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We explore the Projective Cutting-Planes algorithm proposed in [14] from new angles, by applying it

to two new problems, i.e., to robust linear programming and to a cutting-stock problem with multiple

lengths. Projective Cutting-Planes is a generalization of the widely-used Cutting-Planes and it aims

at optimizing a linear function over a polytope P with prohibitively-many constraints. The main new idea

is to replace the well-known separation sub-problem with the following projection sub-problem: given an

interior point x ∈P and a direction d, find the maximum steplength t such that x+ td ∈P. This enables

one to generate a feasible solution at each iteration, a feature that does not exist built-in in a standard

Cutting-Planes algorithm. The practical success of this new algorithm does not mainly come from the higher

level ideas already presented in [14]. Its success is significantly more dependent on the computation time

needed to solve the projection sub-problem in practice. Thus, the main challenge addressed by the current

paper is the design of new techniques for solving this sub-problem very efficiently for different polytopes

P. For the first addressed problem, robust linear programming, P is defined as a primal polytope. For

the second addressed problem, Multiple-length Cutting-Stock, P is a dual polytope defined in a Column

Generation model. Numerical experiments on both these new problems confirm the potential of the proposed

ideas. This enables us to draw conclusions supported by numerical results from both the current paper and

[14], while also gaining more insight into the dynamics of the algorithm.

Key words : interior points, projection sub-problem, column generation, robust linear programming

1. Introduction

We first shortly present the context of Projective Cutting-Planes that was introduced

in [14]. We focus on a Linear Program (LP) of the form:

opt
{
b>x : a>x≤ ca, ∀(a, ca)∈A

}
= opt

{
b>x : x∈P

}
, (1.1)

where a,b ∈ Rn, ca ∈ R, A is a set of unmanageably-many constraints and “opt” stands

for either “min” or “max”.

Given an interior point x ∈ P and a direction d ∈ Rn, the projection sub-problem

project(x → d) asks to advance from x along d up to the pierce point x + t∗d
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Figure 1 Intuitive illustration of a Projective Cutting-Planes execution

where the boundary of P is touched, i.e., to determine the maximum step length t∗ =

max{t≥ 0 : x + td∈P}. To solve this sub-problem, it is also necessary to find a con-

straint of A satisfied with equality by x + t∗d. One may check a formal definition in [14,

Def. 1], but the main idea is that the projection sub-problem requires determining: (i) a

pierce point and (ii) a facet or constraint satisfied with equality by this pierce point. This

projection sub-problem is the main building block of Projective Cutting-Planes.

1.1. Revisiting the main steps of the Projective Cutting-Planes described in [14]

In intuitive terms, one can trace in Figure 1 the evolution of a simple Projective

Cutting-Planes execution for an LP with n= 2 variables. At iteration it= 1, the projec-

tion sub-problem projects x1 = 0 = [0 0]> along the direction d1 = b, see the black dashed

arrow. This generates a pierce point x1 + t∗1d1 and also the black facet (constraint) satisfied

with equality by x1 + t∗1d1. By integrating the black facet, Projective Cutting-Planes

constructs the first outer approximation P1 of P, i.e., P1 is the largest triangle defined

by this black facet (line) and the two axes; notice the optimal solution opt(P1) marked

close to the bottom-right corner of the figure.

At the second iteration, Projective Cutting-Planes selects a (mid) point x2 between

x1 and x1 + t∗1d1 and projects x2 towards the current optimal outer solution opt(P1). This

generates a second pierce point x2 + t∗2d2 and a second facet (blue solid line) that is added

to the facets of P1 to construct P2. The process is repeated until the projection sub-

problem certifies at iteration it= 4 that the outer solution opt(P3) cannot be separated;

this means opt(P3) is an optimal solution over P.
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More generally, Projective Cutting-Planes generates a sequence of inner solutions

xit as well as a sequence of outer solutions opt(Pit) that both converge along the itera-

tions it to an optimal solution opt(P). Each new inner solution xit+1 is chosen as a point

on the segment joining the previous inner solution xit and the last pierce point xit + t∗itdit

returned by the last projection. The next projection project(xit+1→ dit+1) is chosen to

point towards the current outer optimal solution opt(Pit), i.e., dit+1 = opt(Pit)−xit+1.

Each call to the projection sub-problem also returns a (first-hit) constraint (of A) satis-

fied with equality by the pierce point; this constraint is added to the constraints of Pit

to construct Pit+1. By adding one new constraint at each iteration it, the Projective

Cutting-Planes algorithm constructs a sequence P1 )P2 ) · · · ⊃P of outer approxima-

tions of P, so that opt(P1), opt(P2), opt(P3), . . . converge to opt(P), as in a standard

Cutting-Planes.

At the first iteration it = 1, one can choose any starting feasible solution x1, usually

in a problem–specific manner. The first direction d1 is often d1 = b, to make the first

projection project(x1→ d1) advance along the direction with the fastest rate of objective

function improvement. At each subsequent iteration, the next interior point is selected

using a formula of the form xit+1 = xit + αt∗itdit for some α ∈ (0,1]. We will show that

for α= 1, each new interior solution xit+1 is actually a boundary point of strictly higher

quality than the previous one xit. With such choice, the “grip” exerted by the lower and

the upper bounds on optVal(P) is guaranteed to strictly increase at each iteration, i.e.,

we have that b>xit < b>xit+1 ≤ opt(P)≤ b>opt(Pit+1)≤ b>opt(Pit) at each iteration

it except at the very last one (considering a maximization setting).

We also warn the reader of an inherent deterrent to adopting the new method, citing the

conclusions of [14]: “it can be more difficult to design a projection algorithm than a sepa-

ration one, because the projection sub-problem is more general. As such, more work may

be needed to make the Projective Cutting-Planes reach its full potential.” However,

for both of the problems explored in this paper, the projection and the separation algo-

rithms are of a similar nature because they rely on similar general techniques (e.g., they

both use Dynamic Programming for Cutting-Stock); the main difference is that solving

the projection requires a larger number of ad-hoc customizations that have to be tailored

to the considered problem.
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1.2. Related ideas from the literature

While the idea of constructing a converging sequence of interior points determined by an

exact projection algorithm is new in standard Cutting-Planes, the idea of using an inte-

rior point xin to guide the separation of an exterior point xout = opt(Pit) is not new. For

instance, [1] proposes to separate xout by first calling the separation oracle on a point xsep on

the segment joining xin and xout. Thus, Algorithm 1 from [1] defines xsep = αxin +(1−α)xout

for some α ∈ (0,1]. If xsep /∈P, we can expect that the cutting plane returned by sepa-

rating xsep is more efficient; otherwise, the algorithm from [1] sets xin = xsep, updates xsep

accordingly, and calls the separation oracle again. The process of separating xout is based

on a repeated choice of a point xsep between xin and xout coupled with a repeated separa-

tion of xsep. This approach does not determine the pierce point, i.e., it does not calculate

the result of a projection from xin to xout. This difference is quite deep because a major

challenge in Projective Cutting-Planes is to design (for each considered problem) a

projection algorithm that competes well in terms of computational speed with the separa-

tion one. In addition, citing [14], “this can not be simply achieved by repeated separation:

such projection method would call the separation algorithm at least twice, or usually 3 or

4 times, i.e., it could become 3 or 4 times slower than the separation algorithm.”

The “in-out separation” from [10] is, despite its name, more remotely related. In this

work, the notion of “in-point” or “out-point” is considered with regards to a feasible area

that belongs to Rn+1, being defined both by the elements π of P and by their objective

values η; such a feasible area is visible in [10, Fig. 1] using the above notations π and η.

More generally, certain interior point methods for (dual) LPs with prohibitively-many

constraints (in Column Generation) generate a sequence of interior points to calculate

opt(Pit) at each iteration it [6]. However, these interior points are actually interior only

to Pit ⊃P, but not necessarily to P.

A full literature review on other aspects related to the idea of advancing towards opt(P)

using either inner or outer solutions can be found in our previous work [12, §1.1.1].

1.3. New contributions

A challenging task in the implementation of a successful Projective Cutting-Planes is

to design a fast projection algorithm, i.e., fast enough to compete well with the separation

algorithm in terms of computational speed. While we already presented in [14] certain
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methods that achieve this goal, we now introduce several other techniques that work in

different settings not addressed in [14].

We will show how to generalize the separation algorithm without increasing its compu-

tational complexity. We will first illustrate this on a well-known robust linear program-

ming problem. For this problem, the computational bottleneck of both the separation and

the projection sub-problem comes from the need of enumerating a set of nominal con-

straints (that generate prohibitively-many robust cuts). Regarding the second problem,

Multiple-length Cutting-Stock, we will show that if the separation sub-problem can

be solved by Dynamic Programming, then so can be the projection sub-problem. Both the

separation and the projection algorithms work with a set of Dynamic Programming states

and the main difference between the two algorithms is the following. The projection al-

gorithm has to return a state that minimizes a ratio of two state indicators, while the

separation algorithm has to return a state that minimizes a difference of the same indica-

tors. Such a change of objective function does not always induce an important slowdown

because it does not necessarily generate an explosion of the number of states (especially if

the interior points xit are chosen carefully).

A final contribution of the paper is to analyse the choice of the inner points xit along

the iterations it. While we always choose xit using the formula xit = xit−1 +αt∗it−1dit−1,

the value of α can greatly vary. Comparing the best choices made throughout the current

paper and [14], sometimes it is better to use a small step length α< 0.5 and sometimes it is

better to use a large step length α= 1. This is actually only an empirical observation. We

will provide theoretical insights to explain it in Section 3.3; we will see that the best value

of α is related to the (magnitude of the) oscillations of the interior solutions xit along the

iterations it.

The remainder is organized as follows. Section 2 presents the application of Projective

Cutting-Planes on: (i) a robust optimization problem and (ii) on a Column Generation

model for Multiple-length Cutting-Stock. Section 3 reports numerical results on these

problems, followed by conclusions in the fourth section. There are also two short appen-

dices: the first one revisits the calculation of the Lagrangian bounds for Multiple-length

Cutting-Stock and the second one presents a fast data structure for efficiently manipu-

lating a Pareto frontier (here needed by the Dynamic Programming scheme used to solve

the sub-problems in the Cutting-Stock experiments).
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2. Projective Cutting-Planes for robust linear programming and
multiple-length cutting stock

We first recall [14, (2.2)] that for any feasible x ∈P and for any d ∈ Rn, the projection

sub-problem project(x→ d) can be solved by minimizing the fractional program (2.1)

below. Let us stress x stands for a parameter in the sub-problem (2.1) below, while in

the overall Projective Cutting-Planes it is a variable representing the current inner

solution of (1.1); the decision variable in (2.1) is the couple (a, ca) ∈A associated to the

constraint a>x≤ ca of the main program (1.1). We will instantiate (2.1) on a robust linear

problem (Section 2.1) and on Multiple-length Cutting-Stock (Section 2.2).

t∗ = min

{
ca−a>x

a>d
: (a, ca)∈A, d>a> 0

}
. (2.1)

2.1. A robust optimization problem

The main idea in robust optimization is to seek an optimal solution that remains feasible if

certain constraint coefficients deviate (reasonably) from their nominal values. The robust

optimization literature is now constantly growing and there are many methods to define

what coefficient deviations are acceptable, e.g., one can use linear or ellipsoid uncertainty

sets. However, to avoid unessential complication, we here focus only on the robustness

model from [4]; the reader may refer to this paper for more references, motivations and

related ideas. There are two main principles behind this robustness model: (i) the deviation

of a coefficient is at most δ= 1% of the nominal value (ii) there are at most Γ coefficients

that are allowed to deviate in each nominal constraint. The underlying assumption is that

in real life the nominal coefficients of a given constraint cannot change all at the same

time, always in an unfavorable manner.

2.1.1. The model with prohibitively-many constraints and the standard

Cutting-Planes Let us first consider a set Anom of nominal constraints that is small enough

to be enumerated in practice, i.e., there is no need of Cutting-Planes to solve the nom-

inal version of the problem with no robustness. We then associate to each (a, ca) ∈Anom

a prohibitively-large set DevΓ(a) of deviation vectors â, i.e., vectors â ∈ Rn that have at

maximum Γ non-zero components and that satisfy âi ∈ {−δai, 0, δai} ∀i ∈ [1..n], using

δ = 0.01 in practice. Each such deviation vector â yields a robust cut (a + â)>x≤ ca, so

that we can state (a + â, ca) ∈A. In theory, each âi for any i ∈ [1..n] may be allowed to

take a fractional value in the interval [−δai, δai], thus leading to infinitely-many robust



Daniel Porumbel: Projective Cutting-Planes
Article submitted to INFORMS Journal on Computing; manuscript no. (provide the manuscript number!) 7

cuts (semi-infinite programming); however, the strongest robust cuts are always obtained

when each non-zero âi is either δai or −δai. There are at most
(
n
Γ

)
2Γ deviation vectors for

each nominal constraint (a, ca) ∈Anom, because there are
(
n
Γ

)
ways to choose the non-zero

components of â and each one of them can be either positive or negative, hence the 2Γ

factor.

The generic LP (1.1) is instantiated as follows:

min
{

b>x : (a + â)>x≤ ca ∀(a, ca)∈Anom ∀ â∈ DevΓ(a); xi ∈ [lbi,ubi] ∀i∈ [1..n]
}

(2.2)

The last condition xi ∈ [lbi,ubi] of (2.2) represents the initial constraints A0, most

instances using lbi = 0 ∀i∈ [1..n], i.e., the variables are most often non-negative.

We consider a canonical Cutting-Planes algorithm for the above (2.2), based on the

following separation sub-problem: given any x ∈ Rn, minimize ca − (a + â)>x over all

(a, ca) ∈Anom and over all â ∈ DevΓ(a). For a fixed nominal constraint (a, ca) ∈Anom, the

strongest possible deviation â>xx of (a, ca) with respect to x is determined by maximizing

âx = arg max
{
â>x : â∈ DevΓ(a)

}
. To find this âx, one needs to determine the largest Γ

absolute values in the terms of the sum a>x =
∑n

i=1 aixi; this way, â>xx can be written as a

sum of Γ terms of the form δ|aixi|. We use absolute values because the strongest deviation

of a term ai is either âi = δai if aixi ≥ 0 or âi =−δai if aixi < 0. We next describe how these

largest Γ values can be determined by a partial-sorting algorithm of linear complexity.

Remark 1 If Γ is a fixed parameter, the largest Γ entries in a table of n values (e.g., such

as |a1x1|, |a2x2|, . . . |anxn| above) can be determined in O(n) time. We use a partial-sorting

algorithm that essentially performs the following: iterate over i∈ [1..n] and attempt at each

step i to insert |aixi| in the list of the highest Γ values known up to now. Considering Γ is

a fixed parameter, this operation would even take constant time when using a self-balancing

binary search tree (as implemented in the C++ std::multiset data structure).

The most computationally demanding task is checking whether the new value |aixi| is

larger than the minimum value vmin recorded in the tree. If this is the case, the insertion of

|aixi| may make the tree size exceed Γ, and so, vmin has to be removed. Each insertion and

each removal takes constant time with regards to n, when considering Γ as a parameter.

However, these operations can still lead to a non-negligible multiplicative constant factor

(like log(Γ)) in the complexity of the partial sorting algorithm, inducing a non-negligible

overall slowdown. The repeated use of this algorithm takes around 15% of the total running

time for Γ≥ 10.
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Compared to the above Cutting-Planes, the algorithm from [4] is slightly different be-

cause it returns multiple robust cuts at each separation call. We will first design Projective

Cutting-Planes in a standard setting considering a unique (robust) cut per iteration.

However, we will also mention throughout the text how to handle multiple cuts per itera-

tion (and numerical results in this sense will be presented in Section 3.1.3).

2.1.2. Solving the projection sub-problem Based on (2.1), the projection sub-problem

reduces to minimizing
ca− (a + â)>x

(a + â)>d
over all nominal constraints (a, ca) ∈Anom and over

all deviation vectors â∈ DevΓ (a) such that (a+ â)>d> 0. Just as the separation algorithm,

the projection algorithm iterates over all nominal constraints Anom, in an attempt to reduce

the above ratio – i.e., the step length – at each (a, ca)∈Anom. Let t∗i denote the optimal step

length obtained after considering the robust cuts associated to the first i constraints from

Anom. It is clear that t∗i can only decrease as i grows. Starting with t0 = 1, the projection

algorithm determines t∗i from t∗i−1 by applying the following five steps:

1. Set t= t∗i−1 and let (a, ca) denote the ith constraint from Anom.

2. Determine the strongest deviation vector ât with respect to x + td by maximizing:

ât = arg max
{
â> (x + td) : â∈ DevΓ(a)

}
. (2.3)

For this, one has to extract the Γ largest absolute values from the terms of the sum

a> (x + td); we apply the partial-sorting algorithm used for the separation sub-problem in

Remark 1.

3. If (a + ât)
> (x+ td)≤ ca, then x+ td is feasible with regards to the first i constraints

from Anom and the associated robust cuts, because any deviation vector â∈ DevΓ(a) satisfies

â> (x + td)≤ â>t (x + td). In this case, the final value t∗i = t has been obtained for this value

of i. Otherwise, the robust cut (a + ât, ca) leads to a smaller feasible step length:

t′ =
ca− (a + ât)

>x

(a + ât)
>d

< t. (2.4)

4. If t′ = 0, then the overall projection algorithm returns t∗ = 0 without checking the

remaining nominal constraints, because it is not possible to return a step length below 0

since x is feasible.

5. Set t = t′ and repeat from Step 2 (without incrementing i). The underlying idea is

that the deviation vector ât determined via (2.3) is not the strongest one with regards to

x + t′d, because ât yields the highest deviation in (2.3) with regards to a different point

(i.e., x+ td). But there might exist a different robust cut (a+ ât′ , ca) for the same nominal
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constraint such that â>t′ (x + t′d)> â>t (x + t′d). This could further reduce the step length

below t′, proving that x + t′d is infeasible.

By sequentially applying the above steps to all constraints (a, ca)∈Anom one by one, the

step length returned at the last constraint of Anom provides the sought t∗ value. It is not

difficult to adapt this algorithm to switch to a multi-cut variant: it is enough to return all

robust cuts generated for all values of i that produced a step length decrease in (2.4). The

robust cuts associated to some i that could not decrease the step length via (2.4) may be

too weak to be useful and there is no need to return such cuts.

2.1.2.1. The speed of the projection and the separation algorithms In theory, the above pro-

jection algorithm could repeat Steps 2-5 many times for each i, iteratively decreasing t in

a long loop. However, experiments suggest that long loops arise only rarely in practice; the

value of t is typically decreased via (2.4) only a dozen of times at most for all (thousands

of) nominal constraints, i.e., for all i. For many nominal constraints (a, ca) ∈ Anom, the

above algorithm only concludes at Step 3 that x+ td satisfies all robust cuts associated to

(a, ca), and, in such cases, the most computationally expensive task is the partial-sorting

algorithm (called once at Step 2).

Furthermore, the overall projection algorithm can even stop earlier without scanning all

nominal constraints, by returning t∗ = 0 at Step 4. An exact separation algorithm could

never stop earlier, because ca − (a + âx)>x can certainly decrease up to the last nominal

constraint (a, ca). In a few cases, the projection algorithm can become even faster than the

separation one. Indeed, for the last (very large) instance from Table 1 (p. 19) with Γ = 50,

a separation iteration takes around 0.62 seconds (on average), while the projection one

takes 0.56 seconds (on average). At the other end of the spectrum, for an instance like nesm

with Γ = 50, a projection iteration can take about 30% more time than a separation one.

All things considered, one can say that the running time of the above projection algorithm

is similar to that of the separation algorithm.

We are skeptical that it is possible to compete with the above algorithm by simply calling

the separation algorithm multiple times. An approach based on repeated separation would

make the projection algorithm at least twice as slow as the separation one: a first separation

call would find a first robust cut satisfied with equality by some x+ td and then one needs

at least a second call to check if x+ td can be further separated to decrease t. Experiments

suggest that a third or a fourth call is often needed in practice. More generally, a goal of
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this work is to develop techniques that can lead to designing a projection algorithm as fast

as the separation one; this is the most fruitful endeavour in the long run.

2.1.3. The overall Projective Cutting-Planes If we consider the above projection al-

gorithm as a black-box component, the design of Projective Cutting-Planes is rather

straightforward. It is essentially enough to follow the guidelines from Section 1.1 or more

exactly the steps 1-4 specified in [14, § 2].

2.1.3.1. Choosing xit for it> 1

The only non-trivial part is choosing the interior points xit. As with most problems

studied in this work and [14], experiments suggest that it is not very efficient to define xit

as the best feasible solution found up to the iteration it (i.e., the last pierce point xit =

xit−1 + t∗it−1dit−1). Although such an aggressive Projective Cutting-Planes variant

could find better feasible solutions in the beginning, it may eventually need more iterations

in the long run. For best long-term results, it is certainly better to choose a more interior

point xit, not too close to the boundary of P, enabling the inner solutions x1, x2, x3, . . .

to follow a central path (a similar concept is used in some interior point algorithms). We

thus define xit = xit−1 +αt∗it−1dit−1 with α= 0.1 ∀it> 1.

2.1.3.2. Determining the first interior point x1

To construct an initial feasible solution x1, one could be tempted to try x1 = 0n, but 0n

may be infeasible. We propose to generate x1 as a feasible solution in a relatively simple

LP whose feasible area stays (deeply) inside the feasible area of (2.2). We construct this

“deep” inner LP as follows: for each (a, ca) ∈Anom, we insert a constraint a>x + δ|a|>x≤

ca, where |a| = [|a1| |a2| . . . |an|]>. If x is non-negative (as in most instances), than any

solution x that satisfies a>x + δ|a|>x ≤ ca ∀(a, ca) ∈ Anom is feasible with regards to all

robust cuts — because a robust cut uses a deviation vector â that satisfies â≤ δ|a|, so that

(a + â)>x≤ a>x + δ|a|>x≤ ca.

We also noticed that this “deep” inner LP can remain feasible by replacing a>x +

δ|a|>x≤ ca with a>x + 2δ|a|>x≤ ca−∆, for some small ∆> 0. The use of this parameter

∆ makes the generated solutions x1 even more deeply interior, pushing them away from

the boundary; experiments suggest it is usually better to start from such (well-centered)

solutions rather than from a boundary point. This is in line with similar ideas in interior

point algorithms for standard LP, i.e., it is better to start out with very interior points
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associated to high barrier terms and to converge towards the boundary only towards the

end of the solution process, when the barrier terms converge to zero.

In fact, the above procedure worked perfectly well in practice even for the instances that

do contain negative variables; if this ever fails, one can still generate a feasible interior

point by reducing δ|a|>x (up to zero in the worst case). Finally, the first direction d1 points

to the solution of the nominal problem, i.e., we take d1 = opt(P0)−x1, where P0 is the

polytope of the nominal problem with no robust cut. This is consistent with the general

choice dit = opt(Pit−1)− xit that we will also use at all subsequent iterations it ≥ 1,

following an idea from Section 1.

2.2. Multiple-Length Cutting-Stock

2.2.1. The model with prohibitively-many constraints and the pure Cutting-Planes

Cutting-stock is one of the most celebrated problems usually solved by Column

Generation, as first proposed in the pioneering work of Gilmore and Gomory in the 1960s.

Given a stock of standard-size input pieces (e.g., of paper or metal), the goal is to cut these

input pieces into smaller pieces (items) to fulfill a given demand. The pattern–oriented

formulation of Cutting-Stock consists of a primal program with prohibitively-many vari-

ables, using one variable for each feasible (cutting) pattern – see program (A.2) from

Appendix A. After applying a linear relaxation, we obtain the following dual of this primal

program.

max b>x

ya : a>x≤ ca, ∀(a, ca)∈A
x≥ 0n.

(2.5)
}

P

The notations from (2.5) can be directly interpreted in Cutting-Stock terms. Each

constraint (a, ca) ∈ A is associated to a primal column representing a (cutting) pattern

a ∈ Zn+ such that ai is the number of items i to be produced from an input piece (for any

item i ∈ [1..n]). Considering a vector w ∈ Zn+ of item lengths, all feasible patterns a ∈ Zn+
have to satisfy w>a ≤ W , assuming W is the unique length of all given standard-size

pieces. The vector b∈Zn+ represents the demands for the n items. Writing the primal LP

– see (A.2) from Appendix A – associated to (2.5), one can see how the primal objective

function asks to minimize the total cost of the selected patterns.
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In pure Cutting-Stock, all feasible patterns (a, ca)∈A have a fixed unitary cost ca = 1,

but we will focus on the more general Multiple-length Cutting-Stock in which the

standard-size pieces can actually have different lengths of different costs. While all discussed

algorithms could address an arbitrary number of lengths, we will focus on the case of two

lengths 0.7W and W of costs 0.6 and 1, respectively. The cost of a pattern a is thus the

cost of the smallest standard-size piece that can accommodate a, e.g., if w>a≤ 0.7W then

ca = 0.6, otherwise ca = 1.

The standard Column Generation method is equivalent to a Cutting-Planes algo-

rithm that optimizes the above LP (2.5) by iteratively solving the separation subprob-

lem min(a,ca)∈A ca − a>x on the current optimal outer solution x = opt(Pit) at each

iteration it. In Multiple-length Cutting-Stock, this sub-problem is typically solved

by Dynamic Programming. In a nutshell, the main idea is to assign for each length ` ∈

[1..W ] a state s` represented by a pattern a` ∈ Zn+ of length ` that minimizes c` − a>` x =

min
{
c`−a>x : a>w = `

}
; this pattern gives the objective value of s`, i.e., obj(s`) = c`−

a>` x. One can ignore all non-available lengths ` ∈ [1..W ] for which there is no pattern a

such that a>w = `. The Dynamic Programming scheme generates transitions among such

states, and, after calculating them all, it returns min
`∈[1..W ]

c`−a>` x.

2.2.2. Adapting Projective Cutting-Planes for Multiple-Length Cutting-Stock

Projective Cutting-Planes is not meant to be a rigid algorithm, but it was deliberately

designed as a framework that can naturally allow a certain flexibility. To make Projective

Cutting-Planes reach its full potential on Multiple-length Cutting-Stock, we need a

slightly different approach to choose xit at each iteration it.

As with other problems explored all along this work and the initial paper [14], a key

observation is that defining xit as the best solution ever found up to iteration it is not

efficient in the long run, partly because xit could fluctuate too much from iteration to

iteration. Furthermore, we will also see in Section 2.2.3.2 that the projection sub-problem

project(x→ d) can be solved more rapidly when x is a “truncated” solution, e.g., when xi

is a multiple of γ = 0.2 for each i∈ [1..n]. For these reasons, we propose a slightly different

Projective Cutting-Planes variant in which the choice of xit is performed as follows.

Let us first introduce the operator bxcγ that truncates x down to multiples of some γ ∈R+

(we used γ = 0.2), i.e., xi becomes γ ·
⌊

1
γ
xi

⌋
for any i ∈ [1..n]. Let xbst

γ denote the best
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truncated feasible solution generated up to the current iteration; xbst
γ can be determined

as follows: start with xbst
γ = 0n at iteration it= 1, and replace xbst

γ with
⌊
xit + t∗itdit

⌋
γ

at

each iteration it > 1 where b>
⌊
xit + t∗itdit

⌋
γ
> b>xbst

γ . We propose to choose the inner

solution xit at each iteration it based on the following rules:

– set xit = 0n in half of the cases (half of the iterations);

– set xit = xbst
γ in 25% of the cases;

– set xit =
⌊

1
2
xbst
γ

⌋
γ

in 25% of the cases.

The advantage of the first choice xit = 0n is that the associated projection sub-problem

can be solved more rapidly. Projecting from 0n is always easier. We will have more to say

about this in Section 2.2.3.2, but, for now, you can already check how (2.6) below is greatly

simplified by using x = 0n; in such a case, (2.6) could even reduce to a very knapsack-like

problem that mainly asks to maximize the denominator d>a. The second choice xit = xbst
γ

is useful because the projection xbst
γ → dit may lead to a higher-quality pierce point. The

last choice is a trade-off between the first two choices.

2.2.3. Solving the Projection Sub-problem Numerous Column Generation algo-

rithms for cutting and packing problems rely on Dynamic Programming (DP) to solve the

separation sub-problem. And, in many such cases, if the separation sub-problem can be

solved by Dynamic Programming, then so can be the projection one.

Given a feasible x ∈P in (2.5) and a direction d ∈ Rn, recall that the projection sub-

problem project(x→ d) asks to minimize (2.1). For Multiple-length Cutting-Stock,

(2.1) is instantiated as follows:

t∗ = min
a

{
f(w>a)−a>x

d>a
: a∈Zn+, w>a≤W, d>a> 0

}
, (2.6)

where the function f : [0,W ]→R+ maps each `∈ [0,W ] to the cost of the cheapest (short-

est) standard–size input piece of length at least `. The DP scheme proposed next can

work for any function f that is non-decreasing, i.e., encoding the natural assumption

that shorter pieces are cheaper than longer pieces. Many different Cutting-Stock variants

(e.g., Variable–Sized Bin–Packing or Elastic Cutting Stock) can be formulated using an

appropriate choice of such a function f [12, §4.1.1].
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2.2.3.1. The main Dynamic Programming scheme and the states We consider a set S` of DP

states for every feasible length ` ∈ [0..W ]. Each state s ∈ S` is associated to all patterns

a∈A of:

(1) length slen = w>a = `;

(2) profit sp = d>a.

(3) cost sc = f(w>a)−a>x = f(`)−a>x = ca−a>x;

All states in S` have the same length ` but their costs and profits can vary. Under this

cost/profit interpretation, (2.6) reduces to minimizing the cost/profit ratio obj(s) =
sc

sp

over all states s ever generated, i.e., min
{
obj(s) = sc

sp
: s∈ S`, `∈ [0..W ]

}
. Notice any

feasible pattern can be associated to a state, although we will see that some of these states

are dominated and do not need to be recorded. Finally, the above cost sc = f(w>a)−a>x =

ca−a>x is always non-negative because x∈P satisfies all constraints of (2.5).

The proposed DP algorithm starts only with an initial null state of length 0, cost 0 and

profit 0. It then performs a DP iteration for each item i ∈ [1..n]; if bi > 1, this iteration is

performed bi times because a pattern can contain up to bi copies of item i. Each such DP

iteration generates transitions from the current states to produce new states or to update

the existing ones. A state transition s→ s′ associated to an item i leads to a state s′ such

that:

(a) s′len = slen +wi, i.e., the length simply increases by adding a new item;

(b) s′p = sp + di, i.e., add the profit of item i;

(c) s′c = sc + f(s′len)− f(slen)− xi, i.e., the term f(s′len)− f(slen) updates the cost of

the pattern whose size increased from slen to s′len, and −xi comes from the “−a>x” term

used in the state cost definition f(`)−a>x from the above point (3).

Algorithm 1 provides the pseudo-code executed for each item i ∈ [1..n] considered bi

times. The most complex operation arises at Step 5, where one needs to check that the

new state s′ is not dominated by an existing state in S`+wi
before inserting it in S`+wi

; the

efficient implementation of this step is described in Section 2.2.3.2.

We can say this pseudo-generalizes the DP algorithm for the separation sub-problem

(which asks to minimize sc − sp instead of sc
sp

). Indeed, the separation DP scheme may

easily be described using the same framework. Recall its goal is to solve the (knapsack-like)

sub-problem min{f(w>a)−d>a : a∈Zn, w>a≤W} for some d∈Rn. For this purpose, it

is enough to consider only singleton sets S` = {s}, where s is a state defined by a pattern
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Algorithm 1 The Dynamic Programming steps executed bi times for each item i

1. for `=W −wi to 0:

2. for each s∈ S`: . for each state with length `

3. initialize state s′ with s′len = `+wi, according to above formula (a)

4. calculate s′p, s
′
c with above formulae (b) and (c)

5. if s′ is not dominated by an existing state in S`+wi
(Section 2.2.3.2) then

– S`+wi
← S`+wi

∪{s′}

– record the transition s→ s′ (to reconstruct an optimal pattern in the end)

a of cost sc = f(w>a) = f(`) and maximum profit sp = d>a. Any other pattern a′ having

the same length (i.e., w>a′ = `) but a smaller profit (i.e., d>a′ < d>a) can never be part

of the optimal solution. Thus, it is enough to record for each length ` ∈ [0,W ] only the

maximum profit state, the cost being fixed to f(`). In the end, the separation algorithm

simply returns min{sc− sp : s∈ S`, `∈ [0..W ]}.

The projection sub-problem is more difficult because it is no longer enough to record a

unique state per length as above. To illustrate this, notice that a state with a cost/profit

ratio of 5
4

does not necessarily dominate a state with a cost/profit ratio of 3
2

only because

5
4
< 3

2
. Indeed, the 5

4
state can evolve to a sub-optimal state by following a transition that

decreases the cost by 1 and increases the profit by 4 because 5−1
4+4

= 4
8
� 3−1

2+4
= 2

6
. This cannot

happen in the (knapsack-like) separation sub-problem, i.e., the relative order of two states

defined by cost−profit differences would never change because all transitions induce linear

(additive) changes to such differences.

2.2.3.2. Reducing the number of DP states to accelerate the DP projection algorithm To accel-

erate the projection, we need to reduce the number of recorded states. First, let us show it

is enough to record a unique maximum-profit state for each feasible cost of a state of fixed

length ` (in S`). For this, consider two states s∗,s∈ S` such that s∗c = sc and s∗p > sp. The

state s is dominated and can be ignored because any transition(s) equally applied on s∗

and s would lead to the same cost s∗c + ∆c = sc + ∆c > 0 and to profits s∗p + ∆p > sp + ∆p;

this way, it is easy to check that
s∗c + ∆c

s∗p + ∆p

<
sc + ∆c

sp + ∆p

always holds when the denominators

are positive. And these denominators are always positive for any final state (that could

ever be returned), because of the condition d>a> 0 from (2.6).
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Let us now compare s∗ to a state s ∈ S` that satisfies sc > s∗c and sp ≤ s∗p. Such state

s is also dominated by s∗ because it can only lead via transitions to
s∗c + ∆c

s∗p + ∆p

<
sc + ∆c

sp + ∆p

.

As such, a state s ∈ S` with a higher cost than an existing state s∗ ∈ S` (i.e., sc > s∗c)

must have a higher profit to be non-dominated, i.e., a state s such that sc > s∗c has to

satisfy sp > s∗p to be non-dominated. This can be seen as a formalization of a very natural

principle “pay a higher cost only when you gain a higher profit”. The cost and the profits

of all non-dominated states in S` can thus be ordered using a (Pareto dominance) relation

of the form:

c1 < c2 < c3 < . . . (2.7a)

p1 < p2 < p3 < . . . (2.7b)

Let us now investigate how long these lists (2.7.a)–(2.7.b) can be for each S` ∀`∈ [0..W ].

If there are fewer potential costs values, these lists have to be shorter, and so, the total

number of states is reduced. Accordingly, if all pattern costs f(`) (∀`∈ [0,W ]) are multiples

of γ = 0.2 and if all selected interior points x satisfy xi ∈ {0,0.2,0.4,0.6,0.8,1}, then the

maximum number of feasible costs values is 6, i.e., any state cost has the form f(`)−a>x

for some a∈Zn+ and, thus, it has to be a number from the set {0,0.2,0.4,0.6,0.8,1}. This

way, the resulting DP algorithm might often need to record only a few states per length;

this means it is not necessarily much slower than a separation DP algorithm that records

a unique state per length.

Finally, we need a fast data structure to manipulate lists of cost/profit pairs satisfying

(2.7.a)–(2.7.b), because it is important to accelerate the following two operations executed

by Algorithm 1:

(i) iterate over all elements of S` to implement the for loop at Line 2;

(ii) insert a new state at Line 5 after checking that it is not dominated.

A list of cost/profit values satisfying (2.7.a)–(2.7.b) can be seen as a Pareto frontier with

two objectives (minimize the cost and maximize the profit). It is not difficult to scan the el-

ements of such a frontier to implement the above operation (i). The most computationally-

demanding task is to insert a new state for the above operation (ii), because this requires

checking if the new state is dominated by an existing state. Checking this by naively scan-

ning the whole list of cost/profit values is not the most efficient approach. We will see it is

better to record this list in a self-balancing binary search tree [8, § 6.2.3] that can perform
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many look-up operations in logarithmic time. A further complication comes from the fact

that the insertion of a new non-dominated state can lead to the removal of other existing

states that become dominated. This actually explains the need for a specific, more refined,

self-balancing binary tree data structure described in Appendix B.

Finally, to further accelerate the DP, experiments suggest it can be useful (in practice)

to sort the items i∈ [1..n] in descending order of the value wi

1+xbst
i

. Precisely, Algorithm 1 is

executed for each of the items [1..n] considered in this order. In a loose sense, this amounts

to considering that it is better to start with longer items that did not contribute too much

to the best truncated inner solution xbst ever found.

3. Numerical Experiments
3.1. Robust linear programming

We use the Netlib instances from [4], considering Γ ∈ {1,10,50}. In fact, we discarded

all instances that are infeasible for Γ = 50, since our methods are not designed to detect

infeasibilities. We also ignored all instances solved by the algorithm from [4] in less than 5

iterations (i.e., seba, shell and woodw) because they are too small to produce meaningful

comparisons; they are also the only instances that Projective Cutting-Planes can solve

in very few iterations. We thus remain with a test bed of 21 instances with between n= 1000

and n = 15695 variables. Most instances have between n = 1000 and n = 5000 variables

and a number of constraints between 500 and 3000. We refer to [4, Table 1] for the

nominal objective value of each instance. We mention that stocfor3 is an exceptionally

large instance with n = 15695 and more than 15000 constraints. For even greater detail

on their characteristics, the instances are publicly available on-line in a human-readable

format (the original MPS files are difficult to parse) at cedric.cnam.fr/~porumbed/

projcutplanes/instances-robust.zip.

Recall our robust optimization problem has a minimization objective, so that the inner

solutions xit determined by Projective Cutting-Planes along the iterations it generate

upper bounds b>xit.

3.1.1. The running profile Figure 2 plots the running profile of the standard

Cutting-Planes compared to that of the Projective Cutting-Planes on two instances.

The standard Cutting-Planes needed 83 iterations to fully converge on the first instance,

while Projective Cutting-Planes reported a feasible solution with a proven low gap of
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Figure 2 The progress over the iterations of the lower and upper bounds reported by the Projective

Cutting-Planes (in red), compared to those of the standard Cutting-Planes (lower bounds only, in

blue).

0.06% after only 24 iterations. On the second instance, Cutting-Planes needed 207 iter-

ations to fully converge, while Projective Cutting-Planes reported a feasible solution

with a proven low gap of 3.1% after 108 iterations, as indicated by the arrows in the figure.

3.1.2. The main results in tabular form Table 1 compares the total computing effort

(iterations and CPU time) needed to fully solve each instance using the new and the

standard method. For Projective Cutting-Planes, we also provide the computing effort

needed to reach a gap of 1% between the lower and the upper bounds; this may often

require a very short time. For example, the standard Cutting-Planes needed between 45

minutes and one hour (depending on Γ) to determine the optimal solution for the last

instance stocfor3, while the Projective Cutting-Planes reported in less than 3 seconds

a feasible solution with a proven gap below 1% (see columns “gap 1%” in bold in the last

row). In many practical settings, this could represent a satisfactory feasible solution. It is

also true that the robust optimal solution is often less than 3% higher than the nominal

optimum (see Column 2 of Table 1). The value of the starting solution x1 might be only

a few percentage points higher than the nominal optimum.



Daniel Porumbel: Projective Cutting-Planes
Article submitted to INFORMS Journal on Computing; manuscript no. (provide the manuscript number!) 19

Γ
=

50
Γ

=
10

Γ
=

1

O
P

T
n
ew

m
et

h
o
d

st
d
.

m
et

h
o
d

O
P

T
n
ew

m
et

h
o
d

st
d
.

m
et

h
o
d

O
P

T
n
ew

m
et

h
o
d

st
d
.

m
et

h
o
d

(+
%

)
ga

p
1%

fu
ll

co
n
v
er

g.
fu

ll
co

n
v
er

g.
(+

%
)

ga
p

1%
fu

ll
co

n
v
er

g.
fu

ll
co

n
v
er

g.
(+

%
)

ga
p

1%
fu

ll
co

n
v
er

g.
fu

ll
co

n
v
er

g.

In
st

an
ce

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

it
er

s
ti

m
e

2
5
f
v
4
7

2.
54

8
14

6
1.

16
8

14
9

1.
19

1
19

9
1.

26
5

2.
54

1
15

8
1.

18
8

16
9

1.
27

3
20

4
1.

45
5

1.
45

7
13

5
1.

02
3

14
7

1.
11

14
9

1.
12

b
n
l
2

1.
84

7
48

6
13

.6
6

49
1

13
.8

1
19

27
4
8.

13
1.

84
70

3
20

.9
2

70
8

21
.0

8
12

95
31

.3
1

0.
79

03
50

1
14

.4
7

50
4

14
.5

6
55

2
12

.6
6

c
z
p
r
o
b

0.
64

01
61

0
.4

85
73

4
32

.3
12

93
5
8.

52
0.

37
49

32
0.

18
1

12
5

0.
89

9
17

0
1.

30
2

0.
12

23
14

0.
09

35
25

0.
19

6
25

0.
12

4

g
a
n
g
e
s

0.
47

36
1
<

0.
00

1
25

0.
05

9
25

0
.0

59
0.

43
02

1
<

0.
00

1
31

0.
08

5
33

0.
07

4
0.

05
31

1
<

0.
00

1
25

0.
06

3
25

0.
04

9

g
f
r
d
-
p
n
c

0.
06

49
64

0.
14

04
64

0.
14

1
64

0
.0

92
0.

06
49

64
0.

10
86

64
0.

10
9

64
0.

09
0

0.
05

92
67

0.
14

15
67

0.
14

2
67

0.
10

0

m
a
r
o
s

12
.1

2
27

2
2.

40
2

27
8

2.
45

8
37

9
3.

51
8

12
.1

1
28

1
2.

50
8

30
0

2.
68

3
39

5
3.

48
6

5.
76

20
0

1.
81

2
21

9
1.

98
3

22
7

1.
71

4

n
e
s
m

0.
87

52
56

0
.5

79
80

0.
79

8
80

0
.6

59
0.

87
52

56
0.

60
4

80
0.

82
4

80
0.

65
8

0.
45

15
58

0.
64

7
82

0.
88

0
82

0.
63

9

p
i
l
o
t
j
a

4.
87

7
12

1
2.

41
8

16
1

3.
04

2
20

7
3.

70
1

4.
81

5
12

5
2.

31
6

17
2

3.
07

4
17

9
3.

41
8

2.
34

4
11

0
1.

52
2

13
5

1.
90

8
14

3
1.

69
3

p
i
l
o
t
n
o
v

8.
51

96
4
.2

27
12

0
4.

61
5

11
9

3.
71

4
8.

51
10

3
6.

12
13

9
6.

91
2

14
1

4.
91

5
4.

40
2

94
3.

35
5

12
0

3.
80

5
11

9
1.

77
6

p
i
l
o
t
w
e

6.
10

9
10

2
0.

97
11

8
1.

10
2

14
3

1.
20

4
6.

10
8

10
2

1.
04

5
11

9
1.

19
14

4
1.

30
8

3.
19

3
98

0.
85

3
11

5
1.

00
5

12
4

1.
06

6

s
c
f
x
m
2

2.
11

4
93

0
.3

87
13

9
0.

58
4

14
6

0.
53

7
2.

11
3

10
1

0.
40

1
15

2
0.

60
3

15
0

0.
49

8
0.

98
89

88
0.

35
7

13
1

0.
53

6
14

2
0.

48
6

s
c
f
x
m
3

2.
14

2
13

9
0.

95
7

19
6

1.
35

3
21

5
1
.2

7
2.

14
1

14
2

0.
95

5
22

7
1.

57
5

22
2

1.
30

9
0.

97
7

91
0.

60
5

19
7

1.
35

2
21

3
1.

21
6

s
c
t
a
p
2

2.
84

4
18

5
1.

94
6

24
2

2.
56

7
6
5
4
5

14
7.

3
2.

81
4

33
2

3.
68

5
69

6
8.

4
95

4
10

.6
2

1.
53

3
19

1
2.

03
5

35
3

3.
88

30
2

2.
64

4

s
c
t
a
p
3

3.
04

14
5

2.
64

9
23

9
4.

55
9
4
6
3

36
6.

1
2.

99
5

18
0

3.
45

77
3

15
.4

9
11

68
20

.2
2

1.
60

2
21

3
3.

78
5

40
6

7.
39

4
34

7
4.

79
9

s
h
i
p
0
8
l

0.
12

44
1

0.
00

2
20

0.
11

1
29

0
.1

71
0.

11
57

1
0.

00
2

19
0.

12
8

23
0.

13
4

0.
03

00
1

0.
00

2
19

0.
12

7
24

0.
14

7

s
h
i
p
0
8
s

0.
13

96
2

0.
00

6
32

0.
12

2
42

0
.1

39
0.

12
9

2
0.

00
6

34
0.

13
4

35
0.

12
3

0.
03

17
1

0.
00

1
32

0.
12

3
38

0.
12

7

s
h
i
p
1
2
l

0.
35

28
1
<

0.
00

1
48

0.
44

2
65

0
.5

76
0.

34
62

1
<

0.
00

1
48

0.
41

8
65

0.
55

5
0.

06
00

1
0.

00
4

45
0.

45
1

56
0.

48
3

s
h
i
p
1
2
s

0.
38

98
4

0.
01

5
63

0.
37

7
83

0
.3

76
0.

38
57

5
0.

01
9

64
0.

38
7

86
0.

39
8

0.
06

17
4

0.
01

5
58

0.
30

5
63

0.
28

1

s
i
e
r
r
a

0.
02

39
1

0.
00

1
54

0.
41

4
61

0
.5

67
0.

02
39

1
0.

00
1

54
0.

41
2

61
0.

56
9

0.
02

23
1

0.
00

4
51

0.
53

8
51

0.
48

3

s
t
o
c
f
o
r
2

1.
52

2
6

0.
02

2
43

7
5.

04
7

48
4

6
.6

7
1.

52
2

7
0.

02
5

43
8

5.
38

7
48

6
6.

56
2

0.
75

88
3

0.
05

4
43

8
7.

57
3

71
2

10
.3

s
t
o
c
f
o
r
3

1.
48

2
29

2
.1

9
2

37
77

21
25

43
29

27
01

1.
48

2
32

1
.8

6
2

37
81

20
29

43
30

28
51

0.
73

27
1

0
.9

9
37

20
30

23
60

69
34

82

T
ab

le
1:

R
es

u
lt

s
of

P
r
o
j
e
c
t
i
v
e
C
u
t
t
i
n
g
-
P
l
a
n
e
s

an
d

st
an

d
ar

d
C
u
t
t
i
n
g
-
P
l
a
n
e
s

on
th

e
ro

b
u

st
op

ti
m

iz
at

io
n

in
st

an
ce

s.
T

h
e

co
lu

m
n

s
O

P
T

in
d

ic
at

e
th

e
in

cr
ea

se
in

p
er

ce
n
ta

ge
of

th
e

ro
b

u
st

ob
je

ct
iv

e
va

lu
e

w
it

h
re

sp
ec

t
to

th
e

n
om

in
al

on
e

(w
it

h
n

o

ro
b

u
st

n
es

s)
.

C
ol

u
m

n
s

“
ga

p
1%

”
in

d
ic

at
e

th
e

co
m

p
u

ti
n

g
eff

or
t

n
ee

d
ed

to
re

ac
h

th
e

it
er

at
io

n
i
t

w
h

en
th

e
ga

p
b

et
w

ee
n

th
e

u
p

p
er

b
ou

n
d

b
>
x
i
t

an
d

th
e

lo
w

er
b

o
u

n
d
o
p
t
V
a
l
(P

i
t
)

is
b

el
ow

1%
,

i.
e.

,
ei

th
er

0
<
o
p
t
V
a
l
(P

i
t
)
≤

b
>
x
i
t
≤

1
.0

1
o
p
t
V
a
l
(P

i
t
)

or
o
p
t
V
a
l
(P

i
t
)
≤

b
>
x
i
t
≤

0
.9

9o
p
t
V
a
l
(P

i
t
)
<

0.



Daniel Porumbel: Projective Cutting-Planes
20 Article submitted to INFORMS Journal on Computing; manuscript no. (provide the manuscript number!)

For sctap2 and sctap3 with Γ = 50, the standard Cutting-Planes is seriously slowed

down by degeneracy issues, i.e., it performs too many Simplex pivots that only change

the Simplex basis without improving the objective value. It thus needs significantly more

iterations than normally expected — see the italic font figures in the rows of sctap2 and

sctap3. We suppose that such degeneracy phenomena are also visible for czprob with

Γ = 50 in Table 1 of [4], because their algorithm takes 100 times more time for Γ = 50 than

for Γ = 10, which is unusual.

Remark 2 Except for the above experiments, the degeneracy issues of the standard

Cutting-Planes are not very visible in other Cutting-Planes implementations from this

work (including [14]). Yet such problems are well acknowledged in the Cutting-Planes lit-

erature, especially in Column Generation. As [9, §4.2.2] put it, “When the master problem

is a set partitioning problem, large instances are difficult to solve due to massive degeneracy

[...] Then, the value of the dual variables are no meaningful measure for which column to

adjoin to the Reduced Master Problem”. In Projective Cutting-Planes, the inner-outer

solutions xit and opt(Pit−1) represent together a more “meaningful measure” for select-

ing a new constraint, avoiding iterations that keep the objective value constant. In fact, as

hinted at point 2 of [14, § 2], a projection cannot keep the objective value constant when

xit is strictly interior (which is surely the case when α< 1). This comes from the fact that

the objective value cannot deteriorate or remain constant by advancing along xit→ dit,

because xit + dit = opt(Pit−1) and xit belongs to the strict interior of Pit−1 ⊇P.

3.1.3. Beyond the standard Cutting-Planes and the standard Projective Cutting-

Planes We here consider a multi-cut version of both Projective Cutting-Planes and

the standard Cutting-Planes, i.e., we enable both algorithms to return multiple cuts at

each iteration; recall the approach from [4] also returns multiple cuts per iteration.

The most straightforward multi-cut separation one can imagine works in two steps: (1)

determine for each nominal constraint the strongest robust cut with regards to the current

outer optimal solution xout /∈Pit, (2) return all cuts determined at Step (1) that are

violated by xout. However, numerical experiments show this may generate an important

computational bottleneck: the polytopes Pit constructed along the iterations it may

become too “heavy”, containing too many constraints. As such, we use a more practical

multi-cut separation that only returns the five most violated robust cuts. If there are less
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than five robust cuts violated by xout, then the separation algorithm returns only these less

than five cuts. For comparison, recall that the mono-cut standard Cutting-Planes returns

only the most violated cut. As a further protection against computational explosions, we

stop returning multiple cuts (i.e., we swap to mono-cut separation) if we ever detect that

the outer approximation Pit contains 10000 (new) robust cuts.

The multi-cut projection is designed as follows: start from the mono-cut algorithm from

Steps 1–5 of Section 2.1.2, but return all robust cuts that generate a step decrease in (2.4) at

Step 3. This is a simple generalization of the mono-cut projection algorithm that executes

the same five steps (for each nominal constraint) but only returns the very best robust

cut that minimizes the final step length. We also use the protection against computational

explosions used for the separation: we switch to the mono-cut algorithm if we ever detect

that Pit contains 10000 (new) robust constraints.

Table 2 compares the multi-cut Projective Cutting-Planes and the multi-cut

Cutting-Planes using almost the same format and the same columns as in Table 1. In

fact, we removed the “OPT” columns and we added the new columns “cuts” that report

the total number of new robust cuts ever generated to fully converge.

Comparing Table 2 to the previous Table 1, it is quite clear that, for both algorithms,

the multi-cut variant is superior to the mono-cut one. Focusing on Table 2 only, the

multi-cut Projective Cutting-Planes requires (far) less iterations than the multi-cut

Cutting-Planes; there are only three exceptions to this rule (instance ganges for Γ = 50

and sierra for Γ∈ {10,50}). On roughly half of the instances, the multi-cut Projective

Cutting-Planes requires a one-digit number of iterations while this happens only rarely

for any other algorithm considered in this paper. In terms of CPU time, the multi-cut

Projective Cutting-Planes is at least 10 times faster than the Cutting-Planes for

roughly a third of the instances (in such cases, the CPU time is reported in italic font).

In no few cases, the multi-cut Projective Cutting-Planes variant from this section is

a real success. For example, it solved the very large instance stocfor3 for Γ = 1 in three

iterations and roughly 8 seconds, while all other algorithms studied in this paper needed

thousands of iterations and thousands of seconds for the same instance. Let us discuss

how these three iterations proceeded to determine the optimal value. The first projection

generated 7853 robust cuts; at the second iteration, Projective Cutting-Planes stopped

at 2147 cuts because it reached the limit 7853 + 2147 = 10000. This forced it to switch to
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a mono-cut projection mode. The third and last iteration simply confirmed the feasibility

of the outer solution obtained after the first two iterations.1 It is clear here that the robust

cuts determined using a projection logic are much stronger than the ones discovered using

the classical separation logic.

3.2. Multiple–Length Cutting-Stock

Let us consider a Multiple-length Cutting-Stock variant with two types of standard–

size input pieces: one of length W and cost 1, and one of length 0.7W and cost 0.6.

Preliminary experiments confirm that introducing a third type of standard-size piece lead

to similar experimental conclusions. We prefer Multiple-length Cutting-Stock over the

standard Cutting-Stock because it is more general: (i) the constraints (a, ca) ∈A of the

Column Generation dual LP (2.5) do not satisfy all ca = 1, and (ii) it is not possible

to generate lower bounds using the Dual Feasible Functions that proved so effective in

standard Cutting-Stock [3].

Let us mention that we warm-start Projective Cutting-Planes by executing the first

two projections in a problem-specific (ad-hoc) manner. More exactly, let us choose x1 = 0n

and d1 = 1
W

w for the first iteration and x2 = 0n and d2 = b for the second one. The choice

of projecting along 0n→ 1
W

w for it = 1 is inspired by research in dual feasible functions

for Cutting-Stock problems [3], which shows that 1
W

w is often a dual-feasible solution

(in pure Cutting-Stock) of very high quality. The choice for it = 2 is a rather standard

one: the projection towards b makes Projective Cutting-Planes advance along the di-

rection with the fastest rate of objective function improvement. This enables Projective

Cutting-Planes to determine two lower bounds and two initial constraints.

To reduce any bias, we also warm-start the standard Column Generation in a similar

manner, i.e., before launching the standard iterations, we solve the separation sub-problem

on b and 1
W

w, generating two initial constraints. However, in Column Generation, these

two sub-problems can only generate one Lagrangian lower bound associated to b. We

cannot calculate such a lower bound for 1
W

w because the Lagrangian bound does not hold

for a (dual) feasible solution like 1
W

w ∈P associated to a non-negative reduced cost, see

full details in Remark 3 of Appendix A.

1 The source code is available on-line at the github repository of INFORMS Journal on Computing [11], for both
problems considered in the paper, i.e., robust linear programming and (multiple-length) cutting-stock.
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3.2.1. The standard Projective Cutting-Planes We consider ten well-studied bench-

mark instance sets [3, 16] and we take the first 3 instances from each set. For each set,

the number (ID) of each individual instance is indicated by a suffix, e.g., we write m01-1,

m01-2, m01-3 to refer to the first, second and third instance respectively from the bench-

mark set m01. The characteristics of the instances (i.e., the values of n, W , b, etc) and

their origins are described in Table 1 from [15].

Table 3 compares the Projective Cutting-Planes (from Section 2.2.2) to the standard

Column Generation on these instances. Column 1 represents the instance, Column 2 in-

dicates the optimal value of (2.5), Columns 3–6 report the results of the new method, and

Columns 7–11 provide the results of the standard Column Generation. For both methods,

Table 3 first indicates the computing effort (iterations and CPU time) needed to reach a

gap of 20% (i.e., so that ub≤ 1.2·lb) and then the total computing effort needed to fully

converge. All reported CPU times are smaller than those reported in the companion paper

(Section 2, p. 6) of [15], for both the new method and the standard Column Generation.

This cannot only be explained by the hardware evolution, but also by a better implementa-

tion. In Column 5 we indicate in parentheses the number of Projective Cutting-Planes

iterations as a percentage of the number (CG-Std) of Column Generation iterations (i.e.,

as a percentage of Column 9).

The last column reports the minimum and the maximum value (over ten runs) of the

ratio CG-Stab
CG-Std

, where CG-Stab is the number of iterations needed by the stabilized Column

Generation from [15, § 6.1.2] and CG-Std is the number of iterations of the standard

Column Generation. The ten considered runs were randomized by choosing at each itera-

tion it an arbitrary optimal solution of value optVal(Pi); this artificial randomization is

obtained by optimizing a random objective function while keeping the value of the original

legitimate objective function at optVal(Pit). Referring again to [15, § 6.1.2] for full de-

tails, we mention that we used the best stabilization techniques for Cutting-Stock from

[10]: dual solution smoothing and adding a step-wise penalty to the (dual) objective func-

tion. The best parameters for these stabilization techniques were chosen on an instance by

instance basis, exactly as in [15, § 6.1.2].

Table 3 demonstrates that Projective Cutting-Planes reaches the 20% gap three or

four times more rapidly than the standard Column Generation (compare Columns 3–4

to Columns 7–8). This is mostly due to the fact that Projective Cutting-Planes can
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Projective Cutting-Planes Standard Column Generation

Instance OPT gap 20% full convergence gap 20% full converg. stabilized

iters time[s] iters time[s] iters time[s] iters time[s] iters

m01-1 49.3 90 0.02 166 (86%) 0.05 187 0.07 194 0.08 86%–89%

m01-2 53 82 0.02 140 (69%) 0.04 171 0.06 202 0.07 85%–86%

m01-3 48.2 70 0.02 134 (63%) 0.04 180 0.07 212 0.08 81%–91%

m20-1 56.6 79 0.02 101 (69%) 0.03 101 0.03 148 0.04 78%–90%

m20-2 58.7 73 0.02 103 (59%) 0.02 123 0.04 175 0.05 84%–92%

m20-3 64.8 61 0.01 116 (85%) 0.02 118 0.03 136 0.03 85%–91%

m35-1 73.9 61 0.01 61 (95%) 0.01 64 0.01 64 0.01 90%–92%

m35-2 71.5 125 0.02 125 (87%) 0.02 143 0.02 143 0.02 50%–54%

m35-3 73.7 67 0.01 67 (82%) 0.01 82 0.01 82 0.01 45%–60%

vb50c1-1 866.3 46 0.8 82 (73%) 2.2 83 5.5 113 8.3 86%–90%

vb50c1-2 842.5 39 1.6 86 (71%) 2.5 91 7.6 121 9.6 77%–87%

vb50c1-3 860.2 37 1.5 85 (74%) 3.1 87 6.9 115 9.5 87%–90%

vb50c2-1 672.3 55 2.2 114 (90%) 9.8 82 13.1 127 20.2 81%–82%

vb50c2-2 593.1 40 1.9 80 (58%) 5.1 88 11 139 21.1 85%–94%

vb50c2-3 480.048 36 3.5 181 (84%) 47.2 75 20.6 216 76.3 90%–97%

vb50c3-1 282 37 11.7 122 (68%) 57.6 67 36.1 179 105 79%–94%

vb50c3-2 239.398 37 16.8 115 (79%) 64.6 60 30.6 145 85.1 89%–91%

vb50c3-3 271.398 36 12.9 132 (76%) 65.3 68 38.2 173 109 87%–92%

vb50c4-1 579.548 40 3.5 115 (73%) 17.5 73 12.5 158 35.5 82%–90%

vb50c4-2 551.01 36 3 123 (74%) 21.9 73 18.5 166 46.6 95%–95%

vb50c4-3 700.039 40 2.3 111 (76%) 9.9 81 11.9 147 24.8 83%–89%

vb50c5-1 337.8 40 8.7 133 (58%) 51.9 61 24.8 228 109 86%–91%

vb50c5-2 349.799 30 4.8 130 (63%) 44.1 64 21 207 81.4 96%–99%

vb50c5-3 295.775 36 11 115(65%) 53.6 71 28.4 177 83.9 89%–89%

wäscher-1 24.0648 71 0.2 319 (66%) 4.2 294 2.3 483 4.7 67%–71%

wäscher-2 22.0003 69 0.2 501 (103%) 8.6 158 1 481 6.7 70%–75%

wäscher-3 12.1219 31 0.03 110(65%) 0.3 110 0.3 170 0.5 72%–86%

hard-sch-1 51.4254 112 14.7 345 (48%) 69.2 345 48.1 712 115 81%–86%

hard-sch-2 51.4426 116 15.1 339 (49%) 67 365 50.9 685 110 85%–87%

hard-sch-3 50.5957 110 15.1 295 (47%) 58.6 357 52.8 630 107 80%–83%
Table 3 Projective Cutting-Planes compared to the standard Column Generation on Multiple-length

Cutting-Stock. The value in parentheses in Column 5 reports the ratio between the number of Projective

Cutting-Planes iterations and the number of Cutting-Planes iterations (Column 5 divided by Column 9). The

Projective Cutting-Planes reduced the number of iterations by at least a third (i.e., to less than 66%) on more

than a third of the instances, see the bold figures in Columns 5 in parentheses.
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generate high-quality lower bounds from the very first iterations, as we will also see in the

running profiles from Figure 3.

Regarding the complete convergence, the “upgrade” from the standard Cutting-Planes

to Projective Cutting-Planes resulted in an average reduction of the number of iter-

ations to 72% and of the CPU time to 61%. For the last three (most difficult) instances,

the Projective Cutting-Planes reduced the number of iterations to roughly 50%.

Let us also compare this iteration speed-up to the one that could be achieved by stabiliz-

ing the Column Generation. Focusing on the minimum value reported in the last column

of Table 3, we observe that none of the stabilized Column Generation runs could reduce

the number of iterations to less than 85% for roughly half of the instances. In contrast,

the values in parentheses in Column 5 show that almost all Projective Cutting-Planes

runs managed to reduce the number of iterations to less than 85% (there are six exceptions

to this rule). Confirming [15, § 6.1.2], the stabilization is really very successful only on the

m35 instances that can be solved in 0.01 seconds. Still, we can not claim that the number

of iterations reported by Projective Cutting-Planes is systematically smaller than the

(minimum) number of iterations a stabilized Column Generation can reach.

3.2.2. An aggressive Projective Cutting-Planes Let us now consider an aggressive

Projective Cutting-Planes that chooses xit = xit−1 + t∗it−1dit−1, i.e., xit is the best

feasible solution discovered up to now (the last pierce point). This aggressive Projective

Cutting-Planes starts very well by strictly increasing the lower bound with each iteration

it, i.e., check that b>xit = b>
(
xit−1 + t∗it−1dit−1

)
≥ b>xit−1 is surely satisfied because

the objective function does not deteriorate by advancing along xit−1→ dit−1 (see also Step

2 from [14, § 2]). In fact, the inequality is always strict except at the very last iteration

when t∗it−1 = 0. This way, the lower bound b>xit becomes constantly increasing along

the iterations it. This eliminates the infamous “yo-yo” effect appearing very often (if not

always) in Column Generation—i.e., the “yo-yo” up and down osculations of the lower

bound values reported along the iterations.

Figure 3 presents the lower bounds calculated along the iterations by three methods:

the above aggressive Projective Cutting-Planes (in black), the standard Projective

Cutting-Planes (in red) and the standard Column Generation (Lagrangian lower bounds

in blue). This figure demonstrates that the aggressive Projective Cutting-Planes starts

very well by strictly increasing the lower bound at each iteration (no “yo-yo” effect); at
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Figure 3 Two representative running profiles, comparing the aggressive and the standard Projective

Cutting-Planes against Column Generation. While the aggressive Projective Cutting-Planes starts

very well (the black curves show no “yo-yo” effect), it converges rather slowly in terms of CPU time.

certain iterations, the increase is actually too small to be visible in the figure, but we can

certify it is real in the actual data. However, this aggressive variant needs significantly

more CPU time than the standard Projective Cutting-Planes to fully convergence.

This comes from the fact that the aggressive algorithm does not use truncated interior

points xit, so that its iterations are significantly slower. For example, on the first instance

m01-1 from Figure 3, even if the aggressive Projective Cutting-Planes needs 20% less

iterations, its total convergence time is approximately three times larger than that of the

standard Projective Cutting-Planes. For the second instance vb50c1-1 in Figure 3,

the aggressive algorithm needs 9 times more (CPU) time. More generally, preliminary
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experiments indicate that even the original non-aggressive Projective Cutting-Planes

would be a few times slower without the truncation feature from Section 2.2.2.

3.3. The oscillations of the inner solutions and the “bang-bang” effects

The goal of this section is to (try to) gain more insight into why an “aggressive” definition of

xit like xit = xit−1 +t∗it−1dit−1 leads to poor results in the long run on certain problems and

to reasonable results on others. Considering all problems addressed in this work and [14],

we can safely say that: (i) this aggressive definition was really not useful for the Benders

decomposition ([14, § 4.1]) and the robust optimization (Section 3.1) problems; (ii) it

led to quality results on the remaining two problems, i.e., it proved very successful for

standard graph coloring in [14, § 4.2] and it led to a reasonable total number of iterations

in Section 3.2.2 just above.

A possible explanation is related to the oscillations of the inner solutions xit along the

iterations. We report below the values of the first 15 components of xit+1 = xit + t∗itdit

for it∈ {1, 11, 21, 31, 41}, i.e., as generated by Projective Cutting-Planes using the

above aggressive xit definition. For each problem, we selected the very first instance from

the main table of results, i.e., from the second group of rows of [14, Table 1], from Table 1,

from [14, Table 3], and then from Table 3. The addressed problems are listed (sorted)

below in descending order of the strength of the oscillations of these inner solutions xit.

Keep in mind to interpret these oscillations not only in absolute values but also in relative

values.

The benders reformulation (IP version):

2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76 2.76

0.37 0.37 0.37 0.37 0.37 0.37 4.08 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37

0.112 0.112 0.112 0.112 0.112 0.112 1.93 0.112 0.112 1.64 0.112 0.112 0.112 0.112 0.112

0.026 0.026 0.026 0.026 0.026 0.026 1.62 0.026 0.026 1.62 0.026 0.026 0.026 0.026 0.026

0.018 0.024 0.018 0.018 0.018 0.029 1.67 0.03 0.018 1.12 0.018 0.079 0.018 0.029 0.018

The robust optimization problem:

0 37.36 0 59.62 0 69.77 0 97 199.2 0 0 417 4403 0 65.66

20.76 22.81 0 49.76 0 45.46 0 65.86 236.4 0 136.3 254.6 3500 0 64.43

27.38 18.04 0 46.28 0 37.49 0 55.68 248.7 0 180.8 201.3 3205 0 64.03

33.26 13.8 0 43.21 0 30.41 0 46.66 259.6 0 220.7 154.1 2942 0 63.67

36.22 11.68 0 41.63 0 26.86 0 42.14 265.1 0 240.7 130.3 2811 0 63.49

Standard graph coloring:

0.025 0.021 0.036 0.021 0.033 0.021 0.021 0.021 0.029 0.029 0.021 0.025 0.029 0.025 0.033
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0.04 0.064 0.033 0.028 0.084 0.028 0.035 0.019 0.04 0.059 0.019 0.073 0.054 0.025 0.05

0.04 0.063 0.033 0.029 0.085 0.028 0.044 0.019 0.04 0.058 0.019 0.072 0.056 0.025 0.051

0.038 0.062 0.032 0.03 0.089 0.027 0.045 0.018 0.039 0.056 0.018 0.07 0.054 0.025 0.051

0.037 0.06 0.032 0.031 0.088 0.026 0.044 0.018 0.038 0.055 0.018 0.068 0.053 0.025 0.051

Multiple length cutting stock:

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.25 0.95

0.27 0.43 0.72 0.79 0.24 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.41 0.4 0.05 0.24 0.95

0.28 0.44 0.72 0.79 0.23 0.7 0.55 0.4 0.69 0.01 0.41 0.41 0.05 0.24 0.95

0.28 0.43 0.72 0.79 0.23 0.7 0.55 0.39 0.69 0.01 0.42 0.39 0.05 0.24 0.95

These results may explain why setting xit = xit−1 + t∗it−1dit−1 leads to poor results on

the first two problems and to reasonable results on graph coloring or Multiple-length

Cutting-Stock. We used on purpose a cautious formulation “reasonable results on graph

coloring or Multiple-length Cutting-Stock”, because the lack of strong oscillations

does not guarantee the superiority of the aggressive version. The aggressive variant proved

clearly superior only on graph coloring; recall (Remark 3 of [14]) that it could even report

new lower bounds in the competitive graph coloring literature [7]. On the Multiple-length

Cutting-Stock tests from Section 3.2.2, we can only cautiously say that that the aggressive

version yielded “reasonable results”, i.e., it needs less iterations than the standard Column

Generation in Figure 3, but the CPU time is too large, mainly for reasons not related to

oscillations.

On the other hand, it is quite clear that when the oscillations are strong, the aggressive

version is most likely not very efficient. This is why the best settings for the first two

problems (Benders decomposition and robust optimization) take a form xit = xit−1 +

αt∗it−1dit−1 with α< 0.5.

4. Conclusions

We explored the Projective Cutting-Planes algorithm from [14] in greater detail and

we applied it to two new problems, i.e., robust linear programming and Multiple-length

Cutting-Stock. Recall that main new proposed feature is the use of a new projection

sub-problem instead of the well–known and widely–used separation sub-problem. A key

step to make Projective Cutting-Planes really effective is to develop new techniques to

solve this projection sub-problem very rapidly, if possible (almost) as rapidly as the sepa-

ration sub-problem. Thus, an important goal of the paper was to develop fast projection

algorithms for the two new considered problems.
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The main advantage of Projective Cutting-Planes is that it has a built-in mechanism

to generate feasible inner solutions along the iterations; these inner solutions converge

towards opt(P) similarly to the solutions of the central path in interior point algorithms.

The standard Cutting-Planes does not contain such a built-in feature. In fact, even if

some ad-hoc methods could sometimes be used in Cutting-Planes to construct feasible

solutions (along the iterations), these inner solutions generally represent merely a by-

product of the Cutting-Planes algorithm; they are not usually a very determining factor

in the Cutting-Planes evolution.

Projective Cutting-Planes can offer a number of advantages beyond the reduction of

the computing effort needed to fully converge:

– An aggressive Projective Cutting-Planes that chooses xit as the best solution

discovered up to now (i.e., xit = xit−1 + t∗it−1dit−1) eliminates the infamous “yo-yo” effect

that appears very often (if not always) in Column Generation. This was already presented

in [14, Figure 3] for graph coloring and it is confirmed by the new Multiple-length

Cutting-Stock experiments from Figure 3 (p. 27). However, this aggressive choice of xit

may also lead to poor results in the long run, partly because xit may oscillate too much from

iteration to iteration. To gain more insight into this (bang-bang) phenomenon, Section 3.3

characterizes the cases where it is better to choose xit = xit−1 +α · t∗it−1dit−1 with some

α< 1 instead of xit = xit−1 + t∗it−1dit−1 (i.e., instead of α= 1). We thus addressed one of

the questions raised in the conclusions of [14]: “ It remains rather difficult to explain why

α< 0.5 is often better than α= 1 when choosing the inner solution xit”.

– Implementing Projective Cutting-Planes takes more time than implementing a

basic Cutting-Planes. Yet, a basic Cutting-Planes implementation may also require cer-

tain hidden costs in terms of working time if one wants to make it cover a part of the built-

in features of Projective Cutting-Planes. For example, Projective Cutting-Planes

can avoid degeneracy issues more easily than a standard Cutting-Planes. In standard

Cutting-Planes, the separation sub-problem uses only one guide-point to determine a new

constraint, i.e., the current optimal (outer) solution. The Projective Cutting-Planes

determines each new constraint by taking into account a pair of inner–outer solutions

such that each projection direction xit→ dit satisfies b>dit > 0. This way, Projective

Cutting-Planes has a built-in feature to avoid degeneracy (iterations that keep the ob-

jective value constant). Although our experiments exhibit such standard Cutting-Planes
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degeneracy issues only in Section 3.1 (Remark 2, p. 20), it is well-known that they do arise

quite frequently in Column Generation as well.2

– The robust linear programming experiments from Table 1 (Columns “gap 1%”)

demonstrate that Projective Cutting-Planes needs a very short time (less than 5% of

the total convergence time) to produce a feasible solution with a provable optimality gap

below 1%, i.e., an acceptable solution in practice. We also tested on this problem the idea

of returning multiple cuts per round. The multiple cuts determined using a projection logic

seem stronger than the ones obtained using a separation logic. In the best case (instance

stocfor3 for Γ = 1), the multi-cuts Projective Cutting-Planes from Section 3.1.3 fully

converged in roughly 8 seconds, while the multi-cuts Cutting-Planes needed thousands

of seconds.

– The projection sub-problem may generally lead to stronger constraints than the sep-

aration one. We can cite one point from the conclusions of [14] that applies to the current

paper as well: “As described in Section 2.4.1 of [13], when x = 0n, the projection sub-

problem project(x→ d) is equivalent to normalizing all constraints (to make them all

have the same right-hand side value) and then choosing one by separating x + d. Even if

this paper uses x 6= 0n, the projection sub-problem can still generate stronger (normalized)

constraints than the separation sub-problem.”.

We hope that the ideas presented throughout this work and [14] may shed useful light

on solving other LPs with prohibitively-many constraints.

Acknowledgements We thank two referees for the time they spent to read the paper twice.
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Appendix or On-line supplement

A. The detailed Column Generation model and its Lagrangian bounds

The Column Generation model optimized in Section 3.2 of [14] (graph coloring) and in

Section 2.2 of the current paper (Cutting-Stock) is

maxb>x

ya : a>x≤ ca, ∀(a, ca)∈A
x≥ 0n

(A.1)}
P

All proposed algorithms related to Column Generation were presented from the standpoint

of this LP, both for graph coloring in [14, (3.12)] and for Multiple-length Cutting-Stock

in (2.5). This is actually the dual of the master primal LP below.

min
∑

(a,ca)∈A

caya

x :
∑

(a,ca)∈A

aiya ≥ bi ∀i∈ [1..n]

ya ≥ 0 ∀(a, ca)∈A

(A.2)

The above LP was obtained after relaxing ya ∈ Z+ into ya ≥ 0; in the very initial for-

mulation, ya is an integer variable that encodes the number of selections of each column

(a, ca) ∈ A. These columns A may represent stables in graph coloring, cutting patterns

in (Multiple-Length) Cutting-Stock, or, more generally routes in vehicle routing problems,

assignments of courses to timeslots in timetabling, or any specific subsets in the most

general set-covering problem. The number of columns may be enormous and they can not

usually be enumerated in reasonable time. For each column (a, ca) ∈A, a ∈ Zn+ is an inci-

dence vector such that ai indicates how many times an element i ∈ [1..n] is covered by a.

The objective of (A.2) asks to minimize the total cost of the selected columns, under the

(set-covering) constraint that each element i∈ [1..n] has to be covered at least bi times.

On several occasions, we referred to the Lagrangian lower bounds of the standard Column

Generation. When all columns have equal unitary costs (i.e., ca = 1 ∀(a, ca) ∈ A as in

graph coloring), we simply used the Farley lower bound

L (x) =
b>x

1−mrdc(x)
, (A.3)

where mrdc(x) is the minimum reduced cost with regards to the optimal (dual) values

x = opt(Pit) at the current iteration it, i.e., mrdc(x) = min
(a,ca)∈A

ca−a>x.
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In Multiple-length Cutting-Stock, the column costs are no longer unitary, but we

can still apply the Farley bound (A.3) after normalizing all columns in A. More exactly,

we replace (a, ca) with ( a
ca
,1) for each (a, ca)∈A and we obtain a normalized model (A.2)

that has the same objective value as the original model because the variables y are con-

tinuous. Let cmin = min{ca : (a, ca)∈A}. The normalized minimum reduced cost mnorm
rdc (x)

satisfies mnorm
rdc (x) ≥ 1

cmin
mrdc(x) when mrdc(x) ≤ 0, because any (a, ca) ∈ A associated to

some mrdc(x) = ca − a>x ≤ 0 satisfies 1
ca

(
ca−a>x

)
≥ 1

cmin

(
ca−a>x

)
. The Farley bound

evolves to L (x) below.

b>x

1−mnorm
rdc (x)

≥L (x) =
b>x

1− 1
cmin

mrdc(x)
(A.4)

The above L (x) is a valid lower bound when mrdc(x) ≤ 0, but not necessarily when

mrdc(x) > 0, because we used mrdc(x) ≤ 0 in the proof. An example can simply confirm

this. Consider an instance with two standard-size pieces in stock: a piece of length 0.7

and cost 0.6 and a piece of length 1 and cost 1. The demand consists of two small items

of lengths w1 = 0.7 and w2 = 0.3. Taking x1 = 0.5 and x2 = 0.4, one obtains mrdc(x) =

0.6− 0.5 = 1− 0.5− 0.4 = 0.1 and we get L (x) = 0.9
1− 1

0.6
0.1

= 1.08 which is not a valid lower

bound, since the optimum for this instance is 1 (cut both items from a standard-size piece

of length 1).

Remark 3 Recall (Section 3.2) that the first two iterations of Projective

Cutting-Planes for Multiple-length Cutting-Stock solve the projection sub-problems

project(0n → 1
W

w) and project(0n → b), obtaining two initial lower bounds. For the

standard Column Generation, however, L ( 1
W

w) is not necessarily a valid lower bound

because we may have mrdc

(
1
W

w
)
> 0. As such, even if we also (warm-)start the Column

Generation by solving two initial separation sub-problems on 1
W

w and b, this offers a

unique lower bound L (b) for the standard Column Generation.

B. A fast data structure to manipulate a Pareto frontier

We explained in Section 2.2.3 how the Dynamic Programming projection algorithm needs

to handle a list of states I whose cost and profits ci/pi ∀i∈ I satisfy the Pareto dominance

relation (2.7.a)–(2.7.b), recalled below for convenience (and also to obtain a stand-alone

appendix).

c1 < c2 < c3 < . . .
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p1 < p2 < p3 < . . .

We now present an effective data structure to manipulate such pairs of values ci/pi (with

i∈ I). This data structure is not essentially linked to Projective Cutting-Planes: it can

manipulate any Pareto frontier with two objectives.

We focus on the following key task that has a particularly high risk of introducing a

useless computational bottleneck: the insertion of a new pair c+/p+ in the list I (at Step 5

of Algorithm 1). It can be very inefficient and impractical to scan the whole list I only to

check if c+/p+ is dominated or not. As such, we propose to record I using a self-balancing

binary search tree [8, § 6.2.3], which is a data structure designed to manipulate ordered

lists, e.g., it performs a lookup, an insertion and a removal in logarithmic time with respect

to |I|. The order of the states in the tree is given by the simple comparison of costs, i.e.,

if ci < cj, then ci/pi is ordered before cj/pj.

Given a new pair c+/p+, we first insert it into the self-balancing binary search tree and

then we will compare it to the elements before and after it to check for dominance relations.

Let c∗/p∗ be the element before c+/p+ after it has been added to the tree, i.e., c∗/p∗ is the

pair with the highest cost c∗ no larger than c+ so that c∗ = max{ci : ci ≤ c+, i∈ I}.

Once c∗/p∗ is determined, we check for dominance relations as follows. First, if p+ ≤

p∗, then the new pair c+/p+ is directly removed because it is dominated by definition.

Otherwise, if p+ > p∗, then c+/p+ has to remain in the tree but it may dominate other

recorded pairs that have to be removed. For instance, if c∗ = c+ and p∗ < p+, then c∗/p∗

is immediately removed from the tree. Furthermore, our insertion routine enumerates one

by one all next recorded pairs c#/p# ordered after c∗/p∗ (and after c+/p+) that satisfy

p# ≤ p+ and removes them all. Indeed, such pairs c#/p# are certainly dominated by c+/p+,

given that p# ≤ p+ and c# > c+; the latter inequality follows from the fact that c+/p+ was

inserted before c#/p# in the tree.


