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Abstract. In this paper, we propose an efficient approach
for optimizing the decomposed vector rotation (DVR) model
for digital predistortion (DPD). The DVRmodel’s basis func-
tions are constructed piecewise by dividing the input space
into segments bounded by thresholds. This paper investigates
how to set the thresholds optimally using an iterative ap-
proach based on the decomposition of the global optimization
problem into a set of unimodal sub-problems so that a unidi-
rectional minimization can be used to optimize the positions
of thresholds. The proposed approach has been evaluated
using measurements from a real power amplifier (PA). The
experimental results illustrate the efficiency of the proposed
optimization approach and show that the thresholds’ opti-
mization improves linearization performances significantly
compared to conventional DVR with uniform segmentation.

Keywords
Power amplifiers, digital predistortion, DVR, optimiza-
tion of thresholds.

1. Introduction
Higher data rates require to use spectral efficient mod-

ulation techniques such as Orthogonal Frequency Division
Multiplexing (OFDM). As a result, the modulated signals
have a high peak-to-average power ratio (PAPR), which stim-
ulates PA’s nonlinearities. These nonlinearities introduce in-
band and out-of-band distortions that cause spectral regrowth
causing interference between channels.

Digital predistortion is a powerful technique used to
linearize PA and compensate for these distortions. This op-
eration allows to pre-compensate the nonlinear effects of the
PA, and the behavior of the whole system becomes linear and
memoryless [1, 2].

Several mathematical models have been proposed for
DPD. Most of them are derived from Volterra Series model
[3–5]. However, other approaches, such as the segmenta-
tion approach, consist of dividing the amplitude range into

segments and applying a specific nonlinear function to each
of them. The segmentation approach can represent strong
non-nonlinearities and may have good numerical properties
regarding their implementation [6].

In [7], the author proposed a behavioral model based on
Decomposed Vector Rotation (DVR). The DVRmodel struc-
ture is determined by the number of segments  bounded
by thresholds V: and by the set of basis functions that are
applied to each segment.

The thresholds V: that define the boundaries of seg-
ments can be selected using uniform or optimized segmen-
tation. Although many works in the literature are dedicated
to the DVR model with uniform segmentation, few of them
deal with optimal segmentation.

The first work for DPD application about optimal spac-
ing was conducted for memoryless LUT DPD [8]. The
author has proposed a non-uniform spacing using a com-
panding function into table indexing. The benefit of optimal
segmentation versus uniform segmentation has already been
established in [9] where the authors suggest to reduce the
complexity of the algorithm by considering the memoryless
version of the actual DVR model. Nevertheless, even with
the reduced complexity algorithm proposed in [9], the prob-
lem to solve is still a nonlinear least square problem. The
authors claim that the nonlinear minimization problem be-
haves well close to uniform segmentation and can be handled
with Gauss-Newton based methods.

Generally speaking, setting the thresholds optimally for
piecewise models such as the DVR model requires global
optimization, and in [10] an approach based on genetic al-
gorithm (GA) has been used to optimize the thresholds of
a canonical piecewise linear (CPWL) model.

In this paper, we propose a new approach in which the
optimization problem is decomposed into a set of unimodal
sub-problems that allow to use unidirectional minimization
and decrease the search complexity dramatically. The pro-
posed approach has been compared to GA and brute-force in
terms of linearization performance and search complexity to
validate its effectiveness.

In the following, we present the structure of the DVR
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model in Sec. 2. In Sec. 3, the test bench is presented. The
proposed approach to optimize the thresholds of the DVR
model is described in Sec. 4. The results are discussed and
analyzed in Sec. 5. Finally, Section 6 gives a conclusion.

2. DVR Model
The DVR model is an extension of the CPWL model,

which is capable of representing a wide range of continuous
nonlinear functions with high precision [11].

The basis functions of the DVR model are constructed
piecewise using the decomposed vector rotation technique,
which allows the model to handle complex signals and non-
linear systems with memory. Besides, the DVR model is
linear with respect to its coefficients. The DVR model can
include different terms [7]. For example using "1st" and "2nd"
order terms, the DVR model can be defined as:

H(=) =
"∑
8=0

08G(= − 8)

+
 ∑
:=1

"∑
8=0

2:8,1 | |G(= − 8) | − V: |ej\ (=−8)

+
 ∑
:=1
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8=0

2:8,2 | |G(= − 8) | − V: |ej\ (=−8) |G(=) |

+
 ∑
:=1

"∑
8=1

2:8,3 | |G(= − 8) | − V: |G(=)

+
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:=1
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8=1

2:8,4 | |G(= − 8) | − V: |G(= − 8)

+
 ∑
:=1

"∑
8=1

2:8,5 | |G(=) | − V: |G(= − 8)

(1)

where G(=) and H(=) are the baseband input and output sig-
nals, respectively. " represents the memory depth. 08 and
2:8,= are themodel coefficients.  is the number of segments,
and V: are the thresholds.

The coefficients of the DVRmodel depend on the mem-
ory depth and the number of segments. According to (1), the
number of coefficients � is defined by:

� = (1 + ") (1 + 2 ) + 3 ". (2)

The coefficients � are identified using postdistorter
from the indirect learning architecture (ILA), as shown in
Fig. 1. The ILA aims is to minimize the difference between
the output of the postdistorter Ip and the input of the PA G.
The error is thus defined as 4(=) = G(=) − Ip (=).

Fig. 1. Indirect learning architecture.

The identification of themodel coefficients using a least-
square criterion is obtained by solving the normal equations

[ZHZ]c = ZHx (3)

where (.)H represents the Hermitian transpose, G is the input
vector, Z is the matrix of regressors, and c is the vector of
coefficients.

To evaluate the modeling accuracy of the DVR model,
the NMSE is calculated between the post-distortion output
Ip (=) and the PA input signal G(=).

NMSEdB = 10 log10

∑#
==1 |G(=) − Ip (=) |2∑#

==1 |G(=) |2
. (4)

From a system point of view, the figure of merit is pro-
vided by the out-band distortions, which are evaluated using
adjacent channel power ratio (ACPR), which are defined for
the right and left channel as

ACPRR,dB = 10 log10

∫ �/2
−�/2 %(H(C))dt∫ 3�/2
�/2 %(H(C))dt

,

ACPRL,dB = 10 log10

∫ �/2
−�/2 %(H(C))dt∫ −�/2
−3�/2 %(H(C))dt

,

(5)

where � represents the bandwidth of the signal, and %(.) is
power spectral density.

3. Experimental Test Bench

3.1 Test Bench
Experiments are carried out using measurements from

the test bench represented in Fig. 2.
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Fig. 2. Test bench block diagram.

Fig. 3. AM-AM and AM-PM curves of PA.

The baseband IQ signal is fed from a software-defined
radio (SDR) board manufactured by ARELIS to an LDMOS
PA at a carrier frequency of 1.8 GHz. The output signal is
captured through a coupler and then down-converted and ac-
quired by a vector signal transceiver (VST). The PA is excited
by a 10MHz LTE signal with an effective PAPR of 9 dB. The
average output power of the PA is 44 dBm. Around 64000
IQ samples are used for the identification process. Adjacent
channel power ratio (ACPR) and normalized mean square
error (NMSE) were used for performance evaluation.

The non-nonlinearities of the PA can be seen from the
AM-AM and AM-PM curves for the LTE signal in Fig. 3.

According to Figure 3, the AM-AM characteristic’s be-
havior is not typical over the interval [0.8 1], where there are
very few data points located in the high power region.

Indeed, a crest factor reduction (CFR) could be applied
to clip the input signal by setting the clipping threshold to
0.8, but as we are concerned in this study by the optimization
of the thresholds which strongly depends on the input range,
we note that no CFR has been applied.

3.2 Baseband Postdistortion
In this study, the effectiveness of the proposed approach

to optimize the DVR model thresholds has been validated

using the postdistortion architecture from baseband using
Matlab software.

In this process, the coefficients � are estimated, but
without copying them to the predistorter model, whichmeans
that only the input-output signals from PA are required. For
real-time DPD adaptation, the proposed approach is only re-
quired to be performed at the initial training when the global
characteristics of the PA are determined to selected the DPD
model.

Therefore, the proposed approach is seen as an offline
process to tune theDVRmodel by optimizing its thresholds V.

4. Optimization of DVR Model

4.1 Motivation
The benefits of an optimized segmentation is high-

lighted in Fig. 4, which compares uniform and optimal
segmentation for different number of segments in terms of
NMSE for a 10 MHz bandwidth LTE signal with a given
DVR model. According to Fig. 4, the linearization perfor-
mance for 8 segments using uniform segmentation could be
achieved with only 3 segments using optimal segmentation.

The NMSE of the DVR model with optimal segmenta-
tion converges towards an asymptote from 4 segments, while
uniform segmentation requires more than 10 segments to
reach the best linearization performance.

Thus, the optimal segmentation significantly reduces
the complexity since the number of coefficients to be esti-
mated is reduced according to (2). This confirms the interest
in optimizing the DVR model thresholds.

In the sequel, we present the proposed approach to op-
timize the thresholds V and how the global optimization
problemcould be divided into a set of unimodal sub-problems
requiring only a unidirectional minimization.

Fig. 4. NMSE versus number of segments  with " = 2.
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4.2 Principle of Unidirectional Minimization
In the proposed approach, unidirectional minimization

is achieved using the golden section (GS) algorithm.

The GS search is an optimization technique used to find
the optimum for a strictly unimodal function of a single vari-
able over a search interval without using derivatives [12]. For
a given unimodal function 5 (G), the principle of GS search
consists of finding the optimum Gopt which corresponds to the
minimum value of 5 (G), by iteratively narrowing the range
of the search interval [0 1] containing that optimum until
a specified accuracy is reached. The GS search derives its
name from the fact that the points determining the search in-
terval are computed using the golden ratio g, which is equal
to 1+

√
5
2 ≈ 1.618 and verifies g − 1 = 1

g
. In fact, the golden

ratio g is intimately involved in the Fibonacci sequence, in
which the ratios of successive terms of the Fibonacci se-
quence possess an impressive proportion, e.g., 1.618, or its
inverse 0.618.

Therefore, the length of the search interval is iteratively
reduced by a factor g. At q-th iteration the search interval
is noted [0@ 1@]. Denoting i = 1

g
, two intermediate points

are used to update the range of the search interval. They are
determined by {

G1 = 0@ + i2 (1@ − 0@)
G2 = 0@ + i(1@ − 0@)

. (6)

The function value 5 (G1) and 5 (G2) are computed and
compared as described in Algorithm (1).

Algorithm 1. Algorithm of GS search

@ = 0 ; 00 = 0 ; 10 = 1
Compute G1 and G2
while |1q − 0q | > n do
if 5 (G1) ≤ 5 (G2) then

0q+1 = 0q
1q+1 = G2
G2 = G1
Compute G1

end
if 5 (G1) > 5 (G2) then

0q+1 = G1
1q+1 = 1q
G1 = G2
Compute G2

end
@ = @ + 1

end
Gopt =

0q+1q
2

The computation process of 5 (G1) and 5 (G2) is itera-
tively executed and the search interval [0 1] is narrowing
until the accuracy |1q − 0q | < n is reached where n is a spec-
ified small value, then takes Gopt =

0q+1q
2 as an approximate

optimum point and 5 (Gopt) is an approximate optimum value.

Fig. 5. Evolution of GS search with n =0.1

In this work, the GS search NMSE as the function 5 (G)
and the range of the normalized magnitude of the baseband
input IQ as the search interval [0 1].

Another advantage of the GS search is that it requires
only one computation of 5 (G) at each iteration, except for the
first one where 5 (G1) and 5 (G2) have to be evaluated.

4.3 Optimization of a Single Threshold
Let us consider the case of 2 segments. In this case, we

have only a single threshold to determine.

Figure 5 presents the evolution of GS search over the
intermediate points G1(@) and G2(@) in the two first iterations
and the final iteration. The blue curve presents the NMSE of
postdistortion for every position of the threshold between 0
and 1. The red curve presents the AM-AM characteristic of
the PA.

Initially, the search interval [0 1] = [0 1]. At the first
iteration, the search interval [0 1] is updated with the nar-
rower interval [01 1]. After 34 iterations, [034 134] fulfills
the condition |034 − 134 | < n that allows the GS search to
stop and return Gopt = 034+134

2 as the optimized threshold.

Thus, the NMSE from uniform segmentation to optimal
segmentation is improved by nearly 5 dB, as it can be seen
from Fig. 5.

4.4 General Case with K Segments
In the general case, for  segments, we have  − 1

thresholds to optimize: V = V1,V2,..., V −1. We propose to
optimize the thresholds successively one by one, startingwith
an initial uniform segmentation. The optimization interval
�8 of a selected V8 is [V8−1 V8+1]. In a normalized interval,
V0 = 0 and V = 1 by definition.

Each V8 contribute to the overall NMSE, furthermore
as V8 is the bound of the optimization interval for V8−1 and
V8+1 so the optimization of V8 will in turn impact the optimal
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position of V8−1 and V8+1 that should be re-evaluated. That
is why we propose a heuristic to handle this situation: after
having optimized the last threshold V −1, the algorithm is
run in reverse order back to V1, then again up to V −1, and
so on until the segmentation has converged.

Given the DVR model in (1) defined by  , " and
the thresholds V1, · · · , V −1. The function NMSE(V8) cor-
responds to the different value of NMSE, obtained when
varying V8 from V8−1 to V8+1. The minimum of this function
is obtained with argmin NMSE(V8), where:

V8 ∈ [V8−1, V8+1] . (7)

The algorithm for the proposed approach is described in
Algorithm (2) in which the steps V −1 (@) = V −1 (@−1) and
V1 (@) = V1 (@ − 1) are introduced for notation consistency.
Algorithm 2. Algorithm of the proposed approach

Given  and " for the DVR model
Initialization V8
Set loop counter @=1
while (1) do
for 8 = 1, 2, ...,  − 2,  − 1 do

V8 (@) = argmin
V8 ∈[V8−1 (@) ,V8+1 (@) ]

(NMSE(V8))

end
@ = @ + 1
V −1 (@) = V −1 (@ − 1)
for 8 =  − 1,  − 2, ..., 2, 1 do

V8 (@) = 0A6<8=
V8 ∈[V8−1 (@) ,V8+1 (@) ]

NMSE(V8)

end
@ = @ + 1
V1 (@) = V1 (@ − 1)
Evaluate NMSE(@)
if NMSE(@) < NMSE(@ − 1) − n then

@ = @ + 1
else

end while loop
end

end

4.5 Complexity of GS Search
The complexity of the GS search is an important aspect

to be considered in the thresholds optimization process.

In this paper, the search complexity is assessed by the
number of NMSE computations, which require to estimate
the coefficients. The number of GS iterations is defined by
the number of times the search interval is updated, except at
the first iteration, one GS iteration corresponds to one NMSE
evaluation.

5. Performance of the Proposed Ap-
proach

5.1 Parameters of DVR Model
In the following, we set the number of segments  to

4 and the memory depth " to 2. We use the DVR model
presented in (1). The number of coefficient is 51.

5.2 Comparison of LinearizationPerformances
In this section, the proposed approach results are dis-

cussed and compared to those of a uniform segmentation and
the optimal segmentation obtained from brute-force search
and GA algorithm. The results are summarized in Table 1
and discussed in terms of NMSE and ACPR, where L1 and
U1 refer to the lower and upper adjacent channels and L2
and U2 lower and upper alternate channels. The algorithm
complexity is also discussed and evaluated by the number of
computations of the objective function.

The first column corresponds to the uniform segmenta-
tion. The next column represents brute-force search, which
has been performed by dividing the input range into 100 steps.
The third column represents GA’s results, which have been
performed with a population size of up to 50 and a maximum
number of generations up to 25. The last column presents
the results of the proposed approach.

In the scenario at hand, the proposed approach has con-
verged towards quasi the same optimal segmentation returned
by brute-force search and GA. According to Tab. 1, only 248
objective function evaluations are performed to optimize the
thresholds, while GA requires 2554 evaluations and brute-
force requires 161700 evaluations to find the same optimal
results.

Compared to uniform segmentation, the NMSE of the
proposed approach has been significantly improved by nearly
6.5 dB, as it can also be seen from Fig. 4 for  = 4.

Fig. 6. AM/AM plots of PA with uniform and optimized seg-
mentation.
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Uniform Brute-force GA Proposed approach
segmentation with uniform segmentation

Segmentation [0.25 0.5 0.75] [0.60 0.83 0.94] [0.60 0.83 0.94] [0.60 0.84 0.95]
NMSE (dB) −34 −40.43 −40.43 −40.43

ACPR(dB)

L2 −52.53 −56.85 −56.86 −56.85
L1 −41.39 −43.51 −43.49 −43.51
U1 −42.15 −44.07 −44.08 −44.07
U2 −53.34 −58.45 −58.55 −58.44

Complexity 1 161700 2554 248

Tab. 1. Comparison of linearization performances, optimal solutions and complexity

Fig. 7. Power spectrum of 10MHz LTE signal where is the input
and output of PA and output of Post-D with DVR model
with uniform and optimized segmentation.

The linearization performances of the optimal segmen-
tation with Vopt = [0.60 0.84 0.95] are presented in Fig. 6
and Fig. 7 where they are compared to that of the uniform
segmentation with Vunif = [0.25 0.5 0.75]. Figure 6 presents
the AM/AM characteristics of the PA and that of the predis-
torters with uniform and optimized segmentation. It can be
seen that the AM-AM curve is improved with optimal seg-
mentation compared to uniform segmentation. The power
spectrum of the output of the postdistorter for DVR model
with uniform and optimized segmentation are shown in Fig.
7. The ACPR with Vopt has been significantly improved than
the DVR model with Vunif.

5.3 Analysis of the Proposed Approach
This section highlights the behavior of the proposed ap-

proach throughout its convergence and how the optimization
problem is decomposed into a set of unimodal sub-problems.
Furthermore, a stochastic process is proposed to select the
initial segmentation to accelerate the convergence of the pro-
posed approach.

5.3.1Behavior of the Proposed Approach
The initial segmentation is uniform, i.e. V =

[V1(0) V2(0) V3(0) ] = [0.25 0.5 0.75]. The opti-
mization interval vector is � (0) = [�1(0) ; �2(0) ; �3(0) ] =

[[0 0.5]; [0.25 0.75]; [0.5 1]]. Figure 8 presents the be-
havior of NMSE(V8) on each interval. It can be seen from
Fig. 9 that NMSE(V1) is not unimodal on �1(0) .

Fig. 8. NMSE(V8) on �8 (0) .

Fig. 9. Zoom of NMSE(V1) on �1(0) .

Fig. 10. NMSE(V) on �(1) .
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Uniform 50 trials of random
segmentation segmentation

Best case Worst case
Segmentation [0.25 0.5 0.75] [0.62 0.82 0.94] [0.41 0.79 0.87]before starting GS
NMSE (dB) −34 −40.38 −38.46

Apply GS search
Optimal [0.60 0.83 0.95] [0.60 0.83 0.95] [0.60 0.83 0.95]Segmentation

NMSE (dB) −40.43 −40.43 −40.43

ACPR(dB)

L2 −56.85 −56.85 −56.85
L1 −43.51 −43.51 −43.51
U1 −44.07 −44.07 −44.07
U2 −58.44 −58.42 −58.42

Complexity 248 113 (=50+63) 163 (=50+113)

Tab. 2. Comparison of linearization performances, optimal solutions and complexity with random selection.

Fig. 11. NMSE(V) on �(2) .

Fig. 12. Evolution of thresholds and NMSE Versus iterations.

After the optimization of [V1(0) V2(0) V3(0) ] to
[V1(1) V2(1) V3(1) ] = [0.3 0.74 0.88], The behavior of
NMSE on the updated optimization interval vector � (1) =

[�1(1) ; �2(1) ; �3(1) ] = [[0 0.74]; [0.3 0.88]; [0.74 1]] is pre-
sented in Fig. 10 which shows that the behavior of NMSE on
�1(1) becomes unimodal. Hence this example highlights the
following interesting behavior, even if each sub-problems are
not unimodal at the beginning, they become unimodal as each

sub-problem converges towards its optimum. After the sec-
ond iteration, we get [V1(2) V2(2) V3(2) ] = [0.57 0.78 0.91],
for which the functions NMSE(V8) are shown in Fig. 11.

Figure 12 presents the evolution of thresholds V1, V2,
V3 and NMSE where the optimization of thresholds has been
performed in direct order: [V1; V2; V3; V2; V1; V2; ...], until
the algorithm has converged.

5.3.2Random Selection
In Sec. 5.3.1, It has been shown that starting from

a uniform segmentation, some of the sub-problems to solve
may not be unimodal. Even though if it does not prevent
the convergence of the algorithm, the choice of the initial
segmentation may be essential to start with a segmentation
that can give a unimodal criterion on each interval from the
first iteration, which could speed up the convergence of the
algorithm and decrease the execution time.

For that, a stochastic selection process is proposed: #
trials of random segmentation are performed, and the best
one in terms of NMSE is retained as the initial segmentation
for the proposed algorithm.

To validate the effectiveness of the stochastic process,
100 experiments of threshold optimization with random se-
lection have been performed for # = 50.

Table 2 highlights that GS search requires 248 GS iter-
ations starting from a uniform segmentation while it requires
only 113 or 163 GS iterations for the best and worst case of
the 100 experiments considered.

As the number of GS iterations becomes a random vari-
able using stochastic initialization, it is necessary to look for
the probability distribution function that best fits the exper-
imental data to determine an upper bound on the expected
number of GS iterations.

It turns out that a Burr distribution [13] with a mean
of 80 and a variance of 116 fits well the experimental data.
With these parameters, the upper bound on the number of
GS iterations is 120 with a probability of 0.99 and 154 with
a probability of 0.999.
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Uniform Seg. Stochastic initialization with 50 trials
Mean ? = 0.99 ? = 0.999

Initialization - 50
GS 248 80 120 154
Total 248 130 170 204

Tab. 3. Complexity comparison. Here ? is the probability that the required number of GS iterations is below or equal to the given value.

Fig. 13. Variation of NMSE on intervals �1,�2 and �3 with ran-
dom selection.

Fig. 14. Optimal segmentation vs Memory depth " .

Thus, using a stochastic initialization with 50 trials, the
average number of GS iterations will be 80 and below 120
with a probability of 0.99 or 154 with a probability of 0.999.
Those results are summarized in Tab. 3.

Furthermore, after the random selection process, the
behavior of each NMSE(V8) on their interval �8 (0) are likely
to be unimodal before starting the GS algorithm, as it can be
seen in Fig. 13. Experiments have shown that some tens of
random selection trials are likely to provide a starting point
that improves the NMSE significantly to the uniform seg-
mentation. It is worth noting that for every 100 experiments
of the stochastic initialization, the proposed optimization ap-
proach has converged towards the same segmentation. This
illustrates its convergence behavior.

5.4 Sensitivity of Thresholds to Memory Depth
Figure 14 compares each threshold’s optimal position

for different memory depth " with  = 4, for the same sce-
nario. This highlights an interesting behavior. The optimal

segmentation is not very sensitive to memory depth " . So
that, the optimization can be performed for the DVR model
without memory in order to reduce the algorithm complex-
ity, which makes it an important aspect to design an optimal
DVR model.

6. Conclusion
This paper showed that the optimal segmentation could

significantly improve the linearization performances com-
pared to the uniform segmentation for the DVR model. We
have proposed a new approach for optimizing the thresholds
based on the decomposition of the global optimization prob-
lem into a set of sub-problems where the objective function
is unimodal. The golden section algorithm is used to solve
each unimodal sub-problem. The proposed approach has
been compared with the genetic algorithm. Both algorithms
converge to quasi the same values of thresholds. Neverthe-
less, our approach presents a much lower complexity than the
GA algorithm making it an appropriate candidate to design
the DVR model.
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