models also performed well for the
periodic hills flow at a much larger Re-number (Re = 37000). As the sparse regression is
computationally inexpensive, SpaRTA allows for rapid discovery of robust and pragmatic
models, i.e. a model trained for one flow may perform well for flows outside of the training
range, but with similar features.

The necessary modification in order to improve the predictions of U is simple and in-line
with common knowledge on eddy viscosity turbulence models for separating flows in 2D.
But, the corrections are learnt directly from data without the aid of a priori knowledge. In
other work it was shown that using more complex function approximators from the machine
learning toolbox, e.g. neural networks or random forest, more details of the flow can be cap-
tured, e.g. on the hill’s crest of PH10595, which are missed by SpaRTA. However, the present
systematic study has shown the capabilities of SpaRTA to discover effective corrections to
k-ω SST at low costs. Further work will focus on the uncertainty of the inference step of
SpaRTA. We will also apply SpaRTA to a larger variety of flow cases in order to show its
potential for rapid model discovery of corrections for industrial purposes.
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