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Abstract. In the context of the work conducted at CSTB (French Sci-
entific and Technical Center for Building), the need for a tool providing
assistance in the identification of asbestos-containing materials in build-
ings was identified. To this end, we have developed an approach, named
CRA-Miner, that mines logical rules from a knowledge graph that de-
scribes buildings and asbestos diagnoses. Since the specific product used
is not defined, CRA-Miner considers temporal data, product types, and
contextual information to find a set of candidate rules that maximizes
the confidence. These rules can then be used to identify building ele-
ments that may contain asbestos and those that are asbestos-free. The
experiments conducted on an RDF graph provided by the CSTB show
that the proposed approach is promising and a satisfactory accuracy can
be obtained.

Keywords: Rule Mining · Knowledge Graph · Temporal Data · As-
bestos.

1 Introduction

Asbestos5 has been known to be harmful for quite a long time, nevertheless, the
dangers associated with it have only been identified since the beginning of the
20th century. Breathing the air that contains asbestos fibers can lead to asbestos-
related diseases, such as lung cancer and chest lining. However, for its fireproof
qualities, many countries have extensively used asbestos in buildings, especially
from 1950 to 1970. The use of asbestos is illegal today in many countries, but
several thousand tons have already been used in the past and asbestos is still
present in a considerable number of buildings. Thus, the identification of building

5 https://en.wikipedia.org/wiki/Asbestos
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parts containing asbestos is a crucial task. As part of the PRDA6, the CSTB7 has
been asked to develop an online tool assisting in the identification of asbestos-
containing materials in buildings that aims to guide the tracking operator in
the preparation of its tracking program (called the ORIGAMI Project). Profes-
sionals regularly inspect buildings and collect samples to detect the presence of
asbestos in building components. However, information is needed to prioritize
a large number of possible tests. The problem is related to the fact that the
available building descriptions only contain the classes of used products without
giving their accurate references or any other information about them (i.e., valued
properties, providers, etc.). In [8], an ontology-based approach that estimates the
probability of the existence of asbestos products in a building is defined. To gen-
erate this probability, this hybrid approach combines statistical and rule-based
methods. However, it is not fully effective since it relies on the construction year
of the building, and on reliable but incomplete external resources describing
some product references that were used in that period of time. Considering ex-
pert feedbacks, we know that the context in which a product is used can also be
relevant to predict the presence of asbestos in this product (i.e., the characteris-
tics of the building, the nature of the building components in which the product
appears, other products used in the same component, etc.). Recently, the CSTB
has made available a set of diagnoses conducted on a large number of buildings.
These data have been represented using the Asbestos Ontology proposed in [8]
and can be used to learn prediction rules. Many rule mining approaches have
been proposed that can learn to classify data based on RDF descriptions [6,10,5].
However, none of them use the ontology semantics, the part-of relations, and the
numerical built-in predicates that are needed to represent the context and the
temporal constraints.

In this paper, we propose an ontology-based approach to discover rules that
can be used to detect the products that contain asbestos in a building or not. The
proposed approach focuses on rule premises that describe the product, its con-
text, and the temporal constraints expressed as open intervals. The potentially
relevant predicates that can appear in the context are declared by the expert
and heuristics are defined to limit the search space when multi-valued part-of
relations are exploited. Furthermore, general knowledge about how the asbestos
usage evolves through time is exploited to generate the temporal interval.

The rest of this paper is organized as follows. In section 2, we present related
works. In section 3, we describe the Asbestos Ontology. Then, in section 4, we
present our predictive approach. Section 5 presents the results obtained on a
real data set of diagnoses. Finally, Section 6 draws conclusions and outlines the
future research directions.

6 Asbestos Research and Development Plan launched by the Department of Housing,
Town Planning and Landscapes (DHUP), attached to the General Directorate of
Planning, Housing and Nature (Minister of Housing and Sustainable Habitat)

7 French Scientific and Technical Center for Building. http://www.cstb.fr/en/
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2 Related Work

In the context of Knowledge Graphs (KG), rule mining can be used to enrich
graphs (by means of link or type prediction, adding new axioms, entity link-
ing), or to detect erroneous RDF triples. To have scalability properties, most
of the recent approaches for link or type predictions are based on deep learning
methods and embedding that allow translating high-dimensional vectors into rel-
atively low-dimensional spaces [11]. Nevertheless, other applications that need
interpretable rules to understand and maintain some domain knowledge, are still
in awe of discovering logical rules. Many approaches have addressed the problem
of discovering first-order logic (FOL) rules over relational data [4,12] or texts
[14]. However, different approaches and hypotheses are needed to discover rules
in knowledge graphs. Indeed, data is generally incomplete and counter-examples
are not always available (i.e., due to the open-world assumption, it cannot be
assumed that a fact that is not in a KG is false). Besides, ontology semantics
can be exploited when available. Some unsupervised approaches aim to discover
graph patterns in voluminous RDF graphs without taking into account the ontol-
ogy [6,10]. [6] uses an optimized generate and test strategy while controlling the
search space by limiting the number of atoms that appear in the rule. [10] allows
to discover FOL rules that may involve SWRL8 built-in predicates to compare
numerical or string values, and negation to identify contradictions. However,
these values must be defined in the KG and associated with two variables of the
rule. So, the approach does not allow us to discover a reference constant like “age
(X, a), a ≥ 18 → adult (X)”, which is one of the goals in our application. Both
approaches are based on a Partial Completeness Assumption (PCA) implying
that when at least one object is represented for one entity and one property, all
the objects are represented, and others can be considered as counter-examples.
The classification approaches based on FOLDT (First-order logical decision tree)
such as TILDE [1] (Top-down induction of logical decision trees) are based on
decision trees in which nodes can share variables and involve numerical pred-
icates with threshold values. However, these latter approaches do not use the
semantics of ontology in the exploration of the search space. Other approaches
such as [2] can be guided by the ontology semantics to avoid constructing seman-
tically redundant rules. However, the author has shown that the exploitation of
reasoning capabilities during the learning process does not allow mining rules on
large KGs.

Some approaches have focused on learning DL concept descriptions such as
DL-FOCL [13], an optimization of DL-FOIL [3], or CELOE [7]. Such approaches
are generally based on a separate-and-conquer strategy that builds a disjunct of
partial solutions, where partial solutions are specialized using refinement opera-
tors, so that the description correctly cover as many positive instances as possible
while ruling out all the negative ones. To learn expressive DL descriptions, they
exploit refinement operators that return a specialization expressed through the
ALCO operators (i.e., universal and existential restrictions on roles, intersec-

8 https://www.w3.org/Submission/SWRL/
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tion, complement, union, one-of enumerations and roles with concrete domains).
However, they do not allow to take into account class instance properties that
change over time. [8] discovers rules that can predict the presence of asbestos
considering the construction year of the building, but this statistic and semantic
hybrid approach is based on incomplete external web resources that describe
how the presence of asbestos in frequently used marketed products has evolved
during the last century.

In this work, we aim to discover interpretable classification rules from posi-
tive and negative examples described in the Asbestos knowledge graph provided
by the CSTB. These horn-clause rules will be used to evaluate the presence of as-
bestos (negative or positive) in a product. Since the marketed products that have
been used in the buildings are unknown, the rules exploit a product’s context de-
fined by domain experts to express those elements of this context have a potential
impact on the presence of asbestos : (1) part-of properties to take into account the
building components and the others used products, (2) the building’s construc-
tion year. Since the building’s construction year can have an important impact
on the presence of asbestos, a rule can use SWRL comparison operators to com-
pare a variable year to the reference year (ex. SWRL:lowerThanOrEqual(YEAR,
ref_year)) which is the reference year that maximizes the quality of the rule.
None of the previously mentioned approaches allow exploiting the ontology and
such built-in numerical predicates in the resulting rules. These rules will be
transformed in SWRL so that the expert can predict the presence of asbestos in
buildings using an existing reasoner.

3 Asbestos Ontology

In this section, we briefly present the upper part of the Asbestos Ontology (see
Figure 1) that has been proposed in [8] based on the CSTB documentation
resources, expert knowledge and the needs in terms of prediction. The main
concepts of this ontology are:

– Building: a construction characterized by a code (CSTB internal code that
corresponds to a given type of building: school, housing, etc.), the building
type, the construction year, an address.

– Structure: building subspace (e.g. balcony, staircase, roof, etc.).
– Location: indicates a basic element that belongs to a building structure (e.g.,

door, window, wall, etc.).
– Product: describes a product that can be used in the composition of locations

(e.g., glue, coating, etc.). A product is described by its name.
– Diagnostic Characteristic : specifies the results of the existence of asbestos

test when it exists. The value of has_diagnostic is “positive” when the prod-
uct contains asbestos and “negative” otherwise.

– Predicted Characteristic : can be used to store that it is predicted that a
product is asbestos-free or not.

The Asbestos Ontology describes 8 subclasses of structure, 19 subclasses of
location and 38 subclasses of product.
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Fig. 1: Main Concepts of the Asbestos Ontology

4 CRA-Miner Approach

In this section, we first describe the contextual rules for the asbestos prediction
that we want to provide to experts to help them detect asbestos-containing ma-
terials in a building. We then present the CRA-Miner algorithm that generates
these rules from the populated Asbestos Ontology.

4.1 Contextual Rules for Asbestos prediction

A Contextual Rule for the prediction of Asbestos (CRA) is a conjunction of
predicates that concludes on the presence or absence of Asbestos in a product P .
We consider a context-free upper bound of the search space > that is defined as
product(P ), has_diagnostic_characteristic(P,D)→ has_diagnostic(D,V alue).
The set of contextual rules that can be constructed from > is defined using a
conceptual context that is by default the whole ontology. However, a domain
expert can delimit the context by choosing the classes and attributes that can
impact the presence of asbestos. This selection can either be used to discard ir-
relevant ontology elements or to test new hypotheses. The chosen context, that
corresponds to the language bias in Inductive Logic Programming (ILP) [9], will
then be used to specialize a rule.

Definition 1. (Conceptual context) A conceptual context CO is a sub-graph of
the ontology, i.e. a subset of classes and properties, that specifies the ontology
elements that can be used in the body of the rule.

Example 1 Let’s CO = {product, location, structure, contain, has_location,
has_region, has_year, has_structure, has_diagnostic_characteristic}.

A contextual rule is based on the ontology vocabulary defined in the concep-
tual context and the specializations of the SWRL:CompareTo predicate that
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can be added to introduce temporal constraints for the building year (i.e. open
intervals):

Definition 2. (Contextual rule) Let CO be a conceptual context, a contextual
rule is a rule

−→
B → h, where

−→
B = {B1, B2, ..., Bn}, and ∀Bi ∈

−→
B,∃Bj ∈

CO∪{SWRL:CompareTo} s.t. Bi v Bj and h is the predicate has_diagnostic
instanciated by the value “positive” or “negative”.

A contextual rule must be closed and connected as defined in rule mining ap-
proaches such as [6].
Example 2 A closed and connected rule that can be discovered using the context
defined in example 1 is:

glue(P), contain(L, P), has_location(S, L), painting(P2), contain(L, P2),
has_structure(B, S), has_year(B, Y), has_region(B, “Paris”),

lessThanOrEqual(Y, “1950”), has_diagnostic_characteristic(P, D)
→ has_diagnostic(D, “positive”)

This rule expresses that a glue that appears in a building located in Paris and
constructed before 1950, when used in the same location as that of a painting,
it contains asbestos.

Additional constraints are defined to reduce the search space complexity for
multi-valued properties that describe part-of relations: contain, has_location,
and has_structure.

First, the expert can define the maximum number of occurrences of co-located
building components that can appear in the body of the rule : maxSibS is used
to define the maximum number of sibling structures, maxSibL is the maximum
number of sibling locations, and maxSibP is the maximum number of sibling
products.

Example 3 If the expert considers that the co-located structures cannot affect
the presence of asbestos in P , then maxSibS = 0 and the approach will not
build the following rule since the S2 structure should not be considered (sibling
of S1 that contains the target product for the has_structure property):

Coating(P), contain(L, P), Location(L), has_location(S1, L),
Vertical_Separator(S1), has_structure(B, S1), has_structure(B, S2),

Floor(S2) , has_year(B, Y), has_region(B, “Lyon”),
SWRL:lessThanOrEqual(Y, “1963”), has_diagnostic_characteristic(P, D)

→ has_diagnostic(D, “positive”)

Furthermore, the CSTB experts consider that only specific co-located com-
ponents can affect the marketed product used for P and therefore the presence
of asbestos. For instance, the presence of a coating in the same location than a
target glue is not significant, while the presence of a floor coating can impact
the marketed glue that has been used in this location. A similar hypothesis is
assumed for locations and structures. Therefore, only the most specific classes
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can be added for sibling products, sibling locations or sibling structures involved
in the considered part-of relations.

To evaluate the quality of a rule, we use the classical measures of head cov-
erage [6] and confidence that has been defined in the relational setting.

The head coverage (hc) is the ratio between the support, i.e. the number of
correct predictions has_diagnostic(D, “positive”) (resp. has_diagnostic(D, “negative”))
implied by the rule, and the number of diagnoses has_diagnostic(D, “positive”)
(resp. has_diagnostic(D, “negative”)) that appear in the knowledge graph:

hc(
−→
B → has_diagnostic(D, val)) =

supp(
−→
B→has_diagnostic(D,val)

#(D,val):has_diagnostic(D,val)

The confidence (conf) is defined as the ratio between the support of the rule
and the number of diagnoses that can participate to an instanciation of the body
of the rule.

conf(
−→
B → has_diagnostic(D, val)) =

supp(
−→
B→has_diagnostic(D,val))

#D:∃X1,...,Xn:
−→
B

CRA-Miner aims to discover all the most general rules that conform with the
defined language bias and such that hc ≥ minHc et conf ≥ minConf .

4.2 Evolution of the presence of Asbestos over time

It has been shown in [8] that the number of marketed products that contain
asbestos remains stable until 1972, and then decreases to zero in 1997 when
its usage is prohibited in France. Indeed, these products have either become
asbestos-free or their production has been discontinued. Thus even if the prob-
ability of asbestos varies depending on the class products, we know that this
probability decreases over time. So if a contextual rule concludes on the absence
of asbestos for a product used in a building constructed after a given year Y1,
the confidence can only increase for Y2 ≥ Y1. This property is used to prune the
search space when the predicate greaterThanOrEqual or lessThanOrEqual is
generalized.

4.3 Algorithm CRA-Miner

The aim of the algorithm CRA-Miner is to generate from the positive and neg-
ative examples described in the KG all contextual rules such that hc ≥ minHc
and conf ≥ minConf . These rules will be used to predict the presence or ab-
sence of asbestos in products that have not been tested.

CRA-Miner is a top-down generate and test algorithm that specializes in
the upper bound T of the search space by considering the hierarchy of product
classes, and by adding temporal constraints, and constraints constructed us-
ing the conceptual context. The algorithm takes as input the knowledge graph,
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the language bias, the thresholds minConf and minHc, and the thresholds
maxSibP , maxSibL and maxSibS that are used to limit the number of co-
located components that can be considered in the rule. The result is a set CR of
contextual rules. The exploration of the search space is guided by the subsump-
tion relations of the ontology (top-down exploration of the targeted products,
their locations, and their structures) and the construction of the temporal con-
straints exploiting the fact that the number of products containing asbestos
decreases over time.

At each specialization step, the generated rules that obtain a confidence value
and a head coverage higher than the specified thresholds, and that improve the
confidence value of the rule from which it is derived, are stored in CR. For all
the rules such that conf = 1 or hc < minHc, the specialization will stop.

We describe the algorithm’s steps for the most general context that has been
defined by the CSTB experts, in other words, the context CO defined in example
1. In this context, the rule can predict the presence of asbestos in a product using
the building’s construction year, the region the building is located in, and all its
types of components. The five specialization steps of the algorithm are as follows :

1- Specialization of T with sub-classes of products :
During this step, we replace the class product by more specific classes (e.g.

coating, glue, painting) to generate all the context-free rules that only depends
on the type of product used. The top-down exploration stops when hc < minHc.
2- Specialization with the temporal constraint : For each context-free rule
generated by the previous step, we add to the body of the rule the path of prop-
erties that is needed to reach the construction year from the target product P :
has_location(S,L), contain(L,P ), has_structure(B,S), has_year(B, Y ). The
predicate SWRL:lowerThanOrEqual(Y, y) (for a rule that concludes on “pos-
itive”) or SWRL:greaterThanOrEqual(Y, y) (for “negative”), is also added to
compare the construction year Y to a reference year y which maximizes the
confidence and preserves hc ≥ minHc.
For example, if the rule R1 is generated in step 1:
R1 : coating(P), has_diagnostic_characteristic(P, D)→ has_diagnostic(D, “pos-
itive”). This rule can then be specialized as follows:
R2 : coating(P), has_location(S, L), contain(L, P), has_structure(B, S), has_ye-
ar(B, Y), SWRL:lowerThanOrEqual(Y, 1980), has_diagnostic_characteristic(P,
D) → has_diagnostic(D, “positive”)

To discover the best year value, CRA-Miner explores the possible values from
the most recent year to the oldest one and considers the rules that conclude on
“negative” and “positive” differently.

In figure 2, we show how the confidence evolves between 1946 and 1997 for
the rules that conclude on “positive” for a product class example. When the
reference year decreases, hc decreases and the confidence increases. To cover
the maximum number of diagnoses while maximizing the confidence, we stop
the exploration when hc < minHc (i.e. 1966 on the figure 2) and choose the
previously explored year value such that hc ≥ minHc and the confidence stays
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maximum (i.e. 1970 on the figure 2). A similar but symmetrical process is applied
to choose y for the rules that conclude on “negative”.
3- Specialization with location and/or structure subclasses : The hierar-
chy of locations and structures is explored to specialize the rules generated with
step 1 and 2 with specific building components that contains the target product
P .
For example, the rule x can be specialized by specificying that the location is a
wall and that the structure is a balcony:
R3 : coating(P), wall(L), balcony(S), has_location(S, L), contain(L, P), has_stru-
cture(B, S), has_year(B, Y), SWRL:lowerThanOrEqual(Y, 1980), has_diagnos-
tic_characteristic(P, D) → has_diagnostic(D, “positive”)
4- Enrichment by the region : All the generated rules are enriched by the
datatype property ‘has_region’ which represents the region where the building
is located.
5- Specialization by co-located components. During this step, new object
properties are added that represents sibling specific products, sibling spe-
cific locations or sibling specific structures : contain(L,Pi) and Cp(Pi)
where i varies from 0 to maxSiblingP and Cp is a leaf of the product hierarchy,
then has_location(S,Lj), Cl(Lj) where j varies from 0 to maxSiblingL and CL

is a leaf of the product hierarchy), and has_structure(S,Lj), Cl(Lj) where j
varies from 0 to maxSiblingS and CS .

Fig. 2: Evolution of confidence and head coverage over time for the rules that conclude
on “positive” for a class product example.

The number of generated and tested rules is mostly impacted by the tempo-
ral specialization (in the worst case the whole time interval will be tested) and
the addition of co-located components (in the worst case all the possible combi-
nations of co-located components will be checked). Despite this, CRA-Miner can
be parallelized since each rule can be specialized independently from the others.

5 Experiments

We have evaluated our approach on a KG that has been populated using a
set of diagnostic documents provided by the CSTB. This KG contains 51970
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triples that describe 2998 product instances, 341 locations, 214 structures and 94
buildings. The construction year of those buildings varies between 1948 and 1997.
We have 1525 products that contain asbestos and 1473 products are asbestos-
free. All experiments were performed on a server with 80 physical processors
(Intel Xeon E7-4830 2.20 GHz) and 528 GB of RAM.

The aim of the experimentation is (1) to learn rules on a subset of diagnostics
and study the quality of the prediction that can be made on the remaining
products (2) compare the results of our approach to a naive approach that only
uses the product classes and the construction year (baseline) (3) compare the
results of our approach with the two rule-mining approaches AMIE3 [6] and
TILDE [1] (4) compare our results with an approach [8] that calculates asbestos
probability using external resources (ANDEVA9 and INRS10).

To evaluate our approach, we divided the KG data into 3 tiers, and we
performed cross-validation. Since we have many different product classes, we
set a low head-coverage threshold at minHC = 0.001 to observe as many rules
as possible. Then we evaluated the results when minConf varies from 0.6 to
0.9 using the classical precision, recall, F-Measure, and accuracy measures. The
maximum number of siblings has been set at 0 for structures and at 3 for locations
and products by the expert.

Table 1 shows that CRA-miner discovers 75 rules on average. The results
show that co-located components are effectively exploited to predict the pres-
ence of asbestos: 29 rules involve at least a sibling product (maximum 2 sibling
products) and 17 rules involve sibling locations (maximum 3 locations). Further-
more, the results shows that CRA-miner has discovered 14 rules that exploit a
temporal constraint.

We have adhered to a pessimistic approach that chooses to classify a product
as positive if at least one rule concludes that it contains asbestos.

Fig. 3: CRA-Miner results according to
minConf threshold

Fig. 4: Detailed CRA-Miner results ac-
cording to minConf thresholds

9 National Association for the Defense of Asbestos Victims
http://andeva.free.fr/expositions/gt_expos_produits.htm

10 National Institute of Research and Security http://www.inrs.fr

http://andeva.free.fr/expositions/gt_expos_produits.htm
http://www.inrs.fr/media.html?refINRS=ED%201475


Mining Contextual Rules to Predict Asbestos in Buildings 11

Figure 3 presents the average F-measure, accuracy, and coverage (i.e. ratio of
products that can be classified in the testing set) when minConf varies. These
results suggest that when the minConf threshold increases, the accuracy in-
creases but the data coverage decreases. The best F-measure average 0.77 (aver-
age between the positive’s and negative’s F-measure) is obtained for a minConf
fixed to 0.6. With such a threshold, we can decide for 87% of the test samples.
Figure 4 details results (TN, TP, FN, FP, unclassified negative: UN, unclassi-
fied positive: UP) as well as the number of products that have been classified
as positive and negative by different rules (double decisions). More precisely,
the true positives TP (resp. true negatives TN) are the products that contain
asbestos classified by the discovered rules as positive (resp. negative). The false
positives FP (resp. false negative FN) are the asbestos-free products classified by
the rules as positives, while the unclassified products are either positives (UP)
or asbestos-free (UN) in the KG. This figure shows that a threshold fixed to
0.6 leads to an average of only 82 contradictory decisions for test samples that
describe a thousand products.

We have compared the contextual CRA-Miner approach with a non-contextual
baseline that is only based on the product class to mine rules. This baseline al-
lows us to estimate the benefits of taking into account the hierarchy of products
and the context in which they have been used (i.e., the location type and other
products used in the same location). Figure 5 shows that the F-measure and the
coverage are lower for the baseline approach regardless of the minConf thresh-
old that is varying from 0.6 to 0.9. In particular, Table 1 shows that the baseline
only classifies 46% of the test samples and obtains a F-measure average of 0.55.
Indeed, CRA-miner allows to discover complex rules such as:
plaster_or_cement_based_coating(?P), has_location(?S, ?L), contain(?L, ?P),
smoothing_bubbling_leveling_plasters(?P2), contain(?L, ?P2), has_structure(?B,
?S), has_year(?B, ?Y), has_diagnostic_characteristic(?P, ?D) , lessThanOrE-
qual(?Y, “1991-01-01T00:00:00”) → has_Diagnosis(?D, “positive”)

We have compared our obtained results with AMIE3 [6] using the same
thresholds of minConf and minHC, and setting the number of predicates of
the sought rules to l = 4 and l = 6 (cf. table 1)11. Our approach achieves a
better F-measure than what is obtained with [6] (0.77 against 0.73 for l = 6,
the specified l being the number of predicates allowing AMIE3 to obtain the
best results in terms of F-Measure and accuracy). AMIE3 was able to discover
91 rules (75 with our approach) which allows it to cover 99% of the test data
(87% with our approach). On the other hand, it obtains a lower accuracy (0.74
compared to 0.83 with CRA-Miner). This important coverage is accompanied
by numerous double decisions (277). The approach is pessimistic (i.e., if a prod-
uct is associated with two different decisions, it considered the product as one
containing asbestos), AMIE3 finds more TP (473 against 415 with CRA-Miner)
but almost twice as much FP (226 against 121 with CRA-Miner), and TNs are
also less numerous (only 264 against 303 with CRA-Miner). Having a semantic

11 Despite the fact that AMIE3 is used to search only for conclusive rules on
has_Diagnosis, a length > 6 does not yield results in less than three weeks.
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context and being able to represent time intervals makes it possible to discover
rules that involve more atoms while improving their readability for an expert in
the field (more precisely, a rule can be defined for a time interval while AMIE3
can only generate rules involving a specific year).

Additionally, we tested our language bias using the TILDE system [1] that
generates relational decision trees which allow representing complex language
bias emulating similar target languages (relational context and maxSibling val-
ues) and handling (although not optimally) a hierarchy of types. The relational
context used is slightly different, only imposing at least one instantiated type
in the context (not necessarily the product). This top-down strategy obtains
by definition a coverage of 100% without double decisions but leads to a lower
precision for the positive and negative examples. Indeed, it gets more FP and
FN since the last general rule classifies all the unclassified remaining individuals
as positive or negative whatever its description is. CRA-Miner was not able to
classify all examples (87%) but the obtained accuracy is higher (0.83 against
0.51 for TILDE). Given the strategy of TILDE, it was not possible to use the
inequalities on years, because introducing this possibility yields the possibility
to learn closed intervals on years and an overfitting that is difficult to control.

We have also compared CRA-Miner to the hybrid approach used in [8]. This
approach uses two external resources that describe marketed products that con-
tained asbestos during at least one period to compute a probability based on the
product class and the construction year. Table 1 shows that [8] obtains a higher
F-measure and accuracy in particular for positive products (0.94 against 0.79 for
CRA-Miner). This can be explained by the additional information provided by
the web resources that focus on positive products. However, CRA-Miner could
cover more data samples (87% against 83% for the hybrid). Indeed, the hybrid
approach could not decide on a product if its class was not mentioned in the
external resources.

Fig. 5: Comparison between contextual and non-contextual approaches according to
minConf thresholds
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System classification Rule mining systems Systems based on
external resources

System CRA-Miner AMIE3
l = 4

AMIE3
l = 6

TILDE Baseline Hybrid

# rules 75 45 91 34 24 /
Double decision 82 50 277 0 0 0

TP 415 381 473 424 146 465
TN 303 288 264 88 257 348
FP 121 146 226 359 30 16
FN 28 74 32 127 24 5
UP 66 54 3 0 338 38
UN 67 58 0 0 204 127

Pos. precision 77% 72% 68% 54% 83% 97%
Pos. recall 82% 75% 93% 77% 29% 92%

Pos. F-measure 0,79 0,73 0,79 0.63 0,43 0.94
Neg. precision 92% 80% 89% 41% 91% 99%
Neg. recall 62% 59% 54% 20% 52% 71%

Neg. F-measure 0,74 0,68 0,67 0.27 0,66 0.83
Avr. F-mesure 0,77 0,71 0,73 0.45 0,55 0.89

Accuracy 0,83 0,75 0,74 0.51 0,88 0.97
Coverage 87% 89% 100% 100% 46% 83%

Table 1: Comparison between CRA-Miner, AMIE3 with l = 4 et l = 6 (minHC=0.001,
minConf=0.6), TILDE, the baseline approach, and the hybrid approach

These experiments have first shown that all the predicates of the context
selected by the expert are relevant to classifying the product. Indeed, the baseline
obtains a very low recall, and the results show that all the predicates have been
used in at least one rule. The comparison with the other two available rule-
mining systems illustrates that CRA-Miner obtains the best precision values,
with a lower but still high value of coverage (87%). As expected, the experiments
also show that the use of external resources about marketed products containing
asbestos can lead to more precise decisions. However, this kind of resource is
incomplete, and the obtained coverage is lower. Since it is more important to
detect positive examples than negative ones, we have chosen to apply a pessimist
strategy, and the results show that we obtain a better recall for positive than
for negative examples. However, this choice affects the precision for the positives
and other strategies could be considered (e.g., voting strategies, rules ordered
according to their semantics and/or confidence). Another possibility is to use a
higher confidence threshold for the negative. The results have shown that when
the confidence value is fixed to 1, 43% of the negatives can still be discovered
with only one false negative among 210 decisions (99.52% of precision).



14 Thamer, et al.

6 Conclusion

In this paper, we presented the CRA-Miner rule discovery approach which can
predict the presence of asbestos in products based on a semantic context, heuris-
tics dedicated to part-of relations, and computed constraints on numerical values
that represent temporal information. The experiments show that we can obtain
a better precision and accuracy than two other rule-mining systems and better
coverage than an approach based on external resources.
In the future, we plan to investigate the combination of CRA-Miner with the ap-
proach in [8] (that uses external resources) to enable decisions for the undefined
individuals and improve the data coverage. Since results of our approach will be
used by asbestos experts to select which products have the strongest priority to
get tested, we also need to rank the positive, unclassified, and negative prod-
ucts according to the applied rules and define an interface that can present and
explain this ranking to the experts. Besides, we plan to generalize CRA-Miner
to fit different problems that involve part-of relations and temporal constraints
(such as prediction of adverse events for treatments composed of several drugs in
pharmacology). The idea is to follow the model of TILDE[1] where the language
bias is declarative but the algorithm is generic (i.e., not ontology-based).
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