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Abstract. This paper proposes a general framework for expressing parametrically quantities of interest
related to the solution of complex structural mechanics models, in particular the ones involved in crash anal-
yses where strongly coupled nonlinear and dynamic behaviors coexist with space-time localized mechanisms.
Advanced nonlinear regressions able to proceed in the low-data limit, enabling to accommodate heterogeneous
parameters, will be proposed and their performances evaluated in the case of crash simulations. As soon as
these parametric expressions will be determined, they can be used for generating large amounts of realizations
of the quantity of interest for different choices of the parameters, for supporting data-analytics. On the other
hand, such parametric representations allow the use advanced optimization techniques, evaluate sensitivities
and propagate uncertainty all them under the stringent real-time constraint.

1 Introduction

Plenty of effort has been dedicated throughout history
to design an optimization process. It is certain that the
primary design of a new component could become a tough
task, especially when constraints coming from different
fields have to be satisfied. Furthermore, evaluating the
improvement of a given attribute under a change in the
input parameter may become a tedious task when each
evaluation of the direct problem involves either, numerous
experimental tests or several high-fidelity simulations.
Thus, design is usually stated as an optimization prob-

lem, where a cost function is intended to be minimized
using any appropriate technique, as for instance a steepest
descent method. The main drawback of such a procedure
relies in the necessity of solving many times the problem
for each tentative choice of the design parameters.
To enhance design performances Model Order Reduc-

tion – MOR – techniques enable faster simulations [1].
On the other hand the construction and use of metamod-
els (surrogate models) also facilitates the design process
because the solution for a given choice of the parame-
ters can be evaluated online in almost real-time. Thus,
as soon as the parametric solution of a given problem
is available, simulation, optimization, inverse analysis,
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uncertainty propagation and even control, can be effi-
ciently performed under the stringent real-time constraint
[2].
Among the different MOR techniques, Proper Gen-

eralized Decomposition – PGD – allows the off-line
construction of a parametric solution, as reported in [3].
However, standard PGD constructors induced too inva-
sive computational procedures [4]. To mitigate that issue,
we proposed in our recent works some strategies enabling
non-intrusive solution procedures, able to compute the
parametric solution from some runs of the associated
high-fidelity solver. The first proposal was applying a hier-
archical approximation and considering as sampling points
its associated Gauss-Lobatto-Chebyshev points, leading
to the so-called SSL-PGD (for Sparse Subspace Learning
Proper Generalized Decomposition) [5].
The main drawback of SSL-PGD-based procedures is

the increase of the sampling points with the design space
dimensionality. For mitigating that issue, we recently pro-
posed an alternative procedure using sparser sampling,
and proved that reasonable results can be obtained with
a number of sampling points (runs of the high-fidelity
model) scaling with the number of parameters involved
in the considered model. This technique was called sPGD
(for sparse Proper Generalized Decomposition) [6] and is
being nowadays checked in a panoply of application at
ESI Group.
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However, many times, more than being interested in
parametric fields, the last associated with the solution
of parametric models (expressed from partial differential
equation), the design requires the evaluation of one (or
some) quantity (quantities) of interest –QoI. In what fol-
lows and for the sake of simplicity we will assume a single
QoI, explicitly or implicitly dependent on the paramet-
ric field itself. In that case a procedure is needed for
extracting the parametric form of the QoI. The main
specificities of such a procedure are: (i) the fact of dealing
with high-dimensional spaces, with as many dimensions as
the number of parameters involved in the model; (ii) the
fact of considering many parameters of different nature
(some parameters could be discrete and even qualitative).
In the present work we are dealing with crash simula-

tions, and more particularly on the parametric deforma-
tion of a B-Pillar provided by Gestamp. Some high-fidelity
simulations were performed by varying different structural
parameters, from which a QoI (the maximum intrusion
able to quantify the car occupants safety) was extracted
for the different parameter choices. In order to proceed
with design optimization, a parametric expression of the
QoI seems very valuable, however, for reducing the design
cost and complexity, it seems compulsory reducing as
much as possible the sampling points, that is, the required
runs of the high-fidelity model.
In that sense, in this paper we propose two differ-

ent methodologies, the first is based on the use of a
PGD-based sparse nonlinear regression making use of
the separated representations at the heart of the PGD
methodologies, and the second that efficiently circumvents
the issue related to potential parameters heterogeneity.
The last technique was called Code2Vect because it pro-
ceeds by mapping points in a representative domain into
a vector space equipped with a convenable metric able to
safely construct parametric approximations.
When dealing with time-dependent QoI, the PGD-

based regression was generalized in a multi-time-domain
framework, allowing for compact local regressions evolving
(with continuity) in time, the so-called multi-local sparse
nonlinear PGD-based regression.
As soon as the parametric QoI is available, sensibility

analyses become straigth-forward, as well as uncertainty
quantification and propagation when parameters are
assumed being statistically distributed, by using standard
Monte Carlo approaches or by calculating the different
QoI statistical moments. In all cases and again thanks to
the compact parametric expression of the QoI such anal-
yses can be performed extremely accurately and under
the stringent real-time constraint, facilitating the design
process. Finally, because extra-data can be generated
from the parametric QoI, one could use any available
data-analytics procedure for visualizing, classifying or
modeling. In the present work MINESETTM by ESI will
be used for those purposes.
After this introduction the paper outline is as follows:

Section 2 defines the problem to be addressed. Section 3
summarizes the main numerical technologies. Finally
Section 4 presents and discusses numerical results, before
finishing with some general conclusions and prospects in
Section 5.

2 Problem statement

2.1 Context and glab simulation model presentation

With constant evolution of regulations regarding envi-
ronment and pollutants emission, carmakers target an
optimal vehicle light weighting while fulfilling cost and
safety requirements. Given that physical validation tests
are long and expensive, carmakers consider numerical
models as a parallel option. Based on Finite Element the-
ories, these models (FEM) enable a better understanding
of physical phenomena and case-and-effect relationships
between design parameters, manufacturing processes and
crash outputs. The constant improvement in the accu-
racy and efficiency make them reliable to achieve car
manufacturers objectives.
In this context, Gestamp, an international group ded-

icated to the design, development and manufacturing of
automotive components, has developed the G-Lab family
(see Fig. 1). It is an R&D program focusing on the devel-
opment of numerical vehicle prototypes. The objective is
to represent different automotive segments (B, C/D, SUV)
with several types of power-train (ICE, PHEV, EV) to
validate new concepts and technologies.
Each G-lab model is an advanced numerical model,

dealing with all types of non-linearities: geometries, mate-
rial, buckling instabilities and multiple contacts. For
example, material cards consider high deformation, plas-
ticity and failure with speed dependent properties. To
handle these non-linearities and ensure stability, explicit
schemes with a very small timestep (close to 3e–4s) are
used to solve numerical equations. Crash duration is usu-
ally inferior to 100ms. Therefore, for the G3 model (with
more than 6.7 million elements and a 4mm mesh size)
calculation time is between 10 and 20 hours for a single
crash, depending on boundary conditions and regulations.
To achieve mass and performance targets, single or

multi-objective optimizations are used. This is an appro-
priate way to find and define the best solutions to attain
the desired targets. The primary objective is to find the
optimal concepts, for which one of the essential points
is to understand the influence of parameters variation.
As the vehicle structure is more and more complex (new
materials, technologies, assemblies, etc.), the number of
parameters that can be optimized increases. Moreover, the
level of detail of FEM models, and so the number of ele-
ments, is continuously increasing. Therefore, optimization
loops become time consuming and their analysis quickly
gets tedious.
Thereby, testing all or part of the parameters combi-

nations can be time consuming in a full car simulation.
Classic optimizations using Response Surface Method
are efficient but do not allow to reduce the number of
calculations.
PGD technique has been used to solve this issue, by

reducing simulation number and increasing predictabil-
ity. This technique has been applied on a Body-in-white
component (B Pillar) optimization and a sensitivity anal-
ysis. The crash selected is a EuroNCAP AEMDB side
crash [7], with a 1400 kg barrier impacting a static vehi-
cle, at 60kph (see Fig. 2). Results accuracy and prediction
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Fig. 1. G-Lab family.

Fig. 2. EURONCAP AEMDB Side crash regulation applied on
G3 model.

will be compared as well as the time spent and ease
of analysis.

2.2 BIW, B-Pillar scope and parametrization

The Body in White (BIW) is the set of sheet metal compo-
nents that forms the structure of a vehicle. It is the main
passive security element that ensures passengers safety
during a crash. In case of a side crash, lateral compo-
nents are the most solicited, particularly the B-Pillar (see
Fig. 3). This set of parts, localized between the frontal
and rear doors, represents a strategic component for side
and rollover crash performances.
B-pillar is generally made of several parts (see Fig. 4):

– Outer: main structural element of the B-pillar. The
use of full press hardening allows to achieve a very
high ultimate tensile grade (up to 1500MPa). To
control bending and improve energy absorption, it is
possible to create a ductile area (UTS between 400
and 800MPa).

– Inner: part used to close the B-pillar and to receive
surroundings parts. Its contribution to crash perfor-
mances is low.

– Reinforcement: additional part to locally reinforce
the pillar. To avoid using two different tools for the
outer and reinforcement, the component can be rein-
forced by applying a local patch on the blank before
press hardening. Thus, outer and patch are stamped
together in only one tool.

To improve side crash performances, modifications at
different level can be made, such as changing materials,
thicknesses, and geometry. The key of light weighting is to

Fig. 3. Glab G3 BIW with highlighted BPillar.

Fig. 4. B-pillar parts and parameters with color legend.

apply the right material with the right design at the right
place. For this B-pillar optimization study, five parameters
have been selected:

1 Outer thickness t1: Once the outer material is fixed,
its thickness is supposed to be the most influential
parameter. Increasing this thickness improves per-
formances but adds weight. The parameter range
varies between 1.1mm and 1.7mm, with a discrete
distribution every 0.05mm.

2 Ductile zone material grade y: By locally controlling
the temperature of the tools, partial hardening of
the part can be achieved allowing tailored material
properties in hot stamped monolithic component. A
more ductile zone will absorb more energy but will
allow more deformation. For this study, ultimate ten-
sile stress of this zone continuously varies between
350MPa and 600MPa.

3 Ductile zone size z: like the material grade of the
ductile zone, its size can also be changed. Two dif-
ferent sizes of soft zone have been included in the
design space: 60mm and 90mm width.

4 and 5. Inner part and patch thicknesses t2 and t3:
Decreasing parts thicknesses is the main way to
save mass. Inner thickness varies between 0.9mm to
1.3mm while patch thickness evolves between 1.0mm
and 1.6mm every 0.05mm.

The objective of this optimization is to find the best com-
bination of parameters that minimize the mass of the
B-pillar while achieving safety targets.
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Fig. 5. B-pillar measurement points.

2.3 Quantity of Interest and expected results (crash
analysis)

A considerable amount of kinetic energy is generated by
the barrier, which the BIW must absorb to its utmost to
protect the passengers. If insufficient, dummies may suffer
from internal and external damages. Internal injuries are
linked to a too high speed or deceleration change. External
injuries appear when intrusions into the cabin cell are
too high. A delicate compromise must be found between
energy absorption (to reduce deceleration) and cabin cell
resistance (to reduce intrusion).
To protect the passengers efficiently, it is important to

avoid deformation in the upper area, close to the head. To
do so, the B-pillar concept with SoftZone has an upper
part in an ultra-high strength steel to limit intrusion. Its
lower area displays a soft zone with a lower material grade
to localize deformation and absorb a maximum of energy.
In this study, the post processing is done on the B-pillar

with two main Quantities of Interest (QoI): intrusions and
velocities. These QoI have been measured at four specific
points, representing the main zones of the dummy to pro-
tect: Head, Thorax, Abdomen and Pelvis. Measurement
points position are displayed on Figure 5.
The first QoI is the intrusion, measured as Y-

displacement (see Fig. 5) in the car referential. As the
vehicle moves during the crash, this local coordinate sys-
tem allows to analyze B-pillar deformations, as seen by
the passengers. Maximum values of the four intrusions
are assessed with some specific constraints to respect (see
Fig. 6). For example, one constraint is that the maximum
value of intrusion on Abdomen (N3) must be lower than
205mm.
The second QoI are the velocities, measured as Y-

velocities in the global coordinate system. The three lower
measurement points are considered: thorax, abdomen and
pelvis. A filter has been applied to smooth curves and
reduce numerical noise. Contrary to the intrusion, on
which only the maximum value is considered, the tem-
poral evolution of the velocities is studied (see Fig. 7).

Fig. 6. Car deformed view with highlighted B-pillar section and
location of points: Head (N1), Thorax (N2), Abdomen (N3) and
Pelvis (N4).

Fig. 7. Measured velocities at three measurement points.

Alongside maximum value, the average velocity is assessed
on several time zones.
A high accuracy level of the QoI is needed for a para-

metric model to be used. For the intrusion, the maximum
tolerated error for the PGD model is 5mm. Concerning
velocities, maximum tolerated accuracy is an average error
rate inferior to 2.5%.

3 Methods

When considering a QoI depending on a set of M parame-
ters µ1, . . . , µM, defining vector µ, µ = (µ1, . . . , µM), i.e.
O(µ), its explicit form is a valuable tool in design
optimization. However, in general QoI depends on the
structural model solution.
The parametrized model solution is expressed into a

separated form by making use of the SSL-PGD or the
sPGD solvers, it reads:

u(x, t, µ1, . . . , µM) =

N∑
i=1

Xi(x)Ti(t)M
1
i (µ1) · · ·MM

i (µM),

(1)
where the different functions are computed as described
in [5,6]
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Sometimes the quantity of interest can be directly and
explicitly extracted from equation (1), inheriting its sepa-
rated form. Imagine for a while, that one is interested by
the final value of the field at a certain point P and time
Θ. In that case the parametric QoI reads:

O(µ) = u(P ,Θ, µ1, . . . , µM)

=

N∑
i=1

Xi(P )Ti(Θ)M1
i (µ1) · · ·MM

i (µM)

=

N∑
i=1

αiM
1
i (µ1) · · ·MM

i (µM). (2)

However, in most of cases when dealing with com-
plex quantities of interest such an extraction becomes
difficult to perform. The simplest alternative consists of
evaluating the QoI for different choices of the parame-
ters, i.e. O(µj) = O(µj

1, µ
j
2, . . . , µ

j
M) ≡ Oj , j = 1, . . . , S,

and then from those values infer the parametric form
of the QoI, O(µ), by enforcing the best fitting of the
data Oj , j = 1, . . . , S. In what follows we assume being
operating in the last scenario.
The main difficulties related to the construction of the

parametric expression O(µ), by assimilating the available
data Oj , are multiple:

– The choice of the parameters. How to be sure that
the hidden parameters affecting the output were
considered?

– In some cases the list of parameters, a priori selected,
is too large, and many of them have not a significant
influence on the output;

– In many cases some parameters are exhibiting cor-
relations, that means that the list of explicative
uncorrelated parameters is more reduced that the
initially considered. Here nonlinear dimensionality
reduction techniques (manifold learning in particu-
lar) can help to extract the dimensionality of the
slow manifolds;

– In some cases the parameters do not act individually,
but in a combined manner. Imagine for a while the
Euler theory of buckling. For a beam of length L with
a rectangular cross section b× h (b being the width
and h its height), the buckling critical force depends
on bh3/L2. Thus, a polynomial regression express-
ing the buckling critical load from the geometrical
parameters b, h and L needs the appropriate richness
(third order in h) and the sufficient number of terms
for representing L−2 from a polynomial expansion.

Most of the last points are object of intense researches,
and today no definitive answer exist for most of them in
the more general settings.
In any case, as soon as the different parameters com-

posing the entries of vector µ are assumed able to express
the output, regressions based on decision trees or its ran-
dom forest counterpart, neural networks at the heart of
deep learning, whose main drawback is the amount of
data needed in the training stage, dynamic mode decom-
position [8], sparse identification [9], or usual linear and
nonlinear regressions, to cite few, can be applied.

A first choice consists of using classical regression
strategies. In that case one could consider a polyno-
mial dependence of the QoI, O, on the parameters µk,
k = 1, . . . , M. The simplest choice, linear regression, reads

O(µ) = β0 + β1µ1 + · · ·+ βMµM, (3)

where the M + 1 coefficients βk can be computed from
the available data. If 1 + M data are available, Oj , j =
1, . . . , 1 + M, we can write the matrix system
O1

O2

...
OM+1

 =


1 µ1

1 µ1
2 · · · µ1

M

1 µ2
1 µ2

2 · · · µ2
M

...
...

...
. . .

...
1 µM+1

1 µM+1
2 · · · µM+1

M




β0

β1

...
βM

,
(4)

that allows calculating coefficients βk and from them the
linear regression (3).
When the number of available data is smaller or larger

than M + 1, the previous systems results under or over-
determined respectively. Different techniques exist for
solving them: pseudo-inverse, L2 or L1 optimization, the
last intimately related to compressed sensing, or the usual
MatlabTM or ScilabTM backslash.
Linear regression is simple to use because it requires

a reasonable amount of available data, of the same
order than the number of the parameters involved in
the approximation, however, in some case the approxi-
mation becomes too poor for representing rich nonlinear
behaviors.
Higher degree approximations (nonlinear regressions)

are possible without major difficulties when the number
of involved parameters remain small enough. For instance
the quadratic approximation reads

O(µ) = β0 +

M∑
i=1

βiµi +

M∑
i=1

M∑
j≥i

βijµiµj , (5)

where it can be noticed that the number of coefficients
(and consequently the required data) roughly scales with
MD, where D is the approximation degree.
Thus, if M remains reasonably small, one could expect

increasing the approximation degree D, however the
multi-parametric case seems privileging linear regressions.
The crucial question is: can be the multi-parametric
case compatible with high-degree approximations while
keeping as reduced as possible the sampling?
A response to that question is provided in the next

section (Sect. 3.1) that proposes a multi-local sparse
nonlinear PGD-based regression. Even if such a pro-
posal enables rich approximations in multi-parametric
settings, one difficulty persists, the one related to the
use of L2 norm that determines its own choice of the
over-determined approximation. At present, a work in
progress consists in extending the procedure presented in
the next section, by using the L1 norm enabling sparser
approximations.
When the parameters are of very different nature, the

definition of metrics in the parametric space becomes a
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tricky issue. Separated representations circumvent that
issue when using an alternated directions constructor that
allows avoiding parameters mixing. In Section 3.2 we pro-
pose an alternative procedure able to circumvent that
issue in a very general setting.
Finally, as soon as the parametric expression of the

QoI is available, it allows generating as many parametric
particularizations as desired, making possible perform-
ing efficiently data-analytics, sensitivity analyses and
uncertainty propagation, as addressed in Section 3.3.

3.1 Sparse PGD: a nonlinear regression processing at
the low-data limit

Sparse PGD regression consists in defining a sparse
approximation in high dimensional settings [6] revisited
for the sake of completness in what follows. For the
ease of exposition and without loss of generality, let us
begin by assuming that the QoI lives in R2, O(µ1, µ2),
µ = (µ1, µ2) ∈ Ω ⊂ R2, and that it is to be recovered
from sparse data Oj . For that purpose we consider the
Galerkin projection for calculating the approximate Õ(µ)
of O(µ): ∫

Ω

w(µ)
(
Õ(µ)−O

)
dµ = 0, (6)

where w(µ) ∈ C0(Ω) is an arbitrary test function and

O =

S∑
j=1

Ojδ(µj). (7)

Following the Proper Generalized Decomposition
(PGD) rationale, the next step is to express the approxi-
mated function Õ in the separated form

Õ(µ) ≈
N∑

k=1

M1
i (µ1)M2

i (µ2), (8)

constructed by using the standard rank-one update [4].
It is worth noting that the product of the test function

w(µ) times the objective function O(µ) is only evaluated
at few locations (the ones corresponding to the available
sampled data). Since information is just known at these
S sampling points µj , j = 1, . . . , S, it seems reasonable to
express the test function not in a finite element context,
but to express it as a set of Dirac delta functions collocated
at the sampling points,

w(µ) = Õ∗(µ)

S∑
j=1

δ(µj). (9)

In the expressions above nothing has been specified
about the basis in which each one of the one-dimensional
modes was expressed. An appealing choice ensuring
accuracy and avoiding spurious oscillations consists of
using interpolants based on Kriging techniques.

Fig. 8. Input space (left) and target vector space (right).

The just described procedure defines a powerful nonlin-
ear regression. It is important to note that when calcu-
lating functions M j

i (µj) (that defines a one-dimensional
problem in the coordinate µj) S data-points are available.
Thus, S points enables quite rich approximations in each
parametric dimension. The only drawback, as commented
at the beginning of the present section, is the use of the
L2-norm in the Galerkin projection (6) leading to a par-
ticular solution of the under-determined problem, among
the infinity of possible solutions. The use of a L1 mini-
mization should lead to sparser approximations. This last
route constitutes a work in progress.

3.2 Code2Vect

Defining distances between qualitative data has no sense,
and usual learning approaches suffers of such an illness.
For instance, one could consider that yellow and red are
quite close because both are representing colors, however,
from both words such a proximity becomes difficult to
quantify.
In what follows we propose a technique, sketched in

Figure 8, for mapping points in a representation space
into a target space equipped of an euclidean metric
allowing quantifying distances, crucial for constructing
approximations.
We assume that points in the origin space (space of

representation) consist of S arrays composed on M entries,
noted by µj . Their images in the vector space are noted by
xj ∈ RD. That vector space is equipped with the standard
scalar product and the associated Euclidian distance. The
mapping is described by the D× M matrix W,

x = Wµ, (10)

where both, the components ofW and the images xj ∈ RD

of µj , j = 1, . . . , S, must be calculated.
Each point xj keep the label (value of the output of

interest) associated with is origin point µj , denoted by
Oj .
We would like placing points xj , such that the Euclidian

distance with each other point xi scales with their outputs
difference, i.e.
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Fig. 9. Temporal evolution of the intrusion I at four different locations of the B-Pillar: IH , IT , IA, & IP .

(Wµi−Wµj) · (Wµi−Wµj) = ‖xi−xj‖2 = |Oi−Oj |,
(11)

where the coordinates of one of the points can be
arbitrarily chosen.
Thus, there are S2

2 − S relations to determine the M× D

unknowns (the components of W).
Linear mappings are limited and do not allow proceed-

ing in nonlinear settings. Thus, a better choice consists of
the nonlinear mappingW(µ) suitably approximated [10].

3.3 Sensitivities and uncertainty propagation

With the QoI expressed parametrically,

O(µ) ≈
N∑

i=1

M1
i (µ1) · · ·MM

i (µM), (12)

sensitivity of the output to a given parameter, e.g. to µ1

reads

∂O(µ)

∂µ1
≈

N∑
i=1

∂M1
i (µ1)

∂µ1
M2

i (µ2) · · ·MM
i (µM). (13)

Now, if parameters are totally uncorrelated the proba-
bility distribution of all them becomes independent and
then the probability density function can be expressed as

Ξ(µ1, . . . , µM) = ξ1(µ1) · · · ξP(µM). (14)

When correlations cannot be totally avoided, we can
express the joint probability density Ξ(µ1, . . . , µM) in a
separated form (by invoking the SSL, the sPGD or even

the HOSVD) [4]:

Ξ(µ1, . . . , µM) ≈
R∑

i=1

F 1
i (µ1) · · ·F M

i (µM). (15)

Now, with both the output and joint probability density
expressed in a separated form, the calculation of the dif-
ferent statistical moments becomes straightforward. Thus,
the first moment, the average field results

O =

∫
Ω1×···×ΩM

O(µ1, . . . , µM) Ξ(µ1, . . . , µM) dµ1 · · · dµM,

(16)
where Ωk defined the domain of parameter µk. The sep-
arated representation is a key point for the efficient
evaluation of this multidimensional integral, that becomes
a series of one dimensional integrals.
The calculation of higher order statistical moments

(variance, ...) requires the pre-calculation of the output
powers Os, s > 1 within the SSL or sPGD frameworks to
define a separated representation to be introduced in the
calculation of the s-statistical moment:∫

Ω1×···×ΩM

Os(µ1, . . . , µM) Ξ(µ1, . . . , µM) dµ1 · · · dµM. (17)

An alternative procedure for propagating uncertainty
consists in using Monte Carlo techniques. The parametric
QoI allows particularizing it in almost real-time to any
choice of the parameters, according to their probability
distribution, in order to evaluate the QoI probability dis-
tribution. These simple and cheap particularizations can
be also used for performing a variety of data-analytics.
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Table 1. Design of Experiments –DoE.

Simulation z t2 t1 t3 y

1 90 1.3 1.5 1.5 471
2 90 1.15 1.7 1.5 591
3 60 1.25 1.7 1.1 549
4 60 0.9 1.65 1.05 527
5 60 1.25 1.55 1.15 386
6 60 1.3 1.15 1.55 356
7 90 1.2 1.15 1.4 570
8 90 1.25 1.7 1 364
9 90 1.1 1.75 1.1 591
10 90 1 1.1 1.05 420
11 90 0.95 1.15 1.55 527
12 90 0.9 1.65 1.55 489
13 90 1.2 1.2 1.6 360
14 60 0.95 1.6 1.1 351
15 60 1.1 1.35 1.5 557
16 90 1.1 1.4 1.25 347
17 90 1.3 1.1 1.1 493
18 90 1.1 1.65 1.55 390
19 60 1.3 1.1 1.25 471
20 60 0.9 1.15 1.2 536
21 60 1 1.2 1.35 394
22 60 1.3 1.6 1.6 531

4 Numerical results

The numerical results are structured as follows: first, the
performance to create a surrogate model of the maximum
intrusion displacement is shown. Afterwards, the sPGD
will be employed to capture not only the maximum intru-
sion displacement but also the temporal evolution of the
intrusion. In the last application of the sPGD, a surrogate
model regarding the temporal evolution of the intrusion
velocity will be created as well. Finally, the Code2Vect will
be used for two purposes, first to find a representation
space where all the intrusion data is displayed; second, to
study as well its prediction capability for calculating the
maximum intrusion value.

4.1 Maximum intrusion from sPGD

Our parameter space consists of five independent parame-
ters, namely z, t2, t1, t3 and y. The Design of Experiments
(DoE) consists of 22 high-fidelity simulations where differ-
ent values of the independent parameters have been used
as shown in Table 1.
As previously mentioned, the B-Pillar structure inside

the car plays an important role to guarantee the safety
of all passengers. Therefore, four different spatial points
placed at different heights on this B-Pillar structure will
be our object of study. This four points, illustrated in
Figure 5 will be referred in the sequel: “Head", “Thorax",
“Abdomen" and ‘Pelvis", also sometimes will be referred
from their first letter: H, T, A and P respectively. Indeed,
the intrusion of these four points when a crash occurs will
determine the degree of safety of a given configuration.
Figure 9 shows the temporal evolution at the four posi-

tions of the B-Pillar structure for each one of the DoE
appearing in Table 1. As it can be seen all of them follow

Fig. 10. Estimated versus real maximum intrusion for Head
(H) IHM , Thorax (T) ITM , Abdomen (A) IAM and Pelvis (P) IPM
B-pillar points. Yellow points, used in the sPGD. Blue points,
used as error indicator of the regression model.

the main trend, from 0 to 0.05 seconds there is a incre-
ment on the intrusion value due to the crash, afterwards
there is a relaxation of the intrusion once the main impact
has finished due to springback effects.
Since the maximum intrusion of the B-Pillar is going

to provide a reliable safety indicator, the first surrogate
model is based on selecting the maximum intrusion at the
H, T, A and P points as a function of the five param-
eters previously introduced. The parameters are set into
vector µ

µ = (µ1, . . . , µ5) = [z, t2, t1, t3, y]. (18)

The maximum intrusion IM at point Q (Q refers to
locations H, T, A and P) is defined from

IQM (µ) = max
t
I(t;µ, Q). (19)

To test the performance of the sPGD algo-
rithm, only the maximum intrusions related to points
[1, 4, 13, 15, 17, 21] inside the DoE are taken into account
to construct the regression. The other 16 points are used
as an error indicator to show how accurate the regression
is. It is important to remark that the low amount of data
to build the sPGD regression forces the algorithm to work
with low order interpolation basis. Indeed, when generat-
ing such a surrogate model up to linear interpolations in
each one of the directions will be used. More in detail, the
greedy nature of the sPGD algorithm is used to adapt the
basis for each one of the modes i.e. the first mode will be
constant in each direction, the second mode linear in the
first direction and constant in the other ones, the third
mode linear in the second direction and constant in the
other ones, etc.
Figure 10 shows the real versus the estimated predic-

tion on the maximum intrusion for Head (H), Thorax
(T), Abdomen (A) and Pelvis (P) points i.e. IHM , ITM ,
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Table 2. Relative error in maximum intrusion for sPGD.

Head (H) Thorax (T) Abdomen (A) Pelvis (P)
Rel. Error [%] 1.35 1.73 1.38 4.87

Fig. 11. Convergence with respect number of sPGD modes for
Head (top-left), Thorax (top-right), Abdomen (bottom-left) and
Pelvis (bottom-right) .

IAM , IPM , respectively. The yellow points correspond to the
ones used to build the sPGD regression, whereas the blue
points are just used to measure the sPGD regression pre-
dictive accuracy. If all points were on the red line, the
surrogate model would be perfect. Nevertheless, the dis-
persion of these points with respect to the red line gives
us a visual indicator of how good the surrogate model
is. Indeed, the relative error based on the blue points is
shown in Table 2. As it can be seen, the highest error is
the one present in Pelvis (P) point, reaching a value of
4.8%, the closest one to the soft zone.

4.2 Modeling the intrusion time evolution using the
sPGD

The previous section analyzed the surrogate models based
on the maximum intrusion. However, it is also impor-
tant to understand how the intrusion evolves in time.
Indeed, this temporal evolution gathers the information
of the maximum intrusion just like the cumulated energy
stored in the B-Pillar structure. Nevertheless, the genera-
tion of the surrogate model involving the time coordinate
becomes more complex.
To be consistent with the former subsection, in order to

build the sPGD model only the time evolution of intrusion
associated to parameters in Table 1 ([1, 4, 13, 15, 17, 21])
is taken into consideration. It is important to note that
the time coordinate exhibits a rather richer behavior
compared to the evolution along the other coordinates.
However, it is possible to increase the interpolation order
along the time coordinate while keeping low order in the
other coordinates. Thus, Chebyshev polynomials of degree

Fig. 12. Predicted temporal evolution (red) versus real temporal
evolution (blue) for a Head point inside the training set (left)
and outside the training set (right).

Fig. 13. Predicted temporal evolution (red) versus real temporal
evolution (blue) for a Thorax point inside the training set (left)
and outside the training set (right).

Fig. 14. Predicted temporal evolution (red) versus real temporal
evolution (blue) for a Abdomen point inside the training set
(left) and outside the training set (right).

Fig. 15. Predicted temporal evolution (red) versus real temporal
evolution (blue) for a Pelvis point inside the training set (left)
and outside the training set (right).

40 are used in the time approximation, while keeping
either constant or linear interpolation in the parametric
µ space. The intrusion reads now IQ(t;µ, Q).
Figure 11 depicts both the error considering only the

points inside the sPGD regression and the one considering
both sPGD regression points plus the ones outside the
training dataset. As it can be seen, the error decreases
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Fig. 16. Temporal evolution of the thorax, abdomen and pelvis velocity magnitude throughout the crash simulation for different
values of the parametric space. As velocities results from the intrusion derivatives they result less smoother.

Fig. 17. Convergence with respect number of sPGD modes for thorax velocity (top-left), abdomen velocity (top-right) and pelvis
velocity (bottom).

Fig. 18. Predicted temporal evolution (red) versus real tempo-
ral evolution (blue) for a thorax velocity magnitude inside the
training set (left) and outside the training set (right).

as a function of the number of modes introduced in our
sPGD approximation. The most important decrease in the
error is seen in the fourth sPGD which involves a linear
interpolation along µ3 (that corresponds to t1), hence it
can be assumed that this parameter plays an important
role in order to explain the variation of the QoI inside
the parameter space. Moreover, the error decrease almost
monotonic while exhibiting different plateaux.
Figure 12 shows the predicted temporal evolution (red)

against the real temporal evolution (blue) for a Head
point inside the training set (i.e. DOE 1 left) and out-
side the training set (i.e. DOE 22 right). As it can be
seen, there is almost no difference between predicted and
real values for the point in the data set, i.e. blue and red
curves almost overlap, whereas for the point outside the
data set there is a very slight difference between red and

Fig. 19. Predicted temporal evolution (red) versus real temporal
evolution (blue) for a abdomen velocity magnitude inside the
training set (left) and outside the training set (right).

Fig. 20. Predicted temporal evolution (red) versus real tempo-
ral evolution (blue) for a pelvis velocity magnitude inside the
training set (left) and outside the training set (right).

blue curves. Nevertheless, points outside the trainning set
present acceptable errors in this particular case.
Analogously, Figures 13–15 contains the same informa-

tion than Figure 12 but in the case of Thorax, Abdomen
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Fig. 21. Mapped data concerning Head (top) and Thorax (bottom) intrusion.

and Pelvis points, respectively. The predicted behaviour
is in good agreement with respect to the real behaviour.

4.3 Modeling the intrusion velocity time evolution by
using the sPGD

Another quantity of interest that is important from a
safety point of view is the velocity magnitude experienced
at certain points belonging to the body of the passenger
throughout the impact. Indeed, the velocity magnitude at
three points placed at the Thorax, Abdomen and Pelvis
is our subject of study, namely VT (µ, t), VA(µ, t) and
VP (µ, t), respectively.
Figure 16 depicts the temporal evolution of the veloc-

ity magnitude throughout the crash for different set of
parameters µ. As it can be seen, there is a notable change
of these curves within the parameter space. Initially the
car is static, and consequently the velocity magnitude is
zero, then it starts to grow due to the impact. Hence, the

main task is to be able to predict such temporal evolu-
tion for different values of parameters. Again, richer time
approximation are again expected.
Figure 17 shows the convergence of the estimated solu-

tion for different number of sPGD modes. The error is
measured using a L2 relative error norm. The points used
in the sPGD regression are again [1, 4, 13, 15, 17, 21], with
respect to Table 1, the other points are only used to
measure the regression accuracy. As it can be seen, the
magnitude of all error indicators are acceptable (around
1–2%) being the highest error the one associated with
the pelvis velocity. Indeed, the pelvis velocity is the
one presenting the highest error since the variation of
the curve along the parameter space is the highest one
as well.
Figures 18–20 show the predicted temporal evolution

(red) versus the real temporal evolution (blue) for velocity
magnitudes inside the training set (left) and outside the
training set (right). It can be notice how the predicted
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Fig. 22. Mapped data concerning the Abdomen (top) and Pelvis (bottom) intrusion.

Fig. 23. Estimated versus real maximum intrusion for Head (H), Thorax (T), Abdomen (A) and Pelvis (P) B-pillar points. Yellow
points, are used for training purposes in Code2Vect whereas blue points serves to quantify the prediction accuracy.
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Fig. 24. Distributions of (top-left) t2; (top-right) t1; (bottom-left) t3 and (bottom-right) y.

curve is closer to the real curve when the point is inside
the training data set. Nevertheless, the prediction outside
the training points also captures the main features of the
real curve.

4.4 Classifying multi-dimensional data by employing
the Code2Vect technique

In this section the application of Code2Vect to classify
multi-dimensional data is discussed. As before stated
the GESTAMP dataset is conformed by five parameters,
being the maximum intrusion the QoI. The obtained low-
dimensional vectors xj ∈ R2 (see Section 3.2) are depicted
for the Head and Thorax cases in Figure 21 and for the
Abdomen and Pelvis ones in Figure 22. Each sampling
point of the data-set becomes a point in the target vector
space as described in Section 3.2. For the sake of easy
visualization the vector space was enforced to have low
dimensionality, 2D in the examples discussed below.
As soon as all the points were mapped into the 2D

vector space, a color was assigned to each of them, corre-
sponding to the QoI but also to the value of the different
parameters in order to see which of them clusterize in
a similar way that the QoI. Such correlations serve to
conclude on which parameters directly explain the QoI.

Figure 21 proves that the third parameter µ3 ≡ t1

has a direct influence on the output because when t1 is
maximum intrusion is minimum and vice-versa. This con-
clusion reinforces the observation when using the sPGD.
The other parameters are not individually correlated, and
consequently if they influence the output, they should pro-
ceed in a combined manner. It has been proved that by
removing them (all parameters except the third param-
eter µ3 ≡ t1) predictions remain very accurate, mainly
at H, T & A locations, proving the fact that responses
are almost dictated by the third parameter. This fact
is physically interpretable because, as soon as the soft
zone localizes the deformation, the mechanical response
is almost determined by parameter µ3 ≡ t1 related to
the outer thickness t1, being quite insensible to the soft
zone location and grade as well as to the inner and patch
thicknesses. Obviously, when approaching the soft zone
(Pelvis) this tendency seems, as expected, less pronounced
as Figure 22(right) proves.

4.5 Maximum Intrusion using the Code2Vect
technique

In this section Code2Vect is used as regression proce-
dure. The same points considered in Section 4.1 were
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Fig. 25. (top left) the Maximum Head intrusion distribution; (top right) Maximum Thorax Intrusion distribution; (bottom left)
Maximum Pelvis intrusion distribution, (bottom right) the Maximum Abdomen intrusion distribution.

Fig. 26. Column of importance on the maximum intrusion on
the four points.

used here for training purposes, that is, for computing
matrix W. Then, the remaining points were mapped and
the QoI interpolated from the neighbor data. Thus, the
error between the known QoI at that points and the

Table 3. Relative error in the prediction of the maximal
intrusion when using the Code2Vect-based regression.

Head Thorax Abdomen Pelvis
Rel. Error [%] 2.50 4.21 5.12 1.73

one predicted was calculated, as reported in Table 3 and
depicted in Figure 23. The best prediction is achieved
for the intrusion at the Pelvis location, while the worst
prediction is related to the one related to the Abdomen.

4.6 Sensitivity analysis and uncertainty propagation

Part thickness and material properties can slightly
change from one steel blank to another, due to pro-
cess variability. To perform a statistical analysis on
the intrusions of the points of interest, we assumed
that parameters [t2, t1, t3, y] follow gaussian distribu-
tions (Fig. 24), respectively N (1.1, 0.06), N (1.4, 0.09),
N (1.3, 0.08), N (1.09, 0.07), where the discrete parame-
ter z = 107. Using the constructed PGD regression from
points [1, 4, 13, 15, 17, 21] (previously discussed), 10 000
extra-configurations were generated by varying parameter
values.
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Fig. 27. Optimization using parallel coordinates considering Abdomen intrusions. Blue lines represents the parameter combinations
associated with the allowed outputs.

Fig. 28. Optimization using parallel coordinates considering all constraints. Blue lines represents the parameter combinations
associated with the allowed outputs.

Maximum intrusions were calculated at the four points
of interest: Head, Thorax, Abdomen, and Pelvis, and their
resulting distributions are represented in Figure 25. Two
probability density functions are shown for each quantity:

(i) the gaussian density distribution and (ii) the ker-
nel density estimation (KDE). On the one hand, the
Abdomen intrusion distribution is relatively wide because
a local bending may appear if the B-pillar is not strong
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enough to withstand the resultant forces. On the other
hand, the Pelvis intrusion displays a low standard devia-
tion that can be explained physically from the fact that
the lower grade applied in this area is used to localize
the deformation. The bending will hence always occur
here. Moreover, the resultant displacement is also driven
by the deformation of the side sill component, which
remains unchanged. The impact of the energy absorption
by the lower area has a greater effect on upper intrusions
than on the lower intrusion because it drives the overall
distribution of forces in the B-pillar.
In order to explore better the design space, we generate

20000 new configurations and then compute (by using the
PGD nonlinear regression model) the related maximum
intrusion for the points of interest: H, T, A and P. Using
the analytics features of MinesetTM, sensitivity analysis and
optimization studies were performed.
Figure 26 displays the parameters influence on the

intrusion. As expected, it confirms that µ3 ≡ t1 is the
critical design parameter for this QoI. Similar conclusions
can be stressed for the other intrusions points; the outer
thickness has an overwhelming importance compared to
the other parameters.
Finally, two optimization studies were done, one con-

sidering a single constraint related to the Abdomen,
Figure 27, and the other by considering constraints on
every measurement point (see Fig. 28). Optimized param-
eter values are consistent for this type of crash example.
As several values are proposed for z and y parame-
ters, it seems that their influence is low for the selected
constraints.

5 Conclusions

In this paper we proposed two different techniques able
to extract quantities of interest – QoI – and express them
parametrically, in the low-data limit. These procedures
were successfully applied to analyze parametrically a B-
Pillar within a full vehicle crash test. Indeed, it allowed to
reduce significantly the number of simulations needed to
perform prediction, optimization and sensitivity analyses.
It was proved that in this particular case, the com-

putational complexity scales linearly with the number of
parameters, i.e., 6 data suffice for expressing a parametric
solution involving 5 parameters, a quite impressive per-
formance due to the features of sparse PGD formulations.
Moreover, the data generated by using these parametric
solutions was considered for performing sensitivity and
uncertainty propagation analyses.
The prediction of maximal intrusions and time evo-

lution of intrusion and intrusion velocities were success-
fully accomplished by invoking the sPGD. By using the

Code2Vect the influence of the different parameters on the
quantity of interest – QoI – was determined, and it was
concluded that it remains quite insensible to the variation
of 4 among the 5 parameters. The QoI obviously depends
on those parameters, but it does not vary significantly
when these 4 parameters vary in their considered inter-
vals. These tendencies were confirmed by all the analysis
techniques considered: sPGD, Code2Vect and MINESETTM

software on data-analytics, the last considered in the
present work for performing uncertainty propagation.
To go further, performances could be evaluated based

on more complex cases, involving highly sensitive param-
eters and bifurcations.
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