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Abstract

The capability of safety structures, systems and devices to withstand dynamic loadings (earthquakes, impacts, pounding, falling 

of heavy objects, etc.) is part of the design basis of nuclear power plants or facilities. In order to ensure their correct design, it is 

necessary to assess, beforehand, the admissible load. However, the validity of the Response Spectrum Analysis (RSA) largely used 

in the community can be legitimately questioned since it does not account for local high dynamic phenomena and is strongly 

dependent on the choice of parameters to get a satisfactory assessment of the calculation results.

In this paper, the reliability of the RSA to design devices in case of pounding loading is studied. An alternative approach to 

describe pounding between two adjacent structures during earthquakes is proposed, in order to assess the floor response spectra 

(FRS) with a reasonable computation time. The loading demand is then computed at the bottom of a device located at floor level, 

from a step-by-step calculation and by performing a RSA. The reliability of the RSA is assessed by comparison of these results.

To perform calculations, the impact forces are firstly assessed using linear beam models with the same modal characteristics as 

the ones of the building under study. Then, the pounding loading is applied to a three-dimensional mesh of the first structure made 

from shell and beam finite elements. The results highlight the propagation of shock waves and underline local amplifications of the 

FRS at the edges of the floors. The loading demand given by the RSA shows that the error related to the step-by-step calculation 

decreases when pounding is considered. It turns out that the impact loading leads to higher horizontal displacements and reduces 

rotations at floor level. Its amplitude increases when the damping of the structure is low, especially in the high frequency range. 

With an error of less than 10%, the RSA method may be regarded as acceptable in case of pounding between adjacent multi-storey 

buildings.

Keywords: civil engineering, earthquake engineering, numerical simulations, pounding between structures, floor response spectra, 

response spectrum analysis
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1. Introduction

For nuclear power plants or facilities, the seismic responses of structures, Systems and devices to the postulated design 

earthquakes are predicted by a detailed dynamic analysis or by equivalent testing procedures. The integrity of the safety-related 

devices of nuclear power plants must be assured in the event that earthquakes occur at nuclear plant sites. Further to the Fukushima 

accident, the robustness of the seismic design in the event of an earthquake significantly greater than the safe shut-down earthquake 

was re-examined. In particular, pounding between two adjacent structures is part of this technical reassessment. The periodic 

upward re-assessment of the seismic risk that may also be considered by local authorities (e.g. in the French territories) increases 

the amplitude of the response spectra used to design civil engineering structures [1]. As a result, according to current standards, the 

gap between two adjacent buildings may not be sufficient anymore to prevent them from pounding. These re-assessments drive 

operators to investigate on new analysis methods in order to evaluate safety margins.

In order to study earthquake induced pounding between two adjacent structures, it is necessary to look at impact modelling 

methods. Their development started with O'Hara (1959) who was the first to study the response spectra associated with impact 

loadings ([2] & [3]). Later, Kelly et al. (1979) developed various analytical models to assess the response of structures under 

impulse loadings [4]. Anagnostopoulos (1988) modelled the impact between two buildings under earthquake by using a penalty 

method [5]. Then, he proposed a model in which the energy dissipation due to impact was equated to an equivalent viscous damping 

[6]. Papadrakakis (1991) developed in parallel a numerical method based on the introduction of Lagrange multipliers to the dynamic 

equation [7], while Muthukumar (2006) used a Hertz contact model [8]. The work of Acary put forward the linear complementarity 

problem method (LCP), consisting in solving the dynamic balance equations in terms of velocities by modelling each impact as a 

jump in terms of quantity of motion ( [9] & [10]). More recently, Crozet et al. (2019) compared the results given by a model based 

on the work of Anagnostopoulos with the results given by an experimental campaign carried out at the CEA (French Alternative 

and Atomic Energies Commission) [11]. The influence of the gap between both buildings on the floor response spectra (FRS) in 

pseudo-acceleration was investigated [12]. Finally, Langlade (2019) compared penalty method with the LCP method, including the 

influence of the input parameters. In particular, he showed that the linear complementarity approach converges with larger time 

steps than the penalty method [13].

Because impact modelling considerably increases computation times, its application to high-dimensional models involving a

high number of degrees of freedom (DOF) remains a challenging task. Langlade (2019) and Crozet et al. (2018) chose to describe

the structures using simplified beam models ([13] & [12]). However, this method, simple to implement, does not allow observing

the propagation of shock waves at floor level nor modelling complex impact areas. Other researchers used frame models made of

beam and surface elements, such as Jameel et al. (2012) [14], Mahmoud et al. (2013) [15], Yang et al. (2019) [16] and Zhang et

al. (2019) [17]. These approaches, much more accurate, require modelling entirely both pounding structures, which drastically

increases the number of DOFs and the computation time. Lastly, Mazza et al. (2020) investigated on magnetic damped links to
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reduce pounding in base-isolated buildings by means of simplified modelling strategies avoiding unwanted computational coasts 

[18]. To do so, a four-storey RC building with an elevator shaft damped by elastomeric bearings was modelled [19]. Torsional 

effects induced by an asymmetric position of the elevator shaft were investigated.

In order to assess the effect of pounding due to earthquakes at a floor level on which a device may be located, the so-called 

“transferred spectrum method” is conventionally used. It consists in computing the dynamic response at the floor levels, by means 

of a simplified linear beam model of the building. The response obtained is then used (in the same way as in earthquake engineering) 

to determine, by a post-processing technique, the FRS at the floor of interest, making possible the assessment of the pseudo- 

acceleration experienced by the device to be studied. The loading demand is then computed by applying the Response Spectrum 

Analysis (RSA) method. In this case, the floor response is assumed to be spatially uniform.

The main advantage of this method is its ease of implementation (compared to detailed 3D finite element analyses). However, 

its ability to account for dynamic loading that are faster than earthquakes (collisions, impacts) is still an open question for several 

reasons. Firstly, the construction of a spectrum is only applicable, in theory, when the acceleration is homogeneously distributed 

over the entire structure. This assumption is reasonable, for example, when a building is subjected to a seismic loading, but needs 

to be checked in case of impact loadings, which generate shock waves that propagate through the floors. Secondly, the resulting 

FRS are characterized by very high peak floor accelerations (PFA). However, these very high pseudo-accelerations are associated 

with small displacements (below one millimeter). In practice, some anchors could not meet such a displacement. The applicability 

of design methods employing FRS (such as RSA) can thus be legitimately questioned with respect to the loading demand computed 

from the results of step-by-step detailed 3D finite element analyses.

In this paper, an alternative approach to assess pounding between two adjacent structures is proposed. The flowchart of the 

proposed approach is depicted in Figure 4 (see Section 3.2). To illustrate the method, the pounding between two multi-storey 

buildings representative of typical nuclear power plant (NPP) facilities is assessed. A realistic scenario is considered, to make 

feasible the assessment (via a simple case study) of the proposed alternative method allowing for the identification of the FRS on 

a 3D structure.

Firstly, the virtual case study is presented. Secondly, the simplified beam models (SBM) and the method used to model pounding 

are detailed. In the third part, the resulting impact forces are applied to the 3D mesh of the first building, allowing for the assessment 

and the analysis of the local displacement and pseudo-acceleration FRS. Finally, the reliability of the RSA method classically used 

to design the devices and their anchors is assessed. To do so, a device is added to the 3D mesh.

2. Présentation of the case study

Both buildings are 30.93 m high, from the foundations to the upper part of the acroterion. They are made of 8 levels (including

1 foundation level, 1 basement and 6 storeys). Their foundations are rectangular in shape and each occupies a 46.20 x 15.60 m2
3



area. The study focuses on the S411 storey, where impacts are more likely to occur. The mass centre of this floor is located at a height 

of 30.30 m from the foundations.

Walls are between 60 cm and 100 cm thick, and storey are between 3.20 m and 4.50 m high (except for the basement which is 

only 2.32 m high - cf Figure 1 (b)). Slabs are 30 cm thick and each one is supported, in the transversal direction, by 7 rows of 

beams whose cross-section is 75 x 85 cm2 and, in the longitudinal direction, by beams whose cross-section is 20 * 28 cm2. Loads 

are transmitted to the foundations at mid-width thanks to 7 columns whose cross-section is 80 x 120 cm2. Most bays are included 

to the sidewalls, as shown in Figure 1 (a). The area of each one of them is given in Table 1 (according to the indices defined in 

Figure 1 (b)).
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Figure 1 : 3D mesh of the first building (a) and sidewall (b).
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The building is made of reinforced concrète. A Young modulus of 33 GPa, a Poisson ratio of 0.18 and a density of 2400 kg/m3 

are considered. Here, no live load is applied to the floors, so only the dead loads (i.e. related to the weight of the structure) are taken 

into account to perform seismic analyses. Total masses of floors are given in Appendix A and used to define the SBMs. An accurate 

mesh of the first structure made of 113051 shell and beam elements is shown in Figure 1.

Table 1: Areas of bays in each sidewall.

Index of the bay Location(s) Area

1 Basement 330 x 57 cm2

2 Basement 300 x 57 cm2

3 1st storey 120 x 300 cm2

4 2nd storey 90 x 210 cm2

5 2nd storey 240 x 210 cm2

6 3rd storey 330 x 90 cm2 (upper part) 
200 x 270 cm2 (lower part)

7 4th storey 580 x 320 cm2

8 5th storey 580 x 270 cm2

9 6th storey 160 x 120 cm2

10 6th storey 160 x 395 cm2

The first building is stiffer than the second one, while the masses applied to the floors are the same on both. To model earthquake 

induced pounding, a gap of 1 cm between the two buildings is considered (cf. Figure 2 (a)). Note that this value belongs to the same 

order of magnitude that cases tested by Crozet et al., with a gap worth between 0 and 5 cm [11]. This simplistic case study 

(parallelepiped buildings subjected to a symmetrical loading) is used to assess the validity of the method allowing for the 

identification of the local FRS due to pounding.

The seismic signal is drawn in Figure 2 (b) and applied in the transverse direction. Its PGA is 2.32 m/s2 and is reached at time 

3.16 s. It is an artificial signal typical of a French average (close to strong) seismic hazard area, with a PGA between 1.6 m/s2 and 

3.0 m/s2 (according to [20]). Its strong phase lasts 3 s, from time 2 s to time 5 s. The pseudo-acceleration FRS is plotted in 

Figure 2 (c) at ground level with a damping ratio equal to 5 % and compared to the elastic design spectrum (computed for a distant 

earthquake of type 1 with a magnitude more than 5.5 impacting high importance buildings on a stiff soil with a low energy 

dissipation). Its maximum value is reached at 5.12 Hz and is 7.17 m/s2.
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(a)

(b)

Figure 2 : Configuration of the case study (a), ground 

accélération (b) and response spectrum of ground-motion 

with a 5 % damping ratio (c).

Building modelling is firstly made with simplified beam models (SBMs) made of Timoshenko beam elements in order to assess 

the impact forces applied to the 3D mesh. The first SBM has the same modal characteristics as the ones of the 3D mesh, whereas 

the second moments of area of the second SBM are arbitrarily four times lower. The modal properties of the SBMs, the penalty 

method used to model impacts, and the response of the simplified beam models are detailed in the following section.
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3. Simplified models used to compute impact loadings due to earthquake induced pounding

3.1 Geometry and modal characteristics of the SBMs

The geometrical and mechanical properties of the SBMs (shown in Figure 3 (b) for the first structure) depend on the masses of 

the floors as well as the modal characteristics of the buildings. The floors being significantly stiffer than walls and columns, they 

are set as rigid structural components, the first three eigenmodes being mainly due to wall bending (as pictured in Figure 3 (a), 

showing the first bending mode shape of the 3D model). Consequently, the eigenfrequencies of the SBMs do not depend on the 

stiffness of the floors.

(a) (b) (c)

Figure 3 : First bending mode shape of the 3D model - f =

1.80 Hz (a), SBM (b) and first bending mode shape of the SBM

- f = 1.75 Hz (c).

The effects of shear on displacements are taken into account using Timoshenko beam elements. Each floor is modelled by three 

nodes, connected by two rigid beam elements, respectively located at:

• the lower edge of cross beams;

• the mass centre of each floor;

• the upper edge of cross beams.

On the first building, the second moments of area of the storeys are set to guarantee that the first three bending modes in the 

direction of the earthquake (i.e. rotation about ex as shown in Figure 3 (c)) are close to the ones of the 3D mesh (cf. Figure 3 (a)). 

Indeed, both models must have the same masses and similar modal characteristics in order to compute representative impact forces. 

The first three eigenfrequencies of both models are compared in Table 2, whereas the effective modal masses are given in Table 3. 

The mechanical properties of floors and storeys (masses, stiffnesses, ...) are summarized in Appendix A.
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Table 2: Eigenfrequencies of the first building related to the first 

three eigenmodes of bending about ex.

Eigenmodes 3D mesh 
(Hz)

SBM
(Hz)

Relative difference 
(%)

1 1.80 1.75 2.8

2 5.80 5.19 10.5

3 9.53 9.57 0.4

Table 3: Effective modal masses of the first building related to

the first three eigenmodes of bending about ex.

Eigenmodes 3D mesh 
(t)

SBM
(t)

Relative difference 
(%)

1 10,463 10,100 3.5

2 2,144 2,293 6.9

3 459 349 24.0

The second building is only modelled by a SBM, the local amplifications of the FRS at floor level being only studied on the first 

building. The second SBM is almost identical to the first one (the storeys have the same height and the floors carry the same 

masses), except that the second moments of area of the storeys are four times lower. The first three eigenfrequencies and effective 

modal masses of the second SBM are summarized in Table 4.

Table 4: Eigenfrequencies and effective modal masses of the 

second SBM (first three eigenmodes of bending about ex).

Eigenmodes Eigenfrequency
(Hz)

Effective modal 
mass (t)

1 1.29 9,165

2 4.44 3,098

3 9.64 451

Table 2 shows that the relative error between the eigenfrequencies of both models does not exceed 11 %. In addition, the relative 

error between the effective modal masses does not exceed 7 % for the two first eigenmodes and 24 % for the third one. The sum 

of the modal masses of the first three eigenmodes of bending is 13,066 t for the 3D mesh and 12,742 t for the SBM (in both cases, 

more than 81 % of the mass above ground level is carried by these eigenmodes). The error between both models being only 324 t

(i.e. 2.5 % by comparison with the 3D mesh, see Table 3), the SBMs are thus suitable to assess impact forces, provided that floor
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deformations and energy dissipation at impacts (due to the damping ratio applied to the floors) are taken into account. To do so, 

the penalty method is used, as described in the following.

3.2 Définition of impacts according to the penalty method

3.2.1 Principle and description of the penalty method

Impacts have been studied by several authors over the last decades. Among them, Anagnostopoulos (1988) [5] and Crozet et al. 

(2018) [12] modelled impacts between two SBMs by connecting adjacent floors with Kelvin-Voigt chains. The impacts are thus 

taken into account by using the penalty method, via a nonlinear elastic stiffness (i.e. defined by a zero value in tension and a high 

value in compression). The energy dissipation due to impacts is approximated by means of a viscous damping ratio. The use of a 

penalty stiffness reduces the dependency of impact forces on the time step in the high frequency range. Impact forces and 

acceleration peaks are thus continuous and finite (contrary to the LCP method [9]), making it possible to apply the impact forces 

to the 3D meshes as external loads. Moreover, even if the amplitude of the impact forces is highly dependent on the modelling 

parameters (penalty stiffness, time-step...), the viscous damping ratio is set so that the jump in quantity of motion before and after 

each impact remains proportional to the energy restitution ratio s [6] (modelling the loss of kinetic energy). The response given by 

both penalty and LCP method is thus almost identical, provided that the penalty stiffness is high enough, as the number of 

calculation times during impacts [13].

As a result, because it allows to compute continuous impact forces, a classical penalty method is chosen to model impacts on 

the SBMs. Its application to pounding problems is detailed in this section, while the procedure used to assess and apply impact 

forces to the 3D meshes (which is one of the original contributions of this paper) is summarized in the flowchart in Figure 4. Note 

that this method was developed in order to study the pounding between two buildings with floors located at the same height. 

Otherwise, it is necessary to add intermediate nodes so that each level faces an adjacent node.
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Figure 4 : Alternative approach used to assess the forces 

applied to a device in a structure subjected to earthquake 

induced pounding.

The penalty method consists in introducing (when an impact occurs) a vector of impact forces whose components depend on an 

infinite elastic stiffness (compared to the one of the structures) to the equilibrium equation (1).

M-ü+C-ù + K-u = fext + fc (1)

where M is the mass matrix, C the viscous damping matrix, K the elastic stiffness matrix, fext and fc the vectors of external 

and impact forces, and ü, ù and u the acceleration, velocity, and displacement vectors.

By considering that pounding occurs between two SBMs made from Nb adjacent floors spaced from each other by a gap g (cf. 

Figure 5), the global system has N = 2 x Nb nodes. The components of fci+1 in the direction of ey (noted fy) are thus defined 

according to (2).

(fy,i+1)k Kceq ' (^uy,i)k + ^Ceq,k ' (^^-y,i)

U(fy,i+1) k+N Kceq

2

(fy,i+l)k = 0
(fy,i+l)k+N/2 = 0

y,i)k ' ^Ceq,k (‘^VLy,i)k 
(^uy,i)k — Cceq,k ' (^'^-y,i)h 

if (àuy:i)k < 0

if (àuy:i)k > 0

(2)
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where Kceq (in N/m) and Cceq.k (in kg/s) are the elastic stiffness and the viscous damping coefficient taken into account to model

impacts [6], (huyq)k = (uy,i)h+N/7 - (uy,i\ + e the length of interpenetration depending on the gap g between both buildings,
y,L k+N/2 y,1 k

and (àüy,dk = (üy,d
y,L k+N/2 y,L k

(ùy i) the relative velocity between adjacent floors in the direction of ey (cf. Figure 5).

Note that index i represents the computation time, k the floor and N the total number of nodes. Displacements indexed k and 

k + N/2 are thus linked via face-to-face nodes belonging to different oscillators.

4 KCeq \\9

M

M

Ceq Ceq,N/2

M-

M1

•m KCeq C.

^Ceq C,

Ceq,N/2-l

K)
M2+N/2

L’Ceq,2

I ^Ceq, 1 I

\ \ \ \ \ \ o ^\ \ \ \ \ V'

Figure 5 : Modelling of impacts between two SBMs.

e

The viscous damping coefficient of each floor is defined such that Cck = 2 • Çc • ^KCeq • Mk (with & the viscous damping ratio 

at impact). According to [6], the viscous damping coefficient Cceq,k to consider between two adjacent floors of masses Mk and 

Mk+N/2 is thus defined by (3).

Cceq,k = 2 • Çc K,Ceq

Mk • Mk+N/2 

Mk + Mk+N/2 (3)

Note that the value of (without unit) is computed in order to guarantee a jump in velocity (before and after each impact) such 

that ù+ = -£ • ù-, with s the energy restitution ratio (without unit), worth between 0 (soft impact) and 1 (hard impact). As a result, 

it comes:

fc =
- ln(£)

(4)
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When impacts are taken into account, irregularities and discontinuities appear during dynamic finite element analyses. In order 

to achieve viable results, relevant parameters need to be used. However, s and Kceq depends on many factors, such as the materials, 

the shape of the impact area and the relative velocity of floors [21]. Without experimental studies, it is impossible to accurately 

assess these coefficients: they are thus defined as calibration parameters based on the properties of the 3D mesh. A method allowing 

for their assessment is described in the following section.

3.2.2 Choice of the calculation parameters

In order to guarantee that both the 3D mesh and the SBM have a similar behaviour, the penalty parameters s and KCeq have to 

be in accordance with the mechanical and geometrical properties of the RC floors. Knowing that the masses of the floors are 

extremely large (over 1500 tons), it is expected to have significant deformations at the vicinity of impacts, leading to a dissipation 

of energy when the floors are damaging. Therefore, s cannot be taken as one to model actual structures with the SBMs. Calculations 

being performed by assuming a linear elastic behaviour for both buildings, all the dissipations are here modelled by using a Rayleigh 

viscous damping ratio applied to the entire 3D mesh. When impacts occur on the 3D mesh, a part of the energy is thus lost due to 

the Rayleigh damping at floor level. In addition, the penalty stiffness KCeq has to be set in order to correctly model floor deformations 

with the SBMs.

Note that pounding being rarely taken into account for industrial purpose, authors chose to not model damage and pounding at 

the same time, even if structural damage can be important in a comprehensive assessment of earthquake induced pounding 

(especially around impact areas where the penalty parameters depend on the damage of concrete). Interaction between pounding 

and damage could be investigated into a further study by using nonlinear beam elements with global damage laws ([22] & [23]) or 

multifibre beam elements with local damage laws [24]. However, the evolution of the restitution ratio according to the damage of 

the impact areas and the velocity is still an open question [25].

An accurate 3D mesh of the first building being available here, a method allowing for the assessment of s and KCeq is proposed. 

To do so, the impact forces are computed under the assumption that pounding occurs between the 3D mesh of the first building and 

a rigid wall. An initial displacement equal to - 2 cm is applied to the 8th floor: the boundary condition is then released, allowing the 

structure to move freely until the gap of 1 cm between the impact areas and the rigid wall is reached. The floors being explicitly 

modelled, the linear complementarity method (LCP) is used instead of the penalty method to model impacts on the 3D mesh (the 

wall being rigid, no penalty stiffness nor restitution ratio needs to be added). Kinematic boundary conditions are applied to nodes 

located along the length and the height of the 6th, 7th, and 8* floors (where impacts are more likely to happen).

The Rayleigh viscous damping ratio (noted Ç) is set at 7.0 % at fi = 1 Hz and f2 = 20 Hz. On the SBMs, the damping is applied 

to each storey in order to reach a low around the main eigenmodes (due to bending here), whereas only the terms related to the 

mass matrix are taken into account at floor level (Pr is thus equal to zero on the green elements in Figure 3 (b)). This conservative

12



value is in accordance with the French nuclear authority (ASN) if used to perform linear finite element analyses [26], as it is the 

usual engineering practice. The viscous damping matrix is thus defined such as C = fiR • K + aR • M, so coefficients an and fin are 

computed according to [27] as fonctions offi and f2, leading to an = 0.8378 s"1 and fin = 0.0011 s. The frequencies fi and f2 are thus 

set in order to guarantee a reasonable damping ratio (between 4 % and 7 %) around the first bending modes, as it has been done to 

perform linear finite element analyses on the 2008 SMART benchmark [28]. It should be noted that it is also possible to use a 

Caughey damping ratio to decrease the damping in the high-frequency range [29].

To ensure the convergence of the results, an average acceleration Newmark"beta method (implicit and unconditionally stable) 

is used, i.e. fi = 1/4 and y = 1/2 (parameters of the Newmark-beta method). The finite element analysis is performed over the time 

interval [0 s, 1.3 s] using Cast3M® software. Here, a maximum value of 50,000 calculation time-steps has been chosen to assess 

impact forces on the SBMs according to the available computer processing unit (CPU). The duration of the seismic signal being 

16.79 s, the resulting time step At is thus 0.34 ms. The same value is used to model impacts on the 3D mesh. The resultant of the 

impact forces applied to the 8th floor is thus computed over time and used as reference to find the best set of penalty parameters (cf. 

Figure 6 (a)).

Time (s)

(a)

Figure 6 : Resultant of impact forces applied to the 8th floor

(a) and resulting impulse (b) versus time.

Figure 6 (a) shows that one impact is applied to the 7th and 8th floor. It appears on floor at time 198 ms and lasts approximately 

16.5 ms. Due to the Rayleigh viscous damping, the sign of the forces is reversed at the end of the impact, leading to an energy
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dissipation. To find the best fitting penalty parameters at floor level, the resulting impulse (i.e. jump in terms of quantity of motion) 

is assessed by integrating over time the resultant of the impact forces (cf Figure 6 (b)). Its maximum value P is equal to 829 kN-s, 

and can be expressed for a unilateral impact such as P » M•ù-• (1 + e), where M is the mass applied to the floor, ù~ the velocity 

of the mass centre before the impact, and s the restitution ratio. So, it comes:

£
P

M • ù - 1 (5)

The velocity ù- before the impact is 0.163 m/s (cf. Figure 7 (b)), while the total mass of the 8th floor is 3014 t. As a result, 

s ~ 0.687. This value is in agreement with Crozet, who suggests that the energy restitution ratio s between two reinforced concrete 

floors is worth between 0.67 and 0.84, depending on the pre-impact velocity [21]. This value is also close to the choice of 

Langlade (2021) [25], who used a restitution ratio equal to 0.6 based on a post-processing of the experimental results of Crozet 

(2019) [11].

A penalty stiffness about 1000 times greater than the one of the buildings is commonly used to model impacts [12]. However, 

since the simplified models have 6 DOFs per node, the evaluation of a representative stiffness remains difficult. But 

Anagnostopoulos (1988) showed that the duration of the unilateral impacts of a SDOF tends to Atc =n/üD with iïD » 

jKCeq • (1 - Ç2)/M when K/KCeq ^ +œ (with K the representative stiffness of the oscillator) [5]. Knowing the duration of the 

impact, it comes:

ir M n 2
Kceq » T—% • \MC) (6)

According to (4), is approximately equal to 0.129. As a result, Kceq ~ 1.1 x 1011 N/m. The finite element analysis is thus 

performed on the SBMs by using Kceq = 1011 N/m (order of magnitude of the penalty stiffness). All floors having the same stiffness 

and geometrical properties, the same set of penalty parameters is used on each storey.

Note that the time step At has a great influence on the numerical results. To be able to correctly assess the impact forces, it is 

necessary to ensure a sufficient number of calculation times per impact. Knowing that at least 8 points are necessary to correctly 

describe the period of an oscillatory phenomenon, it can be reasonably considered that guaranteeing at least 16 computation times 

per impact make it possible to achieve a satisfactory convergence of the result. By considering that At < n/( 16 • BD), it comes:

nAt < 16^JÏ=ft

M

Kr (7)
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Knowing that the lightest floor weighs 1574 t, At < 0.79 ms. This condition is largely complied with At = 0.34 ms, which 

guarantees a minimum of 36 calculation times per impact (with Atc > 12.5 ms << 16.79 s). The calculation parameters used to 

perform finite element analyses on the SBMs are summarized in Table 5.

Table 5 : Summary of the calculation parameters.

E V s & KCeq e At
(GPa) (-) (-) (-) (N/m) (cm) (ms)

33 0.2 0.69 0.12 1011 1.0 0.34

The reliability of the penalty method applied to the SBMs is assessed by comparison with the previous results (i.e. LCP method 

applied to the 3D mesh). To do so, displacement, velocity, and impulse are computed in the direction of ey at the mass centre of 

the S411 floor. Figure 7 (a) shows that the first impact appears almost at the same time on both models (with a delay of 11.1 ms with 

the SBM). As expected, its impulse and duration remain almost the same (cf. Figure 7 (c)), showing that the method used to assess 

the penalty parameters is suitable. According to Figure 7 (a) and Figure 7 (b), the SBM matches with the 3D mesh in terms of 

displacement and velocity, even if the displacement peaks are slightly overestimated on the SBM: as a result, a second impact 

appears at time 0.737 s. However, the second impulse (equal to 37 kN-s) being 21 times lower than the first one, it does not 

significantly affect the response of the building. This shows that the SBMs can be used with the penalty parameters summarized in 

Table 5 to correctly assess the impact forces applied to the 3D mesh. The application of this method to earthquake induced pounding 

is detailed in Section 3.3.
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(c)
Figure 7 : Displacement (a), velocity (b), and impulse (c)

responses in the direction of ey at the centre of mass of the 

8th floor versus time.

3.3 Modelling of earthquake inducedpounding between the SBMs

In this section, the earthquake induced pounding between both buildings is modelled on Cast3M® software by using the SBMs 

with the penalty method. The displacement, velocity, acceleration and gap in the direction of ey are plotted versus time at the mass 

centre of the top floors in Figure 8, while the impact forces are shown in Figure 9.
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(a)

(b)

(c)

(d)
Figure 8 : Displacement (a), velocity (b), and accélération (c)

responses in the direction of ey at the top floors (indexed k 

= 8) and gap between both buildings (d) versus time.
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Figure 9 : Impact force applied to the top floors (a) and main 

impact force (b) versus time.

Figure 8 (d) shows that the interpenetration depth between both top floors (Auy,i) = (uy,t)
y’L 8+N/2

(uy,ô8 + e < 0

reaches - 1.2 mm at time 3.532 s (with k = 8 the index related to the top floors, see Section 3.2.1). As shown in Figure 8 (a), this 

value remains weak compared to the maximum amplitude of the displacements (around 2 cm for the first building and 3 cm for the 

second one). Moreover, Figure 8 (c) highlights that each impact generates an acceleration peak whose duration remains negligible 

in comparison with the duration of the seismic signal (lasting 16.79 s). These acceleration peaks (reaching 37 m/s2 at time 3.532 s) 

have a large amplitude, each impact bringing a considerable amount of energy and leading almost instantaneously to reverse the 

velocity of the floors (cf Figure 8 (b)).

In addition, according to Figure 9 (a), the impact force reaches 121 MN at time 3.532 s (maximum value). By looking at this 

peak, Figure 9 (b) shows that the penalty method makes it possible to compute continuous loading with impact forces distributed 

over several computation times and not depending on the time step. This avoids numerical instabilities and allows the temporal 

interpolation of the loading applied to the 3D mesh. Note that the sign of the force changes at the end of the impact, leading to an 

energy dissipation. This phenomenon only appears when e is less than 1 (so has a non-zero value). With 38 calculation times 

during the main impact (lasting 13.1 ms and occurring at time 3.532 s), the time step At is small enough to accurately assess the 

amplitude of impact forces in case of earthquake induced pounding.

The construction of the FRS is carried out at each floor by considering a 5 % damping ratio at the anchors of the device (cf.

Figure 10). The calculations were performed between 0 Hz and 500 Hz by applying the Nigam and Jennings method (1968), which

18



consists in analytically computing the response of the device assuming that the accélération evolves linearly between each time 

step [30]. Figure 10 shows that the impacts (occurring at the 7th and 8th floors) increase the pseudo-acceleration in the high frequency 

range (i.e. f> 30 Hz). However, it stabilizes at the PFA of the floor response whenf ^ + œ. Impacts generating quasi-instantaneous 

impulse loads, the FRS at the 7th and 8th floors reach high values in the high-frequency range (with 63.8 m/s2 at 72 Hz at the 8th 

floor). Note that the FRS computed from the 1st to the 6th floor (where there is no impact) are similar to classical FRS assessed 

without pounding (i.e. with a lower amplitude in the high frequency range).

Figure 10 : FRS in pseudo-acceleration in the direction of

ey (penalty method with Kceq = 1011 N/m and = 0.12).

4. Application of the impact forces to the 3D mesh

4.1 Modelling assumptions

In order to identify the local amplifications of the FRS at floor level, the impact forces given by the SBMs (cf. Figure 11) are 

now applied to the 3D mesh of the first building (cf. Figure 1 (a)) using Cast3M® finite element software. In order to validate the 

results given by the simulation carried out on the 3D mesh, the response of the mass centre of the 8th floor is computed and compared 

to the results of the finite element analysis performed on the SBMs. The local FRS are then assessed at the 8th floor (according to 

the distance to the impact area), but also along the height of the building (at impact areas). To explain why local amplifications 

appears on the FRS, a study based on the transfer fonctions and the power spectral densities (PSD) of the impact forces is proposed.

The 3D mesh is made from 113251 shell and beam elements. The new finite element analysis is performed on 10,001 calculation 

times over the time interval [0 s, 10 s], so the response is sampled at 1000 Hz (i.e. At = 1.00 ms). The impacts are modelled as 

external loads distributed linearly along the impacting edge of floors, so impact detection is not performed on the 3D mesh. A 

larger time step can thus be used, decreasing CPU time.
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Figure 11 : Impact forces applied to the 3D mesh versus

time.

The effects of torsion on impact forces are neglected here, even if the building is not fully symmetrical. Indeed, in case of 

earthquake, some torsional vibrations could appear. So, the impacts between two floors are not expected to be central and impact 

forces should not be uniformly distributed. The accuracy of the proposed method is thus highly affected from such torsional effects, 

which depend on the irregularities of the buildings.

However, firstly assessing the impact forces using SBMs before applying them on the 3D mesh allows to highly decreases the 

number of DOFs since only one building is modelled. The time-step can also be higher because impact detection is not necessary 

when impact forces are known, saving CPU time (the time step being 3 times larger here). Calculation times lasting usually less 

than 12 hours in design office, the method proposed in this paper could thus be used by engineers to design devices with a 

reasonable computational cost.

4.2 Response at the mass centre of the 8th floor

The response of the 3D mesh is computed in the direction of ey by post-processing. Displacement and acceleration of the mass 

centre of the 8th floor are plotted versus time in Figure 12 while the pseudo-acceleration FRS is shown in Figure 13. The consistency 

of these results is assessed by comparison with the response of the SBM. Here, the acceleration peaks due to the impacts appear 

clearly (cf Figure 12 (b)), and both models have the same behaviour in the high-frequency range (cf. Figure 13), even if the pseudo- 

acceleration is slightly higher on the 3D mesh (with a maximum value reaching 68.1 m/s2 at 91 Hz).
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(a)

(b)
Figure 12 : Displacement (a) and accélération (b) in the

direction of ey at the mass of the 8th floor versus time.

Figure 13 : Pseudo-acceleration FRS computed in the

direction of ey at the mass centre of the 8th floor.

4.3 Evaluation of FRS

4.3.1 Influence of the distance to the impact area

Impacts due to pounding generate a non-uniform acceleration field. This leads to the propagation of shock waves, making 

difficult to assess locally the behaviour of the device. In order to study the influence of the distance d between the device and the 

impacts area, the pseudo-acceleration FRS are computed:
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• at each floor level. In this case, the studied points are located on the straight line oriented in the direction of the ez axis and 

Crossing the point of coordinates (23.1 m, 15.6 m, 0.0 m) (i.e. middle of the façade adjacent to the 2nd building);

• at the S411 floor. The studied points are thus located on the straight line oriented in the direction of the ey axis and crossing the 

point of coordinates (23.1 m, 15.6 m, 30.3 m).

All these points are shown in Figure 14. The influence of the horizontal distance from the impact area as well as the influence 

of the height of the floor (to which the device is anchored) are studied in this section.

Figure 14 : Location of the points where the local FRS are assessed.

The FRS assessed at the 8* floor are given in Figure 15. This chart shows that the amplitude of the response depends on the 

position as the eigenfrequency of the device. When the eigenfrequency is less than 75 Hz, the floor response is maximum far from 

the impact areas. On the other hand, the pseudo-acceleration close to the impact areas is maximum around 85 Hz. Finally, when 

the eigenfrequency tends to the infinity (i.e. f ^ +œ), the highest PFAs are located at the edges of the 8* floor. At these locations, 

the FRS exceed 110 m/s2. These high values are due to the propagation of transversal shock waves along the floor, leading to local 

increases in stress and acceleration when reflections happen. In order to understand why the pseudo-acceleration is more important 

at these locations, it is first necessary to look at the temporal floor response during the main impact (cf Figure 16).
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Figure 15 : FRS computed in the direction of ey at the S411

floor: displacement (a) and pseudo-acceleration (b).

Figure 16 (b) shows that the main impact generates shock waves that travel to the opposite edge of the floor. When an edge is 

reached by a wave, all the energy is reflected, generating a local increase in stress and acceleration. Knowing that the velocity ct 

of the shock waves is defined in (S), it comes ct = 2345 m/s2 (according to the data summarized in Table 5).

CT
E

N
2 ■ p ■ (1 + v)

(S)

The building being 15.6 m large, each wave crosses the floor in T 6.7 ms. So, two reflections happen while an impact of

duration Atc = 13.1 ms occurs.
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(a)

(b)
Figure 16 : Accélération in the direction of ey at the S411 floor

versus time (a) and focus on the main acceleration peak (b).

The propagation of the transversal shock waves is described in Figure 17, showing the horizontal acceleration üy of each node 

belonging to the 8* floor. Figure 17 (d) shows the evolution of üy along the straight line oriented in the direction of ey and crossing 

the point of coordinates (23.1 m, 15.6 m, 30.3 m). Note that floor deformations are amplified by a factor 2,000.
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(a)

(b)

(c)

(d)
Figure 17 : Horizontal accélération üy of nodes belonging to 

the 8th floor: t = 3.527 s (a), t = 3.534 s (b), t = 3.540 s (c), 

and evolution versus the distance d from the impact area (d).
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The shock wave due to the force applied at time 3.527 s reaches the opposite edge of the building at time 3.534 s. At this point, 

the impact is still in progress. So, in addition to the instantaneous loading, there is a local stress concentration. The acceleration is 

thus greater at the opposite edge of the floor than close to the impact areas, despite the viscous damping reducing the acceleration 

in the high frequency range as the waves propagate. The same phenomenon appears at time 3.540 s, when the wave comes back, 

except that the stress due to the shock wave is opposed to the instantaneous loading, leading to a reverse of the sign of the 

acceleration close to the impact area.

Each reflection of a shock wave generates a local amplification of the stresses at the edge. To highlight this phenomenon, the 

evolution of the magnitude of the horizontal effort Fy is assessed on the entire 8th floor (cf Figure 18).
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(b)

(c)
Figure 18 : Magnitude of the horizontal force Fy applied to

the 8th floor: t = 3.527 s (a), t = 3,534 s (b) et t = 3,540 s (c).
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Figure 18 (a) and Figure 18 (b) show that the main impact is still in progress at time 3.534 s, increasing the magnitude of the 

stresses applied to the 8th floor close to the impact area. But, at time 3.540 s, the impact is over, and a reflection happens (cf 

Figure 18 (c)), increasing the magnitude of the stresses at the edges opposed to the impact area. As a result, the pseudo-acceleration 

spectra given by the SBMs are not conservative at floor level, the shock waves increasing considerably the response at the edges 

of the floor where reflections happen.

Note that contrary to the pseudo-acceleration FRS, the displacement FRS plotted in Figure 15 (a) do not vary significantly at the 

8* floor level. This shows that the floors move as rigid bodies, which validates the rigid beam assumption used to model the floors 

in the SBMs (see Section 3.1).

4.3.2 Influence of floor height

The FRS assessed along the height of the building are detailed in Figure 19. The comparison is made by using the pseudo- 

acceleration at the impact areas, whereas FRS in Figure 10 and Figure 13 are computed at the centres of gravity of the floors (which 

explains the differences between the charts). The results show that the pseudo-acceleration computed at the impact area of the 7th 

floor increases abruptly above 33 Hz, to become the highest over the frequency interval [36 Hz, 152 Hz]. This phenomenon is due 

to the presence of an acceleration peak greater equal to 56 m/s2 at the 7th floor (cf. Figure 20 (a)). This increases the content of the 

response in the high frequency range (i.e. when f> 40 Hz), as shown by the power spectral density (PSD) of the acceleration 

response (cf Figure 20 (b)). In order to explain this amplification, a detailed study is performed in the following paragraphs.
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Frequency (Hz)

(a)

(b)
Figure 19 : FRS computed in the direction of ey at impact 

areas (influence of floor height): displacement (a) and 

pseudo-acceleration (b).
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(b)
Figure 20: Accélération in the direction of ey at the impact 

area of the 7th floor versus time (impact area - a) and power 

spectral density of the acceleration response versus 

frequency (b).

Figure 21 shows that the PSD of the main impact force applied to the 8th floor is about 100 times higher than the PSD of the 

main impact force applied to the 7th floor. This difference is due to a higher number of impacts at the top of the buildings (each 

impact bringing a considerable amount of energy), even if the frequency contents of both loadings are mainly distributed over a 

frequency range worth between 0 and 100 Hz.

Frequency (Hz)

Figure 21 : PSDs of the main impacts applied to floors 7 and 

8 versus frequency (logarithmic scale).
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To understand how the impact forces are transmitted to the upper floors, the transfer functions linking the FFT (fast Fourier 

transform) of the acceleration response and the FFT of the impact forces are assessed in the frequency domain at the impact areas 

of the 6th, 7th and 8th floors (cf Figure 22 (a) & (b)), but also at the top floor level (depending on the distance to the impact area - 

cf Figure 22 (c)). Each one of them acts as a filter that modify the frequency range depending on the mechanical and geometrical 

properties of the structure.

The transfer functions are defined by three acceleration peaks related to the first bending modes about the ex axis (cf 

Figure 22 (b)). The high frequency behaviour shows that shock waves are not transmitted from floor to floor in case of multi-storey 

buildings, floors being stiffer than walls and columns in the presented case study. So, the amplification of the floor response in the 

high frequency range is mainly due to the loading directly applied to the floor. The blue curve in Figure 22 (a) shows that the 

acceleration response at the impact area of the 7th floor is very sensitive to loadings having a strong frequency content over the 

interval [50 Hz, 400 Hz]. This is the case of the impact force applied to the 7th floor, whose main frequency range is worth between 

0 Hz and 100 Hz (cf Figure 21). As a result, the frequency content of the acceleration response computed at the impact area of the 

7* floor is high between 50 Hz and 100 Hz, explaining why a signal enrichment appears in Figure 20 (b).

Note that this is not the case of the impact area of the 8th floor, where the acceleration response is more sensitive between 85 Hz 

and 400 Hz (see red curve in Figure 22 (b)): the impact forces are thus transmitted to the floors via a shorter frequency interval 

(worth between 85 Hz and 100 Hz). In addition, the maximum value of the transfer function is equal to 1.5 x 10-6 kg-1 at the 8th 

floor, while the value 2.5 x 10-6 kg-1 is reached at the 7th floor. Knowing that the 8th floor is two times heavier that the 7th floor (cf. 

Appendix A), this could explain why it is less sensitive to impact forces. As a result, the pseudo-acceleration is the highest at the 

level of the impact area of the 7th floor between 36 Hz and 152 Hz (cf. Figure 19 (b)), although this floor undergoes weaker impacts.

Figure 22 (c) shows that the high frequency content is damped as the horizontal distance from the impact areas increases. This 

phenomenon is due to the Rayleigh damping, whose amplitude increases with respect to the frequency. As a result, the points 

located far away from the impact areas exhibit lower a pseudo-acceleration in the high frequency range, whereas their pseudo- 

acceleration is the highest beyond 75 Hz. However, note that considering that the three main bending eigenfrequencies (carrying 

81 % of the mass above ground level - cf. Table 2) are worth between 1 Hz and 10 Hz and that the PSD of impact loading starts to 

decrease from 100 Hz (cf. Figure 21), the damping has little influence on the full response, explaining why the horizontal 

acceleration response in Figure 16 is anyway higher far from the impact area.
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Figure 22 : Transfer fonctions computed at the impact areas

of the 6th, 7th and S411 floors: loadings applied to the 7th floor 

(a) and 8* floor (b), and transfer fonctions computed at the 

top floor level (loading applied to the 8* floor- c).

5. Loading demand at the bottom of a device

5.1 Characteristics and location of the device

The “transferred spectra” are used in order to assess the response of the devices that can be modelled by SDOF oscillators. 

However, when these devices (pumps, chimneys, electrical cabinets, etc.) have several eigenmodes, other approaches must be used.

Among them, implementing the devices on a 3D mesh of the building and carrying a detailed finite element analysis allows to
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assess (at each time step) the forces applied to the device without cutting the high frequency content lower than half of the sampling 

frequency. This method is accurate but computationally demanding, and is generally used for verification purposes only. Being 

less consuming in CPU time, the response spectra analysis (RSA) allows to quickly assess the loading demands (i.e. the maximum 

external loads encountered by the devices) in order to adjust the properties of the devices and their anchors: this method is thus 

more suited for design purposes. In this case, the acceleration transmitted to the device is firstly post-processed from the results of 

a detailed finite element analysis performed on the 3D mesh of the building. Secondly, the eigenfrequencies and the eigenmodes 

of the device are computed. Thirdly, the FRS are built according to the modal damping applied to each eigenfrequency, and the 

influence of each eigenmode is assessed according to its effective modal mass. At last, the response is computed by applying SRSS 

(Square Root of the Sum of the Square) or CQC (Complete Quadratic Combination) methods.

The aim of this study is to assess the accuracy of the RSA method in case of earthquake induced pounding. For this purpose, a 

comparison with the results of detailed 3D finite element analyses is carried out on a device, and a sensitivity analysis depending 

on the high frequency damping ratio is proposed.

Note that the choice is made in this work to consider a fictious and generic device: its model has been set to be as general as 

possible, the study being focused here on the reliability of the RSA method. More accurate models should be used to design actual 

industrial devices (which is not the case in this study).

The device is located on the 8th floor of the first building, at the point of coordinates (23.1 m, 12.0 m, 30.3 m) (cf. Figure 23). 

The stiffness of the device is set in order to guarantee that the two first eigenmodes appear around 30 Hz and 80 Hz (typically 

representative of the modal characteristics of a pump). It is cylindrical in shape, 1 m high with a 50 cm radius, its mass centre is 

located at a height of 46 cm from the floor and its total mass is 1,500 kg.

The device (in red in Figure 24) is modelled by a beam element linked to its mass. The anchors (in green) are modelled by 

infinitely rigid Euler-Bernoulli beam elements linking the base of the device to the floor (in deep blue). A stiffness matrix is added 

between the base and the anchors to define the modal properties of the device (see orange elements in Figure 24). Here, the device 

can rotate about the ex axis and translate in the ey direction according to stiffnesses Kx = 3.0*107 N.m/rad and Kyy = 1.4*108 N/m. 

A kinematic relationship allows to extract the stresses at the base of the device as support reactions (see light blue elements in 

Figure 24). The modal characteristics of the device are detailed in Table 6, while the two first eigenmodes are computed in the ey 

direction in Figure 25.
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Figure 23 : Position of the device on the 8th floor (a) and

connections to the floor (b).

Figure 24 : Modelling of the device in Cast3M® finite 

element software.
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Table 6 : Frequency and nature of the eigenmodes of the

device.

Eigen
mode

f
(Hz) Type/Direction

Modal
effective mass 

(kg)

1 30.51

Bending about the 
ex axis and 

translation in the ey 1218.9

2 30.51

direction

Bending about the 
ey axis and

1218.9

3 82.90

translation in the ex 
direction

Bending about the 
ex axis and 

translation in the ey 327.0

4 82.90

direction

Bending about the 
ey axis and

327.0translation in the ex 
direction

(a)

(b)
Figure 25 : First eigenmode - f = 30.51 Hz (a) and second 

eigenmode - f2 = 82.90 Hz (b).
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The Figure 25 shows that the two first eigenmodes are defined by a rotation about the e* axis and a translation in the ey direction. 

These movements depend on the stiffnesses K„x and Kyy (cf. Figure 26). Note that the displacements related to bending are here 

negligible compared to the ones related to the rotation at the base of the device. According to the first eigenmode, translation and 

bending are oriented in the same direction (cf. Figure 25 (a)), whereas they are opposed with the next one (cf. Figure 25 (b)). The 

effective modal mass reaches 78.8 % of the total modal mass (i.e. 1545.9 kg) with the first eigenmode and 21.2 % with the second 

one (cf. Table 6).

The viscous damping of the device is modelled by a Rayleigh damping ratio set at 2 % at 30 Hz and 80 Hz (i.e. around the two 

first eigenmodes in the ey direction).
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Translational
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Kyy

Device

Rotational
stiffness

Kr

Figure 26 : Mechanical model of the device - elevation in

eZ

the (O, ey, ez) plane.

5.2 Calculation of the loading demand at the bottom of the device

The forces and moments applied at the base of the device (Nx, Fy, Fz, Mx, My, Mz) are firstly computed from the results of a 

detailed finite element analysis, with and without impacts. In the Framework of this study, only the shear force in the direction of 

ey (called Fy) is assessed. Secondly, the maximum value of Fy (i.e. the loading demand) is compared with the result of a RSA. The 

shear force Fy is plotted in Figure 27 as a function of time (extracted from the results of a detailed finite element analysis). The 

loading demand and the pseudo-acceleration given by both methods are summarized in Table 7.
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(a)

(b)
Figure 27 : Shear force in the ey direction versus time: 

without impact (a) and with impacts (b).

Figure 27 (b) highlights that the loading due to the impacts being rich in the high frequency range, it stresses more the rigid 

device than the seismic loading (cf Figure 27 (a)). As a result, high-frequency oscillations appear on the floor response, as shown 

by the “noisy” évolution of the shear force Fy.

Moreover, Table 7 show that the RSA underestimates the magnitude of the loading applied to the anchors. Indeed, the analysis 

is performed by using only two bending/shearing modes, whereas detailed finite element analysis allows to take into account of the 

entire frequency content up to half of the sampling frequency, in accordance with the Shannon’s theorem. Results also highlight 

that the relative error between both methods is more important when the impact forces are not applied (reaching 34.6 % without 

impact against 2.7 % with impacts). This difference is mainly due to the nature of the FRS used to assess the loading applied to the 

device. Indeed, the FRS are defined according to the response in the ey direction. However, the loads applied to the building also 

generate bending and torsion rotations at floor level. These movements are not taken into account in the RSA method, whereas 

they have a non-negligible influence when the building is only subjected to a seismic loading. To the contrary, the impact forces 

impose a horizontal movement to the upper floors, decreasing the influence of the rotations on the floor response: this explains 

why the results of the RSA method are closer to those given by the detailed finite element analysis when pounding is taken into 

account.

36



Table 7 : Results given by detailed finite element analysis and RSA.

Without impact With impacts

Detailed finite 
element analysis RSA Detailed finite 

element analysis RSA

Loading 
demand 
max |Fj

t
10,143 6,633 66,028 64,272

(N)

Pseudo- 
acceleration 
Sa,y (m/s2)

6.56 4.32 42.7 41.6

With a relative error less than 10 %, the results given by RSA are more accurate in case of pounding between adjacent structures. 

But it should be noted that envelope FRS needs to be used with RSA in order to not undersize the device under study. As carrying 

out a detailed finite element analysis on a 3D mesh is costly in computation time, this approach should only be used to validate the 

final design or peculiar points only.

Note that the Rayleigh viscous damping ratio applied to the structure has also a large influence on the response of the device in 

the high frequency range. This can increase the error between the results given by the RSA method and the detailed finite element 

analysis. To check this point, a sensitivity analysis needs to be carried out.

5.3 Influence of the damping ratio applied to the structure on the response of the device

The following study is led in order to assess the influence of the viscous damping ratio applied to the buildings. This includes 

the SBMs and the 3D mesh of the first building, so the restitution ratio and the impact forces are reassessed in each case (but note 

that the penalty stiffness is still equal to 1011 N/m). Three damping levels (under-damped, damped, and over-damped in the high 

frequency range) are compared (cf Figure 28). The Rayleigh damping parameters and the restitution ratio are summarized in 

Table 8 for all three case studies. Note that the value of s (reassessed as described in Section 3.2.2) increases as the value of the 

Rayleigh damping ratio decreases in the high frequency range. A sensitivity analysis could thus be carried out into a further study 

to assess the dependency of the restitution ratio s on the damping parameters, the geometry, and the mechanical properties of a 

rectangular in shape floor.
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Figure 28 : Rayleigh damping ratios used in the sensitivity

analysis.

Table 8 : Parameters defining the Rayleigh damping ratio 

applied to the structure and restitution ratio used to model 

the impacts between the SBMs.

Under-damped Damped Over-damped

aR (s-1) 0.838 0.838 0.559

Pr (s) 2.12 x 10-4 1.06 x 10-3 3.18 x 10-3

e (-) 0.414 0.687 0.891

The aim of this sensitivity analysis is to find whether decreasing the value of the damping ratio of the structure increases or 

decreases the error between the results given by the RSA and the detailed finite element analysis. To do so, the FRS in pseudo- 

acceleration are first computed at the base of the device with and without pounding, with a damping ratio set at 2 % (cf. Figure 29).

Figure 29 (a) shows that when no impact occurs, the PFA at the 8th floor increases as the damping ratio of the structure decreases 

(rising the value of the pseudo-acceleration). Figure 29 (b) also highlights that a low damping ratio in the high frequency range 

leads to an amplification of the floor response from 70 Hz onwards when impact occurs. Otherwise, when the structure is over- 

damped, the maximum pseudo-acceleration decreases (reaching 67.6 m/s2 at 178 Hz, see blue curve in Figure 29 (b)). This shows 

that a low structural damping ratio leads to an amplification of the response of the device in the high frequency range around the 

second eigenmode (whose eigenfrequency is equal to 82.9 Hz).
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Figure 29 : FRS at the base of the device computed in the ey

direction: without pounding (a) and with pounding (b).

The loading demands given in the ey direction according to the RSA and the 3D finite element analyses are detailed in Figure 30 

and Table 9.
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Figure 30 : Design loading in the ey direction versus time:

without impact (a) and with impact (b).

Figure 30 highlights that the shear force in the direction of ey varies more when pounding is taken into account. Indeed, contrary 

to the seismic loading, impact forces enrich the high frequency content of the response, i.e. where the differences of damping are

the highest.

Table 9 : Loading demands given by RSA and detailed 3D finite element analyses.

Without impact With impacts

Detailed finite 
element analysis

RSA Relative difference Detailed finite 
element analysis

RSA Relative difference

(N) (N) (%) (N) (N) (%)

Under-
damped 11,614 7,795 32.9 115,580 90,060 21.6

Damped 10,143 6,633 34.6 66,028 64,272 2.7
Ovp.r-

damped 8,725 5,512 36.8 64,432 57,157 11.3

Table 9 compares the results given by detailed 3D finite element analyses and RSA. As previously shown, the error between 

both methods is higher when pounding is not taken into account, the movements of the floors being as much caused by rotations 

as by translations. The relative error is also much more sensitive to the damping when impact forces are applied to the building (its

value being worth between 2 % and 22 %). Note that the relative error seems to strongly increase when the structure is under-
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damped (even if a rise can also be observed when the structure is over-damped). This shows that the accuracy of the results given 

by the RSA method may vary according to the damping applied to the structure in case pounding is taken into account. So, the 

choice of the Rayleigh damping ratio is important, its value having a great influence on the response of the devices. It is common 

to use a Rayleigh damping ratio less than or equal to 7 % around the main eigenmodes in order to perform linear finite element 

analyses on reinforced concrete structures [26]. Here, this choice leads to a restitution ratio worth between 0.6 and 0.7. Despite 

these errors, the same order of magnitude is achieved whatever the method used, showing that the RSA can be used to design the 

devices and their anchors if envelope FRS are used (in order to avoid under-sizing).

6. Conclusions

In this paper, the influence of earthquake induced pounding on FRS in case pounding occurs between two adjacent multi-storey 

buildings is discussed. To do so, the impacts are modelled by using a penalty method on SBMs having the same modal 

characteristics as the ones of the buildings. The impact forces are then applied on a 3D mesh of the first structure made from shell 

and beam elements. Local FRS are computed along the height of the building and at the top floor level, and the reliability of the 

RSA method (allowing for the calculation of the loading demand of the bottom of the devices) is assessed.

Firstly, the results showed that local amplifications of the FRS appear at the edges of the floors due to the propagation and 

reflections of shock waves. An analysis based on transfer fonctions highlighted that the response of the floors depends on the 

frequency content of the impact forces as well as the mechanical properties of the buildings (masses, stiffnesses, geometry, etc.). 

The damping of the shock waves in the high frequency range (due to the Rayleigh damping) was also noticed.

Secondly, a comparison between detailed 3D finite element analyses and RSA was carried out by adding a device on the last 

floor. Results proved that when pounding is taken into account, the relative error between both methods decreases due to the 

horizontal movement imposed by the impacts, even if the RSA method underestimates the loading demand. So, the use of the RSA 

method to design devices is viable as far as pounding envelope FRS are used. In addition, a sensitivity analysis showed that the 

response of the devices depends strongly on the value of the Rayleigh damping ratio applied to the structure in the high frequency 

range, highlighting that its choice increases uncertainties. The reassessment of the restitution ratio finally proved that its value is 

strongly dependent of the damping applied to the floors of the 3D mesh: to correctly compute the impact forces with the SBMs, it 

is thus necessary to find beforehand the best value of s by modelling one (or several) impacts on the 3D mesh by using the LCP 

method. To do so, a method based on a pre-computation on the 3D mesh was proposed.

In this paper, the method used to model pounding can only be applied to simple case studies, i.e. parallel multi-storey buildings

with adjacent floors. In order to model geometrical defects (such as parallelism) or non-planar impact areas (e.g. circular in shape),

an improvement of the SBM consisting in modelling the geometry of the floors with horizontal rigid bars is under study. A

sensitivity analysis based on the Rayleigh damping parameters, geometry, and mechanical properties of the materials will also be
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carried out on several floors in order to create a tool allowing for an easier assessment of the penalty parameters used to model the 

impacts on the SBMs.
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Appendix A: Properties of the SBM of the first building

Floor M
(t)

Jx
(kg-m2)

Jy
(kg-m2)

Jz
(kg-m2)

Ix
(m4)

Iy
(m4)

Iz
(m4)

A
(m2)

Avy
(m2)

Avz
(m2)

1 2502 6.3 X 107 5.1 X 108 5.7 X 108 6.4 X 103 4.2 X 104 4.8 X 104 234 169 214

2 1787 4.1 X 107 3.3 X 108 3.7 X 108 3.1 X 103 1.3 X 104 1.8 X 104 67 11 62

3 1682 4.1 X 107 3.3 X 108 3.7 X 108 3.1 X 103 1.4 X 104 1.7 X 104 69 11 62

4 1882 4.5 X 107 3.7 X 108 4.1 X 108 3.1 X 103 1.4 X 104 1.7 X 104 69 14 62

5 1680 4.4 X 107 3.3 X 108 3.8 X 108 3.3 X 103 1.6 X 104 1.9 X 104 73 17 62

6 1580 4.0 X 107 3.0 X 108 3.4 X 108 3.0 X 103 1.1 X 104 1.4 X 104 64 8 62

7 1574 4.0 X 107 3.2 X 108 3.6 X 108 3.0 X 103 1.1 X 104 1.4 X 104 64 8 62

8 3014 6.8 X 107 5.6 X 108 6.3 X 108 3.3 X 103 1.8 X 104 2.1 X 104 77 15 55
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