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Despite sweeping control measures, SARS-CoV-2 
continues to pose a major threat to older persons 

and persons with comorbidities, both of whom can 
have poorer clinical outcomes (1,2). Thus, hospitals 
and long-term care facilities (LTCFs) must be particu-
larly vigilant to prevent the spread of SARS-CoV-2 
infection among their patients. Nosocomial spread 

has been an issue since the pandemic began in 2020, 
and many outbreaks have occurred in hospitals and 
healthcare facilities, often with high attack and mor-
tality rates (3).

To control nosocomial spread, healthcare facili-
ties have progressively implemented preventive mea-
sures, such as generalized masking, testing campaigns 
among patients and staff, isolation, visitor restrictions 
(3), and more recently vaccination (4). However, the 
risk for viral transmission among hospital patients 
and staff and the effectiveness of control measures re-
main unclear, and outbreaks still occur (3,5,6).

The basic reproduction number (R0) refers to 
the number of secondary infections caused by a 
single index infection in an otherwise susceptible 
population. R0 has been widely used as an indicator 
of SARS-CoV-2 epidemic risk and has also proved 
valuable for evaluating testing strategies and oth-
er preventive measures within healthcare settings 
(7,8). R0 likely varies between types of healthcare 
facilities and differs considerably from estimates 
in the general community (9). However, estimating 
R0 in healthcare settings is more challenging than 
estimating R0 in the community. The populations 
in institutions are small and epidemics are highly 
stochastic. More data usually are available from 
hospitals or wards that have more cases. Health-
care facilities rarely test patients randomly or at 
multiple times during their hospitalizations. Most 
available data from hospital outbreaks consist of 
distributions of positive tests over time in a context 
of evolving testing policy and capacity. 
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Outbreaks of SARS-CoV-2 infection frequently occur in 
hospitals. Preventing nosocomial infection requires in-
sight into hospital transmission. However, estimates of 
the basic reproduction number (R0) in care facilities are 
lacking. Analyzing a closely monitored SARS-CoV-2 out-
break in a hospital in early 2020, we estimated the pa-
tient-to-patient transmission rate and R0. We developed 
a model for SARS-CoV-2 nosocomial transmission that 
accounts for stochastic effects and undetected infections 
and fit it to patient test results. The model formalizes 
changes in testing capacity over time, and accounts for 
evolving PCR sensitivity at different stages of infection. 
R0 estimates varied considerably across wards, ranging 
from 3 to 15 in different wards. During the outbreak, the 
hospital introduced a contact precautions policy. Our re-
sults strongly support a reduction in the hospital-level R0 
after this policy was implemented, from 8.7 to 1.3, corre-
sponding to a policy efficacy of 85% and demonstrating 
the effectiveness of nonpharmaceutical interventions.
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At the beginning of the pandemic, most countries 
had no standard strategy or recommendation on how 
surveillance should be carried out and tests distrib-
uted. Testing was mostly conducted on symptom-
atic patients, and surveillance consisted of possible 
contact tracing around detected cases. However, un-
reported asymptomatic cases could represent a sub-
stantial fraction of transmissions, and little data on 
the testing policy are available to estimate how many 
cases fell through the gaps.

Here, we propose a new framework to analyze 
detailed hospital test data by using a stochastic 
transmission model explicitly accounting for test-
ing policy. We estimated R0 in the context of a large 
SARS-CoV-2 outbreak in a LTCF. The outbreak had a 
high initial R0, and we reconstructed the unobserved 
epidemic to assess effectiveness of nonpharmaceuti-
cal interventions.

Methods

Hospital and Patient Information
Available data came from a LTCF in Paris, France. 
The hospital has 3 buildings (A, B, and C), each of 
which has 4 floors (0–3) that we considered as sep-
arate wards. The results of all valid PCR tests were 
available for each patient identification number dur-
ing March 1–April 30, 2020 (61 days). Patient infor-
mation also included the ward to which they were 
admitted or transferred, admission and discharge 
dates, and any symptoms they had at first positive 
test. All dates we provide are relative to the date of 
the first positive sample in the facility. We censored 
the data from day 51 onward because the hospital 
began to change the containment policy after that 
point. We excluded 23 patients from any ward-level 
analysis because the ward in which they were tested 
was unknown (Appendix, https://wwwnc.cdc.gov/
EID/article/28/7/21-2339-App1.pdf). We only used 
anonymized, aggregated patient data and did not col-
lect additional patient data beyond those for clinical 
use. The Comité Local d’Ethique pour la Recherche 
Clinique des HUPSSD Avicenne-Jean Verdier-René 
Muret approved the study as protocol no. CLEA-
2021-190. 

Laboratory Testing
The LTCF collected all nasopharyngeal swab sam-
ples from patients. Reasons for testing included 
having symptoms characteristic of SARS-CoV-2, 
having had contact with a positive case, or patient 
transfer between wards or into or out of the hospi-
tal (Appendix).

Model Description
We modeled the spread of infection within the LTCF 
population by using a modified stochastic suscepti-
ble-exposed-infected-recovered model (Figure 1; Ap-
pendix, Appendix Table 1). We defined the force of 
infection at a given time, λ(t), as the per-capita rate 
at which susceptible persons become infected, which 
we determined by the transmission rate, β, and the 
proportion of infectious patients at that time (Appen-
dix). On the date the epidemic began (tinit), we con-
sidered a specific number (Einit) of persons infected. 
We assumed persons in infectious incubation had 
reduced infectiousness by a factor of ε, compared 
with symptomatic infected persons. Similarly, we as-
sumed asymptomatic infectious persons had lower 
infectiousness by a factor of κ1.

To fully determine transmission over the out-
break period, we compared 2 distinct models. In the 
primary model, we assumed a single transmission 
rate, β, throughout the study period. However, based 
on knowledge of changing practices within the hos-
pital, we defined a more complex, 2-phase model in 
which each phase had its own transmission rate, β1 
and β2, and was delimited by an inflection date, tinflect. 
Potential values for tinflect ranged from day 1, which 
was the date of the first positive sample, through day 
16, which was >1 week after the facility introduced 
contact precautions and France implemented a gen-
eralized lockdown.

We directly computed R0 for each stage of in-
fection from the transmission rate, duration of each 
infectious stage, and the probability infected per-
sons would become symptomatic (Appendix). For 
the 2-phase model, we computed the average R0 by 
weighting each phase by its duration (Appendix).

Observation Model
Because of asymptomatic infections, imperfect test 
sensitivity, and irregular availability of tests, the 
facility could not identify all infected patients. To 
account for the imperfect reporting, we added an 
observation model to the transmission model (Ap-
pendix, Appendix Figure 1). The observation model 
assumes all persons are initially untested, but upon 
testing, the model moves them to an equivalent test-
ed state. Any patient can be retested in the model, 
but retesting occurs at a reduced relative rate, ϕ, 
estimated directly from the number of tests and re-
tests in the available data (Appendix). When a per-
son in the model develops symptoms, they lose their 
tested status and rejoin the untested compartment, 
Is (Figure 1), enabling the model to account for in-
creased testing when symptoms appear in a patient.  
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However, testing does not change the rates of infec-
tiousness or disease progression.

We used hospital data on the number of admis-
sions, discharges, and tests per day as inputs (Ap-
pendix, Appendix Figure 2). The model considers 
admitted patients are in a susceptible untested state 
and are discharged at random from any state with 
a relative rate, μ, for symptomatic patients. For any 
day that tests are performed, the model prioritizes 
patients who have not been tested since becoming 
symptomatic and conducts any remaining tests at 
random on the rest of the population (Appendix, 
Appendix Figure 1). We used the sensitivity and 
specificity of the PCR test at the stage of infection to 
determine whether patients test positive or negative 
for SARS-CoV-2.

Statistical Inference
We calculated the likelihood by comparing the ob-
served numbers of positive and negative cases on 
each day with the expected numbers generated by 
the internal model state via the observation pro-
cess, assuming a binomial distribution (Appendix). 
We used iterative filtering in the pomp package 
(10) in R (R Foundation for Statistical Computing, 
https://www.r-project.org) to estimate parameters.  
In addition to estimating transmission rates, β, or 
β1 and β2, we also estimated the virus introduc-
tion time, tinit, and fixed the initial number of in-
fections, Einit, to 1. For each analysis comprising 
the same model, dataset, and fixed parameter val-
ues, we used profile likelihood to calculate 95% 
CI for the estimated parameters (Appendix). We  

Figure 1. Compartmental 
susceptible-exposed-infectious-
recovered model used to 
estimate nosocomial SARS-
CoV-2 transmission rates on 
the basis of data for a long-term 
care facility in France. Red 
boxes indicate SARS-CoV-2 
infectious compartments and 
blue boxes indicate noninfectious 
compartments. The left side 
shows the trajectory of untested 
persons, the right side shows 
tested persons. If untested 
persons are tested at any point 
in state X, they will enter the 
equivalent tested compartment 
(XT, right panel), which is 
epidemiologically identical 
except for the testing rate. 
Patients in the susceptible state 
(S) can become infected by 
contact with infectious patients. 
When infected, patients move 
to the noninfectious incubation 
(E) compartment, after which 
they can either enter an 
asymptomatic or a symptomatic 
pathway of infectiousness. 
Each pathway has an infectious 
incubation period (Ea, Es) before 
asymptomatic (Ia) or symptomatic 
(Is) infection begins. After full infection, patients recover into a noninfectious state (Rp) where they are still likely to test positive before full 
recovery (R) when the probability of testing positive diminishes to (1 – test specificity). Green arrows refer to processes, initiation (Init), 
admission (Adm), discharge (Dis), and testing (Test), that occur a specified number of times on a given day according to model inputs. 
Black arrows indicate processes that are natural for infection and are entirely stochastic (Appendix Methods, Figure 1). E, exposed; 
Ea, asymptomatic exposed; EaT, asymptomatic exposed and tested; Es, symptomatic exposed; EsT, symptomatic exposed and tested; 
ET, exposed and tested; I, infectious; Ia, asymptomatic infectious; IaT, asymptomatic infectious and tested; Is, symptomatic infectious; 
IsT, symptomatic infectious and tested; IT, infectious and tested; R, recovered; Rp, recovered to noninfectious state; RpT, recovered to 
noninfectious state and tested; RT, recovered and tested; S, susceptible; t, time; α, rate of progression from noninfectious incubation; ψ, 
proportion of patients entering symptomatic pathway; λ(t), force of infection at time t; α, rate of progression from infectious incubation; 
δ, rate of progression from symptomatic infection; μ, relative rate of discharge for symptomatic patients relative to any nonsymptomatic 
patient; ω, rate at which viral shedding ceases during recovery.
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compared models by calculating the Akaike infor-
mation criterion (AIC).

Model Inference Validation
As a preliminary step, we tested the model and in-
ference methodology on synthetic data. We used this 
test to ensure that known simulated transmission 
rates (β, or β1 and β2) and tinit could be recovered by 
statistical inference (Appendix).

Hospital- and Ward-Level Analyses 
We first analyzed data at the hospital level, assuming 
homogeneous mixing across all buildings and wards. 
We then analyzed the data and estimated parameters 
for each ward separately. After parameter estimation, 
we conducted simulations of the visible and unde-
tected parts of the epidemic at both the hospital and 
ward levels (Appendix).

Sensitivity Analysis and Time-Varying  
Reproduction Number
We conducted a sensitivity analysis to identify param-
eters with variations that most affected our estimated 
parameters. We perturbed the input parameters, using 
the lower and upper bound of the CI reported in the 
literature, and replicated the analysis. For comparison, 
we used incident cases to calculate the time-varying 
reproduction number (Rt) across the entire hospital by 
using the EpiEstim package (https://CRAN.R-project.
org/package=EpiEstim) (Appendix).

Results
A total of 459 patients were in the hospital during the 
study period. PCR testing began on day −6; we con-
sider day 1 as the first positive sample was collected. 
By the end of day 50, 152/312 patients sampled tested 
positive (Figure 2, panels A, B). The secondary attack 

Figure 2. Hospital data from a long-term care facility in France 
used to estimate nosocomial SARS-CoV-2 transmission rates. A) 
Number of SARS-CoV-2 PCR tests performed each week in the 
whole hospital. B) Number of SARS-CoV-2 PCR tests performed 
in each ward each week. C) Secondary attack rates in the whole 
hospital. Rates were calculated as the ratio of the number of 
patients with positive results to the total number of patients in the 
hospital at any time during the study period. 
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rate differed substantially between wards (Figure 2, 
panel C), ranging from 3% to 50%, and the overall sec-
ondary attack rate was 33%.

Model Inference Validation Results
The results of the validation of parameter inference 
on synthetic data suggest that sufficient power was 
available at the hospital level to recover parameters 
with relatively good accuracy (Appendix, Appendix 
Figures 4, 5). However, power was not always suf-
ficient at the ward level, and we restricted our sub-
sequent analysis of wards to only those where the 
recovered estimates did not deviate excessively in the 
estimates of β (Appendix Figures 6,7).

Whole-Hospital Analysis
We calculated estimations of transmission rates at 
the whole hospital level (Table 1; Appendix). In the 
2-phase model, using day 12 as tinflect gave the best 
model fit (Appendix Table 4), which is 6 days after 
the facility officially introduced an obligatory mask-
wearing policy and cancellation of all group activities 
between patients. This model proved a better fit to the 
data than the 1-phase model, as measured by the AIC 
(Table 1). Simulated curves from the observed epi-
demic produced by the models show that the 2-phase 
model captured the early peak in cases better than the 
1-phase model (Figure 3, panels A, B).

In the 2-phase model where tinflect = 12, we observed 
a notable difference between the transmission rates 
estimated before and after tinflect, which we assume to 
be attributable to the new contact precautions. The 
transmission rate fell from 1.3 (95% CI 0.8–2.4) to 0.19 
(95% CI 0.10–0.30) infections/patient/day in symp-
tomatic infection, corresponding to a drop in R0 from 
8.7 (95% CI 5.1–16.3) to 1.3 (95% CI 0.7–2.0). This re-
sult translates to an 85% (95% CI 66%–94%) decrease 
of the transmission risk after generalized implemen-
tation of contact precautions. Although the value of 
tinflect had a substantial effect on the absolute values 
of the transmission rates, the size of the decrease in 
transmission rate was relatively stable, ranging from 
81%–89% (Appendix Table 4). At peak prevalence of 
infectious patients, we estimated the proportion of 
undetected infections at 60%, and overall, ≈25% of 
cases were undetected over the entire study period 
(Figure 4, panel A).

Ward-Level Analysis
We calculated estimates and corresponding fits for 
each individual ward for which the 1-phase model 
could be validated (Table 2; Figure 3, panel B). We 
reconstructed the undetected parts of the epidemic 

(Figure 4, panel B). We also conducted ward-level 
analysis using the 2-phase model but this did not im-
prove the fit (Appendix, Appendix Table 5). 

Point estimates for β ranged from 0.42 to 2.13 
across the studied wards. We were only able to cal-
culate an upper bound for the transmission rate in 1 
ward, C3; the resulting range estimate of 0.42 (0.11–
1.30) infections/patient/day corresponds to an R0 of 
2.87 (0.75–8.84). However, we could estimate a lower 
bound for each ward; the highest value, 0.51 infec-
tions/patient/day in ward A2, corresponds to a mini-
mum R0 of 3.47.

Sensitivity Analysis Results
For most parameters, perturbing had relatively mi-
nor effects on the estimated transmission rates for the 
2 phases, or on tinit (Appendix, Appendix Figure 8). 
The transmission rate in the second phase, β2, was the 
most sensitive, and most markedly sensitive to the 
duration of symptomatic infection (1/δ).

Rt Results
We calculated Rt estimates by using EpiEstim (Ap-
pendix, Appendix Figure 9). The value was initially 
10, then fell to <3, before a second peak.

Discussion
We developed a specific framework to analyze 
SARS-CoV-2 data from a hospital outbreak using 
a transmission model of patient-to-patient infec-
tion. We estimated transmission rates from a LTCF 
during March–April 2020, across the entire hos-
pital and in individual wards. We assessed 1 or 2  

 
Table 1. Best estimates and ranges for parameters from 2 models 
applied to hospital data from a long-term care facility in France to 
estimate nosocomial transmission rates of SARS-CoV-2* 

Parameter 
Model 

1-phase 2-phase† 
 β 0.38 (0.30–0.60) NA 
 β1 NA 1.28 (0.76–2.40) 
 β2 NA 0.19 (0.10–0.30) 
R0 2.6 (2.0–4.1) NA 
 R0 before NA 8.72 (5.14–16.32) 
 R0 after NA 1.33 (0.68–2.04) 
 R0 combined NA 5.72 (3.62–8.70) 
Intervention efficacy‡ NA 0.85 (0.66–0.94) 
tinit −22 (−39 to −4) −4 (−25 to −1) 
AIC 657.33 628.85 
*The value of Einit was fixed at day 1 and the value of tinflect at day 12. The 
R0 values were calculated by using equations 4 and 5 (Appendix). AIC, 
Akaike information criterion; NA, not applicable; R0, basic reproduction 
number; β, current transmission rate per day; β1, transmission rate per day 
before inflection date; β2, transmission rate per day after inflection date; 
Einit, number of initial infections at date tinit; R0, basic reproduction number; 
tinit, date on which the initial infection occurs. 
†R0 was calculated before and after inflection date in the 2-phase model. 
‡The intervention efficacy was calculated as 1 – β2/β1. Days for tinit are 
relative to the first positive sample on day 1. 
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phases of transmission delimited by a specific 
change date (tinflect) corresponding to implementation 
of contact precautions, including obligatory mask-
wearing for patients and staff, and the cessation of  
group activities.

We found that the 2-phase model was better sup-
ported by the data aggregated across the entire hospi-
tal than a model with a single transmission rate, and 
the 2-phase model better captured the early peak in 
cases. Model validation suggested sufficient power 
to estimate transmission rates in 2 phases. The early 
phase rate (1.3 transmissions/patient/day) corre-
sponded to an early R0 of 8.7 and the late phase rate 
(0.19 transmissions/patient/day) corresponded to 
a late R0 of 1.3. This change in transmission rate can 
largely be explained by the initial absence of preven-
tive measures after the policy recommendation on 
day 6 and its gradual implementation over the next 
week. Under this assumption, the measures intro-
duced were 85% (95% CI 66%–94%) effective at re-
ducing transmission. The high estimates in the first 

phase suggest an explosive outbreak or superspread-
ing event, which is consistent with the high secondary 
attack rate (33%). The estimates in the second phase, 
after the updated policy, might be more representa-
tive of current transmission rates in hospitals, which 
can provide and encourage the use of personal pro-
tective equipment.

Little research is available for the effect of con-
tact precautions against SARS-CoV-2 transmission in 
healthcare settings. A meta-analysis of the effect of 
mask use against nosocomial transmission of coro-
naviruses found 67% protective efficacy of facemasks 
and 96% efficacy of N95 respirators (11), but the 1 
study involving SARS-CoV-2 only examined a protec-
tive effect for healthcare workers (HCWs), which was 
unquantifiable because no infections were reported 
in the masked group (12). Several modeling studies 
have quantified the level of mask wearing that would 
prevent epidemic spread of SARS-CoV-2 in the com-
munity (13–15; D. Kai et al., unpub. data, http://arx-
iv.org/abs/2004.13553), but studies of interventions 

Figure 3. Results of simulated epidemics in a model of nosocomial SARS-CoV-2 transmission using estimated parameters determined 
on the basis of data from a long-term care facility in France. A) 1-phase model for the whole hospital. B) 2-phase model for the whole 
hospital. C–F) 1-phase model for individual wards: A2 (C), C0 (D), C2 (E), and C3 (F). Red dots show the observed number of positive 
tests in the data, black dashed lines indicate the median across that date for all simulations, and gray shading indicates the 95% CI 
range of the simulated values. Input parameter sets were included if their likelihood fell within the 95% CI relative to the maximum 
likelihood for 1- and 2-phase models for the whole hospital and individual wards. Estimated parameters are from Tables 1, 2. Extinct 
epidemics (i.e., those having <3 cumulative cases) were excluded from the distribution.
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for prevention of patient-to-patient transmission in 
healthcare environments are lacking.

Few other studies have published estimates of 
R0 in healthcare settings. By analyzing the initial ex-
ponential growth phase of a hospital epidemic, one 
study computed an expedient estimate of R0 for pa-
tients (1.13) and hospital staff (1.21) (16), but that study 
did not account for asymptomatic infections and did 
not provide a range for the R0 estimates (17). In an-
other study, the authors estimated an R0 of 1.021 (95% 
CI 1.018–1.024) across 12 nursing homes based on a 
single introduction per floor of each institution and a 
secondary attack rate of 4.1% among 930 residents (B. 
Reyné et al., unpub. data, https://doi.org/10.1101/20
20.11.27.20239913). The heterogeneity of transmission 

between different wards was also demonstrated in a 
previous review and meta-analysis in which the au-
thors calculated an average observed reproduction 
number of 1.18 across 4 different healthcare settings 
(18), but showed much heterogeneity between set-
tings; 1 was 4.5, and 3 were <0.25. A fourth study ana-
lyzed several hospitals in Canada by using incident 
cases and estimated an R0 of 2.51, which ranged from 
0.56 to 9.17 in individual facilities (19). However, the 
authors of that study did not model asymptomatic 
infection or account for negative test results or the 
outcomes of testing at different infectious stages (19).

To assess how estimates vary when looking at 
smaller subpopulations, we separately fit a 1-phase 
model to data from each ward. Using this method, we 

Figure 4. Stacked prevalence of detected 
and undetected symptomatic and 
asymptomatic infections in simulated 
epidemics using a model of nosocomial 
SARS-CoV-2 transmission determined on 
the basis of data from a long-term care 
facility in France. A) Prevalence estimated 
by using the 2-phase model for the whole 
hospital. B–E) Prevalence estimated by 
using the 1-phase model for individual 
wards: A2 (B), C0 (C), C2 (D), and C3 (E). 
After excluding extinct simulations (i.e., 
those having <3 cumulative cases), we 
calculated the median of each prevalence 
measure for each date.

 
Table 2. Characteristics and parameter estimates in hospital wards in a long-term care facility in France used to estimate nosocomial 
transmission rates of SARS-CoV-2* 

Ward No. beds 
Total no. 
patients 

Day of first 
positive case No. cases β R0† tinit 

A2 48 62 11 30 1.29 (0.51–NE) 8.76 (3.47–NE) 2 (−14 to 29) 
C0 37 74 16 22 0.56 (0.22–NE) 3.79 (1.50–NE) 4 (−39 to 9) 
C2 37 48 7 15 2.13 (0.29–NE) 14.46 (1.97–NE) −8 (−39 to –14) 
C3 37 63 24 7 0.42 (0.11–1.30) 2.87 (0.75–8.84) 19 (−9 to 21) 
*Estimates and 95% CI for β, R0, and tinit are from the fitting the 1-phase model to data from each ward (Einit = 1). In many instances, the upper bound of 
the 95% CI for β, and in the most likely value of β for some wards, could not be estimated due to a flat likelihood surface, in which case the value is given 
as NE. NE, not estimated; β, current transmission rate per day; Einit, number of initial infections at date tinit; R0, basic reproduction number; tinit, date on 
which the initial infection occurs.  
†The R0 values were calculated using equation 4 (Appendix). 
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could not always estimate upper bounds of the trans-
mission rates, probably because of strong stochasticity 
and scarcity of observed cases, an inherent feature of 
SARS-CoV-2 in which a large proportion of infected 
persons remain asymptomatic. However, our valida-
tion analyses suggested that point estimates for trans-
mission rates across the wards could be consistently 
estimated. Applied to our dataset, estimated trans-
mission rates ranged from 0.4 to 2.1, corresponding to 
an R0 of 2.9–14.5. This heterogeneity might have been 
driven by differences in the timing of and compliance 
with preventive measures or by differences in contact 
patterns between staff and patients.

Calibrating models to real hospital outbreaks and 
estimating transmission rates provides more realistic 
transmission models to evaluate scenarios with alter-
native surveillance or control measures. We estimat-
ed the response to introducing barrier interventions 
at the beginning of the COVID-19 pandemic, when 
population immunity was minimal. Investigating al-
ternative scenarios involving contemporary levels of 
population immunity or other viral variants could be 
easily achieved by updating the model parameters, 
such as the initial level of immunity or transmission 
rates. Updating parameters would enable prediction 
of the probability and size of hospital outbreaks and 
evaluation of testing strategies to prevent spread. As 
mentioned, a major challenge in analyzing outbreaks 
in hospitals or other small, closed environments lies 
in the consideration of imperfect testing practice, 
which we addressed through the observation model. 
First, a substantial proportion of infectious persons 
were not symptomatic; therefore, they were less like-
ly to be tested, and we accounted for this difference in 
the model testing policy. Second, PCR test sensitivity 
is imperfect and depends on the time from infection, 
which is we also reflected in our evolving test sensi-
tivity for different stages of infection. Finally, testing 
procedures were not regular and might have been 
affected by many factors not directly related to the 
epidemiologic situation, such as the day of the week, 
the available testing capacity, or changing strategies 
at the local scale. We addressed irregular testing pro-
cedures by using the number of tests per day directly 
described in the data rather than determining the 
number of tests performed from the number of infect-
ed persons. The model also tracked testing status to 
include realistic probabilities for testing and retesting 
of patients.

We compared our results with Rt from the com-
monly used EpiEstim package, which demonstrated 
the additional value of our approach. Ignoring nega-
tive tests and the complexity of testing policies, this 

simpler approach captured the high initial R0 and 
subsequent fall but also showed a second peak that 
likely resulted from increased testing rather than an 
actual increase in transmission rate.

Our analysis has several limitations resulting 
from simplifying assumptions. First, we did not ac-
count for the possibility of imported infections other 
than the index case or cases; instead, we assumed 
that the force of infection from other patients would 
substantially outweigh that from the community. 
Second, because we had no data on infectious status 
for HCWs during the study period, we focused on 
patients and did not explicitly model acquisition by 
nor transmission from HCWs, although HCWs were 
implicitly considered potential vectors of patient-to-
patient transmission. Rates of transmission from in-
fectious patients to HCWs are relatively low (20,21), 
as are transmission rates from HCWs to patients (22), 
although these rates might have been higher in the 
early stages of the pandemic, considering low lev-
els of hand hygiene (23). Ignoring the contribution 
of HCWs to new infections in the analysis suggests 
that we might have overestimated the transmission 
risk from infectious patients, but our estimates can 
still be interpreted as valid measures of the nosoco-
mial risk to patients. Third, the model relies on pa-
rameters taken from the literature, which may be 
inaccurate. However, we conducted a sensitivity 
analysis to measure the sensitivity of transmission 
rates to appropriate variation in these parameters, 
and our main results remained unaffected. Finally, 
we note that the decision to analyze data from this 
hospital is partly due to the size of the outbreak, im-
plying a selection bias toward a higher transmission 
rate than would be typical across all hospitals. How-
ever, >44,000 nosocomial infections were reported 
in France by February 14, 2021 (24), most of which 
consisted of clusters of cases; thus, our results can be 
interpreted as plausible for a hospital at risk for an 
outbreak. In addition, the model framework we pro-
pose is suitable for estimating transmission rates in 
any healthcare environment, and we provide some 
guidance for adaptation (Appendix).

In conclusion, the novel dynamic modeling 
framework we propose realistically simulates evolv-
ing testing policies and could easily be used on simi-
lar nosocomial COVID-19 datasets. The model also 
could be adapted for specific epidemiologic features, 
such as patient isolation. Overall, our results under-
line both the substantial potential effect of protective 
interventions introduced in healthcare settings and 
the considerable heterogeneity in transmission rates 
between hospital wards.
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Oodally, David R.M. Smith, and Cynthia Tamandjou.

Acknowledgments
We thank Sandrine Jacques for data collation, Niels 
Hendrickx for discussion of the results, and Matthieu 
Domenech de Cellès for advice on the statistical inference.

This work was supported directly by internal resources 
from the French National Institute for Health and Medical 
Research, the Institut Pasteur, the Conservatoire National 
des Arts et Métiers, and the University of Versailles-Saint-
Quentin-en-Yvelines/University of Paris-Saclay. This 
study received funding through the MODCOV project 
from the Fondation de France (grant no. 106059) as part 
of the alliance framework “Tous unis contre le virus,” the 
Université Paris-Saclay (no. AAP Covid-19 2020) and the 
French government through its National Research Agency 
(project no. SPHINX-17-CE36-0008-01).

G.S. constructed the model, conducted the analysis,  
and produced the draft and graphics. J.R.Z. produced 
the data and provided the medical perspective to inform 
model assumptions. S.C. made substantial contributions 
to the interpretation of results. L.T. and L.O. conceived 
the study, had regular input on analysis and  
interpretation, and contributed to the writing. All  
authors read, provided comments on, and approved the 
final manuscript.

About the Author
Dr. Shirreff is a postdoctoral researcher in nosocomial 
infectious disease at Conservatoire Nationale des Arts 
et Métiers, University of Versailles, and Institut Pasteur, 
Paris, France. His research focuses on understanding  
infectious disease transmission using mathematical  
models and modern tools for data capture.

References
  1. Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM,  

et al.; China Medical Treatment Expert Group for  
COVID-19. Comorbidity and its impact on 1590 patients 
with COVID-19 in China: a nationwide analysis. Eur Respir J. 
2020;55:2000547. https://doi.org/10.1183/13993003.00547-2020

  2. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors 
associated with acute respiratory distress syndrome and 
death in patients with coronavirus disease 2019 pneumonia 
in Wuhan, China. JAMA Intern Med. 2020;180:934–43. 
https://doi.org/10.1001/jamainternmed.2020.0994

  3. Abbas M, Robalo Nunes T, Martischang R, Zingg W,  
Iten A, Pittet D, et al. Nosocomial transmission and  
outbreaks of coronavirus disease 2019: the need to protect 
both patients and healthcare workers. Antimicrob Resist 

Infect Control. 2021;10:7. https://doi.org/10.1186/ 
s13756-020-00875-7

  4. Hall VJ, Foulkes S, Saei A, Andrews N, Oguti B,  
Charlett A, et al.; SIREN Study Group. COVID-19  
vaccine coverage in health-care workers in England and  
effectiveness of BNT162b2 mRNA vaccine against  
infection (SIREN): a prospective, multicentre, cohort study. 
Lancet. 2021;397:1725–35. https://doi.org/10.1016/ 
S0140-6736(21)00790-X

  5. Cheng VC–C, Fung KS-C, Siu GK-H, Wong S-C,  
Cheng LS-K, Wong M-S, et al. Nosocomial outbreak of 
COVID-19 by possible airborne transmission leading to a 
superspreading event. Clin Infect Dis. 2021;73:e1356–64. 
https://doi.org/10.1093/cid/ciab313

  6. Du Q, Zhang D, Hu W, Li X, Xia Q, Wen T, et al.  
Nosocomial infection of COVID-19: A new challenge for 
healthcare professionals. Int J Mol Med. 2021;47:31.  
https://doi.org/10.3892/ijmm.2021.4864

  7. Anderson RM, Heesterbeek H, Klinkenberg D,  
Hollingsworth TD. How will country-based mitigation 
measures influence the course of the COVID-19 epidemic? 
Lancet. 2020;395:931–4. https://doi.org/10.1016/ 
S0140-6736(20)30567-5

  8. Smith DRM, Duval A, Pouwels KB, Guillemot D,  
Fernandes J, Huynh B-T, et al.; AP-HP/Universities/ 
Inserm COVID-19 research collaboration. Optimizing  
COVID-19 surveillance in long-term care facilities: a  
modelling study. BMC Med. 2020;18:386. https://doi.org/ 
10.1186/s12916-020-01866-6

  9. Temime L, Gustin M-P, Duval A, Buetti N, Crépey P,  
Guillemot D, et al. A conceptual discussion about the basic 
reproductive number of severe acute respiratory  
syndrome coronavirus 2 in healthcare settings. Clin Infect 
Dis. 2020;72:141–3. https://doi.org/10.1093/cid/ciaa682

10. King AA, Nguyen D, Ionides EL. Statistical inference for  
partially observed Markov processes via the R package 
pomp. J Stat Softw. 2016;69:1–43. https://doi.org/10.18637/
jss.v069.i12

11. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, 
et al.; COVID-19 Systematic Urgent Review Group Effort 
(SURGE) study authors. Physical distancing, face masks, and 
eye protection to prevent person-to-person transmission of 
SARS-CoV-2 and COVID-19: a systematic review and  
meta-analysis. Lancet. 2020;395:1973–87. https://doi.org/ 
10.1016/S0140-6736(20)31142-9

12. Wang X, Pan Z, Cheng Z. Association between 2019-nCoV 
transmission and N95 respirator use. J Hosp Infect. 
2020;105:104–5. https://doi.org/10.1016/j.jhin.2020.02.021

13. Tian L, Li X, Qi F, Tang Q-Y, Tang V, Liu J, et al.  
Harnessing peak transmission around symptom onset for 
non-pharmaceutical intervention and containment of the  
COVID-19 pandemic. Nat Commun. 2021;12:1147.  
https://doi.org/10.1038/s41467-021-21385-z

14. Stutt ROJH, Retkute R, Bradley M, Gilligan CA,  
Colvin J. A modelling framework to assess the likely ef-
fectiveness of facemasks in combination with ‘lock-down’ 
in managing the COVID-19 pandemic. Proc R Soc Math 
Phys Eng Sci. 2020;476:20200376. https://doi.org/10.1098/
rspa.2020.0376

15. Fisman DN, Greer AL, Tuite AR. Bidirectional impact of 
imperfect mask use on reproduction number of COVID-19: 
a next generation matrix approach. Infect Dis Model. 
2020;5:405–8. https://doi.org/10.1016/j.idm.2020.06.004

16. Tang JW, Young S, May S, Bird P, Bron J, Mohamedanif T,  
et al. Comparing hospitalised, community and staff  
COVID-19 infection rates during the early phase of the 



1354 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 28, No. 7, July 2022

evolving COVID-19 epidemic. J Infect. 2020;81:647–79. 
https://doi.org/10.1016/j.jinf.2020.05.029

17. Accorsi E, Qiu X, Rumpler E, Kennedy-Shaffer L, Kahn R, 
Joshi K, et al. How to detect and reduce potential sources  
of biases in studies of SARS-CoV-2 and COVID-19. Eur J 
Epidemiol. 2021;36:179–96. https://doi.org/10.1007/ 
s10654-021-00727-7

18. Thompson HA, Mousa A, Dighe A, Fu H, Arnedo-Pena A, 
Barrett P, et al. Severe acute respiratory syndrome  
coronavirus 2 (SARS-CoV-2) setting-specific transmission 
rates: a systematic review and meta-analysis. Clin Infect Dis. 
2021;73:e754–64. https://doi.org/10.1093/cid/ciab100

19. Stockdale JE, Anderson SC, Edwards AM, Iyaniwura SA,  
Mulberry N, Otterstatter MC, et al. Quantifying transmissibility 
of SARS-CoV-2 and impact of intervention within long-term 
healthcare facilities. R Soc Open Sci. 2022;9:211710.  
https://doi.org/10.1098/rsos.211710

20. Basso T, Nordbø SA, Sundqvist E, Martinsen TC,  
Witsø E, Wik TS. Transmission of infection from non-isolated 
patients with COVID-19 to healthcare workers. J Hosp Infect. 
2020;106:639–42. https://doi.org/10.1016/j.jhin.2020.08.015

21. Tong X, Ning M, Huang R, Jia B, Yan X, Xiong Y, et al. 
Surveillance of SARS-CoV-2 infection among frontline health 

care workers in Wuhan during COVID-19 outbreak. Immun 
Inflamm Dis. 2020;8:840–3. https://doi.org/10.1002/iid3.340

22. Baker MA, Fiumara K, Rhee C, Williams SA, Tucker R, 
Wickner P, et al. Low risk of coronavirus disease (COVID-19) 
among patients exposed to infected healthcare workers. Clin 
Infect Dis. 2021;73:e1878–80. https://doi.org/10.1093/cid/
ciaa1269

23. Huang F, Armando M, Dufau S, Florea O, Brouqui P,  
Boudjema S. COVID-19 outbreak and healthcare worker 
behavioural change toward hand hygiene practices.  
J Hosp Infect. 2021;111:27–34. https://doi.org/10.1016/ 
j.jhin.2021.03.004

24. Public Health France. COVID-19 epidemiologic update  
for February 18, 2021 [in French] [cited 2021 Jul 12].  
https://www.santepubliquefrance.fr/maladies-et- 
traumatismes/maladies-et-infections-respiratoires/ 
infection-a-coronavirus/documents/bulletin-national/
covid-19-point-epidemiologique-du-18-fevrier-2021

Address for correspondence: George Shirreff, Institut Pasteur, 
National des Arts et Métiers, 25–28 rue Dr. Roux, Paris 75015, 
France; email: george.shirreff@pasteur.fr

RESEARCH

Originally published
in March 2017

https://wwwnc.cdc.gov/eid/article/23/3/et-2303_article

etymologia revisited
Mycobacterium chimaera
[mi’ko-bak-tēr’e-əm ki-mēr’ə]

Formerly an unnamed Mycobacterium sequevar within the  
M. avium–M. intracellulare–M. scrofulaceum group (MAIS),  

M. chimaera is an emerging opportunistic pathogen that can cause 
infections of heart valve prostheses, vascular grafts, and disseminat-
ed infections after open-heart surgery. Heater–cooler units used to  
regulate blood temperature during cardiopulmonary bypass have 
been implicated, although most isolates are respiratory. In 2004,  
Tortoli et al. proposed the name M. chimaera for strains that a reverse 
hybridization–based line probe assay suggested belonged to MAIS 
but were different from M. avium, M. intracellulare, or M. scrofulaceum. 
The new species name comes from the chimera, a mythological be-
ing made up of parts of 3 different animals.

Sources: 
  1. Schreiber  PW, Kuster  SP, Hasse  B, Bayard  C, Rüegg  C, Kohler  P, 

et al. Reemergence of Mycobacterium chimaera in heater–cooler units 
despite  
intensified cleaning and disinfection protocol. Emerg Infect Dis. 
2016;22:1830–3. 

  2. Struelens  MJ, Plachouras  D. Mycobacterium chimaera infections as-
sociated with heater-cooler units (HCU): closing another loophole in 
patient safety. Euro Surveill. 2016;21:1–3.

  3. Tortoli  E, Rindi  L, Garcia  MJ, Chiaradonna  P, Dei  R, Garzelli  C, et al. 
Proposal to elevate the genetic variant MAC-A, included in the Myco-
bacterium avium complex, to species rank as Mycobacterium chimaera sp. 
nov. Int J Syst Evol Microbiol. 2004;54:1277–85. 
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Appendix 

Additional Methods 

Data Input and Parameter Estimation 

SARS-CoV-2 RNA extraction was performed on a NucliSENS easyMAG (bioMérieux, 

https://www.biomerieux.com) device, strictly following the manufacturer’s recommendations. 

Reverse transcription PCR (RT-PCR) was performed on an ABI QuantStudio 7 (Thermo Fisher 

Scientific, https://www.thermofisher.com) device, using the commercial RealStar SARS-CoV-2 

RT-PCR Kit 1.0 (Altona Diagnostics, https://www.altona-diagnostics.com) test. Briefly, 10 µL 

of RNA is added to the 20 µL RT-PCR mix. Two targets are detected, one specific for 

betacoronavirus, and one specific for the SARS-COV-2 strains. Internal control was added in the 

lysis buffer to validate both extraction and amplification steps. 

All patients were included in the study if they were in the hospital during the study period 

from day −10 to day 50. Daily data on tests, admissions, and discharges were input directly into 

the model from the hospital data (Appendix Figure 2). In most cases, patients were recorded as 

being in a particular ward, and these were used to create ward-specific datasets. In case of a gap 

in the patient record between recorded stays in different wards the transfer was assumed to occur 

at the midpoint of the gap. All data analyzed for this study at the whole hospital and ward levels, 

along with the R scripts used to conduct the analysis, are available at 

github.com/georgeshirreff/Hospital_R0_C19. 

https://doi.org/10.3201/eid2807.212339
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Parameters Estimated Directly from Longitudinal Hospital Data 

The parameter 1/ω, the duration of the Rp stage during which persons who have 

recovered from infectious disease but continue to frequently test positive through PCR, was 

selected by calculating the likelihood of each duration according to the results of repeat tests. 

The data used were repeat tests taken after a patient had an earlier positive test (Appendix Figure 

3, panel A). We assumed that the Rp stage began 7 days after the first positive test (1/δ), the 

probability of testing positive during this stage was 30% (ZRp) and the probability of testing 

positive in the recovery (R) stage afterwards was 1% (1 – ν) (Table 1). The likelihood reached a 

plateau where 1/ω = 23, so a value of 25 days was subsequently used as consistent with this 

result (Appendix Figure 3, panel B). 

The parameter ϕ, the relative rate of retesting, has been crudely estimated from the data 

by counting the number of repeat tests, i.e., on persons who have been tested again without 

having symptoms develop (n = 211) divided by the sum of the number of first tests (n = 314) 

plus the number who were retested upon developing symptoms (n = 34), giving a retesting rate 

of ϕ = 60%. A bootstrap analysis was conducted on the dataset to estimate of 50% CI and 70% 

CI. 

Hospital Prevention and Contact Policy 

At the beginning of the study period, hospital policy did not specify the use of any masks 

during contact between healthcare workers (HCWs) and patients. Patients normally participated 

in group activities including leisure activities, meals, and joint physiotherapy sessions. Gloves 

and gowns were required by staff during any contact with bodily fluids. After March 17, 2020, 

the policy changed to require the wearing of surgical masks during proximity contact between 

HCWs and patients, and between staff members, as well as cancellation of all visits and group 

activities. 

PCR testing, where capacity was available, was conducted on any patients with typical 

COVID-19 symptoms, namely persistent cough, fever, anosmia, or diarrhea. PCR was also 

conducted on any patients after suspected infectious contact with other patients, as well as on any 

patients being admitted to the hospital or moved between wards. Where capacity was lacking, 

patients displaying new symptoms were tested with priority. This testing procedure continued 

throughout the study period. 
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Mathematical Model 

Observation Model and Differential Equations 

We show the observational model that defines how testing and retesting is conducted for 

each stage of infection (Appendix Figure 1). We also show the structure of the transmission 

model (Figure 1). The observation model can be represented using differential equations that 

describe the change in state of each compartment in each time step (equation 1), in which λ(t) is 

the force of infection (equation 2). The bold terms in equation 1 above refer to flows that are 

determined in part by the available data from a given day. 

Equation 1 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀(𝒕𝒕) − 𝐈𝐈𝐀𝐀𝐀𝐀𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐀𝐀𝐀𝐀(𝑺𝑺, 𝒕𝒕) − 𝜆𝜆(𝑑𝑑)𝑑𝑑 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝑺𝑺, 𝒕𝒕) − Test(𝒕𝒕,𝑺𝑺) 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝐈𝐈𝐀𝐀𝐀𝐀𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐀𝐀𝐀𝐀(𝒕𝒕,𝑺𝑺𝑻𝑻) − 𝜆𝜆(𝑑𝑑)𝑑𝑑𝑇𝑇 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑺𝑺𝑻𝑻) + Test(𝒕𝒕,𝑺𝑺) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝐈𝐈𝐀𝐀𝐀𝐀𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐀𝐀𝐀𝐀(𝒕𝒕,𝑺𝑺) + 𝜆𝜆(𝑑𝑑)𝑑𝑑 − 𝛼𝛼𝑑𝑑 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬) − Test(𝒕𝒕,𝑬𝑬) 

𝑑𝑑𝑑𝑑𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝐈𝐈𝐀𝐀𝐀𝐀𝐈𝐈𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐀𝐀𝐀𝐀(𝒕𝒕,𝑺𝑺𝑻𝑻) + 𝜆𝜆(𝑑𝑑)𝑑𝑑𝑇𝑇 − 𝛼𝛼𝑑𝑑𝑇𝑇 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑬𝑬) 

𝑑𝑑𝑑𝑑𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑑𝑑(1 − 𝜓𝜓) − 𝑑𝑑𝑎𝑎𝛾𝛾𝜅𝜅2 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬𝒂𝒂) − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑬𝑬𝒂𝒂) 

𝑑𝑑𝑑𝑑𝑎𝑎𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑑𝑑𝑇𝑇(1 − 𝜓𝜓) − 𝑑𝑑𝑎𝑎𝑇𝑇𝛾𝛾𝜅𝜅2 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬𝒂𝒂𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑬𝑬𝒂𝒂) 

𝑑𝑑𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑑𝑑𝜓𝜓 − 𝑑𝑑𝑠𝑠𝛾𝛾 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬𝒔𝒔) − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑬𝑬𝒔𝒔) 

𝑑𝑑𝑑𝑑𝑠𝑠𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑑𝑑𝑇𝑇𝜓𝜓 − 𝑑𝑑𝑠𝑠𝑇𝑇𝛾𝛾 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑬𝑬𝒔𝒔𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑬𝑬𝒔𝒔) 

𝑑𝑑𝐼𝐼𝑎𝑎
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑎𝑎𝛾𝛾𝜅𝜅2 − 𝐼𝐼𝑎𝑎𝛿𝛿𝜅𝜅3 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕, 𝑰𝑰𝒂𝒂) − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕, 𝑰𝑰𝒂𝒂) 

𝑑𝑑𝐼𝐼𝑎𝑎𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑎𝑎𝑇𝑇𝛾𝛾𝜅𝜅2 − 𝐼𝐼𝑎𝑎𝑇𝑇𝛿𝛿𝜅𝜅3 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕, 𝑰𝑰𝒂𝒂𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕, 𝑰𝑰𝒂𝒂) 

𝑑𝑑𝐼𝐼𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑠𝑠𝑇𝑇𝛾𝛾 + 𝑑𝑑𝑠𝑠𝛾𝛾 − 𝐼𝐼𝑠𝑠𝛿𝛿 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕, 𝑰𝑰𝒔𝒔) − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕, 𝑰𝑰𝒔𝒔) 

𝑑𝑑𝐼𝐼𝑠𝑠𝑇𝑇
𝑑𝑑𝑑𝑑

= −𝐼𝐼𝑠𝑠𝑇𝑇𝛿𝛿 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕, 𝑰𝑰𝒔𝒔𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕, 𝑰𝑰𝒔𝒔) 
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𝑑𝑑𝑅𝑅𝑝𝑝
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑠𝑠𝛿𝛿 + 𝐼𝐼𝑎𝑎𝛿𝛿𝜅𝜅3 − 𝜔𝜔𝑅𝑅𝑝𝑝 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃�𝒕𝒕,𝑹𝑹𝒑𝒑� − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈�𝒕𝒕,𝑹𝑹𝒑𝒑� 

𝑑𝑑𝑅𝑅𝑝𝑝𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝐼𝐼𝑠𝑠𝑇𝑇𝛿𝛿 + 𝐼𝐼𝑎𝑎𝑇𝑇𝛿𝛿𝜅𝜅3 − 𝜔𝜔𝑅𝑅𝑝𝑝𝑇𝑇 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃�𝒕𝒕,𝑹𝑹𝒑𝒑𝑻𝑻� + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈�𝒕𝒕,𝑹𝑹𝒑𝒑� 

𝑑𝑑𝑅𝑅
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑅𝑅𝑝𝑝 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑹𝑹) − 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑹𝑹) 

𝑑𝑑𝑅𝑅𝑇𝑇
𝑑𝑑𝑑𝑑

= 𝜔𝜔𝑅𝑅𝑝𝑝𝑇𝑇 − 𝐃𝐃𝐀𝐀𝐀𝐀𝐃𝐃𝐃𝐃𝐈𝐈𝐃𝐃𝐃𝐃𝐃𝐃(𝒕𝒕,𝑹𝑹𝑻𝑻) + 𝐓𝐓𝐃𝐃𝐀𝐀𝐈𝐈(𝒕𝒕,𝑹𝑹) 

Force of Infection and Basic Reproduction Number Calculation 

The force of infection acting on susceptible patients (equation 2) is defined by the 

infectious populations, the transmission rate, β, and the total population size N (equation 3). 

Equation 2 

𝜆𝜆(𝑑𝑑)  =
𝛽𝛽�𝐼𝐼𝑠𝑠  + 𝐼𝐼𝑠𝑠𝑇𝑇  +  𝜀𝜀(𝑑𝑑𝑠𝑠  +  𝑑𝑑𝑠𝑠𝑇𝑇) +  𝜅𝜅1(𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑎𝑎𝑇𝑇) +  𝜀𝜀𝜅𝜅1(𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑎𝑎𝑇𝑇)�

𝑁𝑁
 

Equation 3 

𝑁𝑁 = 𝑑𝑑 + 𝑑𝑑𝑇𝑇 + 𝑑𝑑 + 𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑎𝑎𝑇𝑇 + 𝑑𝑑𝑠𝑠 + 𝑑𝑑𝑠𝑠𝑇𝑇 + 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑎𝑎𝑇𝑇 + 𝐼𝐼𝑠𝑠 + 𝐼𝐼𝑠𝑠𝑇𝑇 + 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑝𝑝𝑇𝑇 + 𝑅𝑅 + 𝑅𝑅𝑇𝑇 

The basic reproduction number (R0) value of can be calculated directly from the 

parameters according to equation 4, which takes into account the full-blown symptomatic 

transmission rate (β), the probability of entering the symptomatic (ψ) or asymptomatic pathway 

(1 – ψ), the relative transmission rate of each stage of infection (ε, κ1), and the rate of leaving 

each stage (γ and δ). In the 2-phase model, 2 R0 values, R0 before and R0 after, were calculated 

independently for each phase based on the different transmission rates, β1 and β2, using equation 

4; a combined R0 value was calculated as an average weighted by the duration of each phase 

using equation 5, with the final date being the end of the study period, day 50. 

Equation 4 

𝑅𝑅0 = 𝛽𝛽 �𝜓𝜓 �
𝜀𝜀
𝛾𝛾

+
1
𝛿𝛿
� + (1 − 𝜓𝜓)𝜅𝜅1 �

𝜀𝜀
𝛾𝛾

+
1
𝛿𝛿
�� 
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Equation 5 

𝑅𝑅0 combined =
𝑅𝑅0 beforemax�𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 0� + 𝑅𝑅0 after �final_date − max�𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖��

final_date− min�𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�
 

Deterministic Processes 

The bold terms in equation 1 above refer to flows that are determined in part by the 

available data from a given day (d), including number of admissions A(d), discharges D(d), and 

of tests T(d), as shown in weekly aggregate (Appendix Figure 2) or by specific parameter values, 

such as SARS-CoV-2 introduction date (tinit) and size (Einit), which together determine the 

number of daily new infectees C(d), in the case of epidemic initiation. This calculation ensures 

that admissions, discharges, and number of tests each occur with the same frequency in the 

model as they do in the data, and that the timing and size of the start of the epidemic is 

determined by parameter values. 

Admission 

Admissions only occur into the susceptible untested (S) group, and so on a given day (d) 

the number of admissions into this group is exactly determined by the number of admissions on 

that day, A(d): 

Equation 6 

� Admission(𝑑𝑑)𝑑𝑑𝑑𝑑
𝑖𝑖=𝑑𝑑+1

𝑖𝑖=𝑑𝑑
= 𝐴𝐴(𝑑𝑑) 

Initiation 

The expectation of the number of initial infectees from each susceptible group (S, ST) is 

determined by equations 7 and 8, where C(d) is equal to Einit on day tinit, and otherwise 0, with 

the total in both groups being equal to C(d) (equation 10). 

Equation 7 

𝑑𝑑�Initiation(𝑑𝑑, 𝑑𝑑)� = 𝐶𝐶(𝑑𝑑)
𝑑𝑑

𝑑𝑑 + 𝑑𝑑𝑇𝑇
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Equation 8 

𝑑𝑑�Initiation(𝑑𝑑, 𝑑𝑑𝑇𝑇)� = 𝐶𝐶(𝑑𝑑)
𝑑𝑑𝑇𝑇

𝑑𝑑 + 𝑑𝑑𝑇𝑇
 

For simplification, we denote the number of infections initiated on day d in compartment 

X by equation 9, which is equal to the integral of all initiations in all (both) compartments across 

the whole of the day. The total initiations across all compartments is equal to C(d) (equation 10). 

Equation 9 

Initiation(𝑑𝑑,𝑋𝑋) = � Initiation(𝑑𝑑,𝑋𝑋)𝑑𝑑𝑑𝑑
𝑖𝑖=𝑑𝑑+1

𝑖𝑖=𝑑𝑑
 

Equation 10 

� Initiation(𝑑𝑑,𝑋𝑋)
𝑋𝑋∈𝑆𝑆,𝑆𝑆𝑇𝑇

= 𝐶𝐶(𝑑𝑑) 

 

Discharge 

The expectation of the number of discharges for a compartment X on each day (equation 

11) has different values for symptomatically infected patients (Is and IsT), who have a discharge 

rate modified by the parameter μ. The denominator of the expectation, W, is the total 

dischargeable population, adjusting for these differences in rate (equation 12). 

Equation 11 

𝑑𝑑�Discharge(𝑑𝑑,𝑋𝑋)� = �

𝜇𝜇𝑋𝑋
𝑊𝑊

𝐷𝐷(𝑑𝑑) for 𝑋𝑋 ∈ 𝐼𝐼𝑆𝑆, 𝐼𝐼𝑆𝑆𝑇𝑇
𝑋𝑋
𝑊𝑊
𝐷𝐷(𝑑𝑑) for 𝑋𝑋 ∉ 𝐼𝐼𝑆𝑆, 𝐼𝐼𝑆𝑆𝑇𝑇

 

 

Equation 12 

𝑊𝑊 = 𝑑𝑑 + 𝑑𝑑𝑇𝑇 + 𝑑𝑑 + 𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑎𝑎𝑇𝑇 + 𝑑𝑑𝑠𝑠 + 𝑑𝑑𝑠𝑠𝑇𝑇 + 𝐼𝐼𝑎𝑎 + 𝐼𝐼𝑎𝑎𝑇𝑇 + 𝜇𝜇(𝐼𝐼𝑠𝑠 + 𝐼𝐼𝑠𝑠𝑇𝑇) + 𝑅𝑅𝑝𝑝 + 𝑅𝑅𝑝𝑝𝑇𝑇 + 𝑅𝑅 + 𝑅𝑅𝑇𝑇 
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As with initiations above, we denote the number of patients discharged on day d in 

compartment X by equation 13, which is equal to the integral of all discharges in that 

compartment across the whole of the day. The total discharges on day d across all compartments 

U is equal to D(d) (equation 14). 

Equation 13 

Discharge(𝑑𝑑,𝑋𝑋) = � Discharge(𝑑𝑑,𝑋𝑋)𝑑𝑑𝑑𝑑
𝑖𝑖=𝑑𝑑+1

𝑖𝑖=𝑑𝑑
 

Equation 14 

� Discharge(𝑑𝑑,𝑋𝑋)
𝑋𝑋∈𝑈𝑈

= 𝐷𝐷(𝑑𝑑) 

Testing Model 

The expectation of the number of tests to occur in a compartment X on day d is given as 

follows, with T(d) referring to the number of tests occurring on day d in the data (equation 15). 

The untested symptomatic patients are tested as a priority and so the number of tests they 

receive is determined as the minimum of their size (Is) and the number of tests available (T(d)), 

so the expected number of these (in equation 15 for Is) is the same as their total (equation 18). 

The remaining tests are distributed randomly throughout the remaining compartments. 

Expectations are shown in equation 15, derived from the number of tests left over after first 

symptomatic tests, the size of the compartment, the parameter φ for the already tested 

compartments, and a denominator M (equation 16) which represents the total testable population 

(including the adjustment for retesting). 

Equation 15 

𝑑𝑑�Test(𝑑𝑑,𝑋𝑋)� =

⎩
⎪
⎨

⎪
⎧

min(𝑇𝑇(𝑑𝑑), 𝐼𝐼𝑆𝑆) for 𝑋𝑋 ∈ 𝐼𝐼𝑆𝑆

min(𝑇𝑇(𝑑𝑑) − 𝐼𝐼𝑆𝑆, 0)
𝑋𝑋
𝑀𝑀

for 𝑋𝑋 ∈ 𝑑𝑑,𝑑𝑑,𝑑𝑑𝑎𝑎,𝑑𝑑𝑠𝑠, 𝐼𝐼𝑎𝑎,𝑅𝑅𝑝𝑝,𝑅𝑅

min(𝑇𝑇(𝑑𝑑) − 𝐼𝐼𝑆𝑆, 0)
𝜑𝜑𝑋𝑋
𝑀𝑀

for 𝑋𝑋 ∈ 𝑑𝑑𝑇𝑇 ,𝑑𝑑𝑇𝑇 ,𝑑𝑑𝑎𝑎𝑇𝑇 ,𝑑𝑑𝑠𝑠𝑇𝑇 , 𝐼𝐼𝑎𝑎𝑇𝑇 , 𝐼𝐼𝑠𝑠𝑇𝑇 ,𝑅𝑅𝑝𝑝𝑇𝑇 ,𝑅𝑅𝑇𝑇

 

Equation 16 

𝑀𝑀 = �𝑑𝑑 + 𝑑𝑑 + 𝑑𝑑𝑎𝑎 + 𝑑𝑑𝑠𝑠 + 𝐼𝐼𝑎𝑎 + 𝑅𝑅𝑝𝑝 + 𝑅𝑅� + 𝜑𝜑(𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑇𝑇 + 𝑑𝑑𝑎𝑎𝑇𝑇 + 𝑑𝑑𝑠𝑠𝑇𝑇 + 𝐼𝐼𝑎𝑎𝑇𝑇 + 𝐼𝐼𝑠𝑠𝑇𝑇 + 𝑅𝑅𝑝𝑝𝑇𝑇 + 𝑅𝑅𝑇𝑇) 
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As with initiations above, we denote the number of patients tested on day d in 

compartment X by equation 17, which is equal to the integral of all tests in that compartment 

across the whole of the day. The total tests across all compartments other than Is are equal to the 

number of remaining tests (equation 19). 

Equation 17 

Test(𝑑𝑑,𝑋𝑋) = � Test(𝑑𝑑,𝑋𝑋)𝑑𝑑𝑑𝑑
𝑖𝑖=𝑑𝑑+1

𝑖𝑖=𝑑𝑑
 

Equation 18 

Test(𝑑𝑑, 𝐼𝐼𝑆𝑆) = min(𝑇𝑇(𝑑𝑑), 𝐼𝐼𝑆𝑆) 

Equation 19 

� Test(𝑑𝑑,𝑋𝑋)
𝑋𝑋∉𝐼𝐼𝑆𝑆

= min(𝑇𝑇(𝑑𝑑) − 𝐼𝐼𝑆𝑆, 0) 

When simulating the observed tests on a given day using the function rmeasure in pomp 

(https://CRAN.R-project.org/package=pomp) for R (R Foundation for Statistical Computing, 

https://www.r-project.org), the number of positive and negative tests for a given day is drawn 

from the number of tests occurring in each compartment (equation 15) according to the 

probability that a sample taken from a patient in that compartment would test positive, which is 

governed by specificity, v, for virus-free compartments, and sensitivity zX for each compartment 

X (equations 20 and 21). These expected distributions are also used for evaluating the likelihood 

of observed data using dmeasure in pomp. 

Equation 20 

𝑑𝑑�Positives(𝑑𝑑)�

= �Test(𝑑𝑑, 𝑑𝑑) + Test(𝑑𝑑, 𝑑𝑑𝑇𝑇)�(1 − 𝑣𝑣) + �Test(𝑑𝑑,𝑑𝑑) + Test(𝑑𝑑,𝑑𝑑𝑇𝑇)�𝑧𝑧𝐸𝐸

+ �Test(𝑑𝑑,𝑑𝑑𝑎𝑎) + Test(𝑑𝑑,𝑑𝑑𝑎𝑎𝑇𝑇)�𝑧𝑧𝐸𝐸𝑎𝑎 + �Test(𝑑𝑑,𝑑𝑑𝑠𝑠) + Test(𝑑𝑑,𝑑𝑑𝑠𝑠𝑇𝑇)�𝑧𝑧𝐸𝐸𝑠𝑠

+ �Test(𝑑𝑑, 𝐼𝐼𝑎𝑎) + Test(𝑑𝑑, 𝐼𝐼𝑎𝑎𝑇𝑇)�𝑧𝑧𝐼𝐼𝑎𝑎 + �Test(𝑑𝑑, 𝐼𝐼𝑠𝑠) + Test(𝑑𝑑, 𝐼𝐼𝑠𝑠𝑇𝑇)�𝑧𝑧𝐼𝐼𝑠𝑠

+ �Test�𝑑𝑑,𝑅𝑅𝑝𝑝� + Test�𝑑𝑑,𝑅𝑅𝑝𝑝𝑇𝑇�� 𝑧𝑧𝑅𝑅𝑝𝑝 + �Test(𝑑𝑑,𝑅𝑅) + Test(𝑑𝑑,𝑅𝑅𝑇𝑇)�(1− 𝑣𝑣) 
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Equation 21 

𝑑𝑑�Negatives(𝑑𝑑)�

= �Test(𝑑𝑑, 𝑑𝑑) + Test(𝑑𝑑, 𝑑𝑑𝑇𝑇)�𝑣𝑣 + �Test(𝑑𝑑,𝑑𝑑) + Test(𝑑𝑑,𝑑𝑑𝑇𝑇)�(1− 𝑧𝑧𝐸𝐸)

+ �Test(𝑑𝑑,𝑑𝑑𝑎𝑎) + Test(𝑑𝑑,𝑑𝑑𝑎𝑎𝑇𝑇)�(1− 𝑧𝑧𝐸𝐸𝑎𝑎)

+ �Test(𝑑𝑑,𝑑𝑑𝑠𝑠) + Test(𝑑𝑑,𝑑𝑑𝑠𝑠𝑇𝑇)�(1 − 𝑧𝑧𝐸𝐸𝑠𝑠) + �Test(𝑑𝑑, 𝐼𝐼𝑎𝑎) + Test(𝑑𝑑, 𝐼𝐼𝑎𝑎𝑇𝑇)�(1 − 𝑧𝑧𝐼𝐼𝑎𝑎)

+ �Test(𝑑𝑑, 𝐼𝐼𝑠𝑠) + Test(𝑑𝑑, 𝐼𝐼𝑠𝑠𝑇𝑇)�(1 − 𝑧𝑧𝐼𝐼𝑠𝑠)

+ �Test�𝑑𝑑,𝑅𝑅𝑝𝑝� + Test�𝑑𝑑,𝑅𝑅𝑝𝑝𝑇𝑇�� �1 − 𝑧𝑧𝑅𝑅𝑝𝑝� + �Test(𝑑𝑑,𝑅𝑅) + Test(𝑑𝑑,𝑅𝑅𝑇𝑇)�𝑣𝑣 

Implementation of the Stochastic Model 

The hybrid stochastic model was implemented by using the rprocess function in pomp 

using the Gillespie algorithm because the number of events on a given day is relatively small 

(around 15–30) given the population of <400 patients. The algorithm calculates a rate for each 

possible type of event to occur, determines the time and type of the next event accordingly, and 

then recalculates the rates after each event. To ensure that deterministic transitions (i.e., events 

determined by model input) occur with certainty within the framework of the Gillespie 

algorithm, the rate of such events was set to an arbitrarily large number, L = 106, if further 

instances of that event are still to occur on day d. Once all required instances have occurred, the 

rate is set to zero. 

Statistical Inference 

Likelihood Calculation 

The infection model was linked to observed data (number of positive and negative tests 

per day) using the framework of a partially observed Markov process (POMP) in which the 

modified susceptible-exposed-infected-recovered (SEIR) model governs the underlying infection 

dynamics, and each day the observation process provides a likelihood of observing the data 

given the internal state. 

The likelihood for the observation of several negative and positive tests on a particular 

day d is given in equation 22. The set of parameters is represented by θ, and normally only β and 

tinit would vary within the 1-phase model, but in the 2-phase model β1, β2, and tinit are estimated. 

The expected numbers of positives and negatives according to the model and θ are given by 
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equations 20 and 21. The total likelihood is the product of the likelihood values across all time 

points d. 

Equation 22 

Likelihood𝑑𝑑
= 𝑝𝑝(testing negative(𝑑𝑑)|model, θ)Negatives(𝑑𝑑)𝑝𝑝(testing positive(𝑑𝑑)|model, θ)Positives(𝑑𝑑) 

= �
𝑑𝑑�negatives(𝑑𝑑)�

�𝑑𝑑�negatives(𝑑𝑑)� + 𝑑𝑑�positives(𝑑𝑑)��
�

Negatives(𝑑𝑑)

�
𝑑𝑑�positives(𝑑𝑑)�

�𝑑𝑑�negatives(𝑑𝑑)� + 𝑑𝑑�positives(𝑑𝑑)��
�

Positives(𝑑𝑑)

 

 

Parameter Estimation through Stochastic Model Fitting 

The inference of parameters (transmission rates β, or β1 and β2, and for tinit or Einit) was 

conducted according to the methodology proposed by King et al. (6). The first step was an initial 

search for the values of all parameters to be estimated, using 500 iterations of 500 particles, and 

a cooling fraction of 50% every 50 steps. This was repeated 10 times for each of 1,000 different 

starting points of the parameters to be estimated. 

Subsequently a likelihood profile was estimated for β (in the 1-phase model) or β1 (in the 

2-phase model) by repeating the analysis above but using starting points for the parameter to be 

profiled across its relevant range (e.g., 0.1–10 in steps of 0.1), and holding this parameter 

constant while estimating the other(s) using the same inference methodology. 

In all iterative filtering analyses, transmission rates were allowed to vary during an 

iteration, while tinit (or Einit) was only varied at the beginning of an iteration as an initial value 

parameter. During inference of the 2-phase model, each β-value was only allowed to vary during 

the phase in which it took direct effect, meaning β1 would only vary before tinflect and β2 would 

only vary afterwards. 

Both the initial search and likelihood profiling were conducted using 500 iterations of 

500 particles in each analysis, each of which was repeated 10 times for each of 1,000 different 

starting points of the parameters to be estimated. 



 

Page 11 of 25 

The likelihood of the final parameter combination in each analysis (whether initial search 

or profiling) was then estimated by performing 10 repetitions of particle filtering with 100,000 

particles, from which a linear average of the 10 likelihoods was taken. 

Confidence Intervals for Estimated Parameters 

Confidence intervals for estimated parameters were established by identifying sets of 

parameters values with a likelihood above a threshold relative to the highest likelihood for each 

analysis. The threshold was the maximum value of the likelihood minus half of the 95% quantile 

of the χ-square distribution with degrees of freedom corresponding to the number of parameters 

to be estimated, typically 2 for the 1-phase model (β and tinit) and 3 for the 2-phase model (β1, β2, 

and tinit). 

Model Inference Validation 

We conducted validation by using synthetic data to test the effectiveness of the model 

and statistical inference to recover known values of the parameters. Several datasets, 

representing numbers of “observed” positive cases, were generated from model simulations to 

represent the transmission within the whole hospital and the individual wards using known 

parameter values. The parameter values estimated from these datasets were then compared with 

the known values used to create them. Values of the parameters of interest were varied 

simultaneously, while all other parameters were fixed as depicted (Appendix Table 1). 

Datasets were generated using rmeasure in pomp for each set of known parameter values 

over a 3-month observation period (day −39 to day 50). Multiple (n = 10) datasets were 

generated for each ward, or the whole hospital, and each set of known parameter values. In each 

case, the real data on numbers of daily tests, admissions, discharges, and number of patients were 

used. Iterative filtering to estimate the relevant parameters was then conducted on each dataset. 

The 1-phase model was validated by using data at the scale of both the whole-hospital and 

individual ward levels, while the 2-phase model was validated only at the whole-hospital level. 

Unlike in the analysis on the true data, the value of β or β1 was only estimated by iterative 

filtering directly, without the systematic likelihood profile for a range of values. For each 

parameter search, 500 iterations of 500 particles were used. For each known set of parameter 
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values, the median value of the estimated parameters was identified and compared with their 

known values. 

To systematically identify wards with sufficient power to be analyzed using our inference 

methodology, the resulting estimated values were compared with true values. For each dataset, a 

deviation was estimated as the ratio of the estimated to the true value. If the median value of this 

deviation across all analyses for the ward was <1.15, it was considered that the ward had 

sufficient power to be analyzed. 

Simulated Epidemic Curves 

After identification of sets of parameter values with likelihoods within the 95% CI 

relative to maximum likelihood, these sets of parameter values were sampled with replacement 

1,000 times, and each time an epidemic was simulated. Those parameters that went to extinction 

(having <3 cumulative infections) were excluded, and the remaining epidemics were used to 

calculate the median and 95% CI for relevant epidemic variables (number of positive tests, 

detected and undetected symptomatic and asymptomatic prevalence) for each date. 

Due to repeat testing, it is not possible to calculate exactly the number of infections that 

were detected and undetected in simulated data, but equation 23 provides an approximation, 

where undetected includes both untested patients as well as false negatives. Symbols are 

described in Appendix Table 1. 

 

Equation 23 

Prevalence of undetected asymptomatics = �𝑑𝑑𝑎𝑎 + 𝐼𝐼𝑎𝑎 + 𝑑𝑑𝑎𝑎𝑇𝑇(1 − 𝑍𝑍𝐸𝐸𝑎𝑎) + 𝐼𝐼𝑎𝑎𝑇𝑇(1− 𝑍𝑍𝐼𝐼𝑎𝑎)� 

Prevalence of undetected symptomatics = �𝑑𝑑𝑠𝑠 + 𝐼𝐼𝑠𝑠 + 𝑑𝑑𝑠𝑠𝑇𝑇(1 − 𝑍𝑍𝐸𝐸𝑠𝑠) + 𝐼𝐼𝑠𝑠𝑇𝑇(1 − 𝑍𝑍𝐼𝐼𝑠𝑠)� 

Prevalence of detected asymptomatics = (𝑑𝑑𝑎𝑎𝑇𝑇𝑍𝑍𝐸𝐸𝑎𝑎 + 𝐼𝐼𝑎𝑎𝑇𝑇𝑍𝑍𝐼𝐼𝑎𝑎) 

Prevalence of detected symptomatics = (𝑑𝑑𝑠𝑠𝑇𝑇𝑍𝑍𝐸𝐸𝑠𝑠 + 𝐼𝐼𝑠𝑠𝑇𝑇𝑍𝑍𝐼𝐼𝑠𝑠) 

 

Calculating Time-Varying Reproduction Number 

We calculated the time-varying reproduction number, Rt, across the entire hospital and 

from the date of the first positive test until the 50th day, using the EpiEstim package 



 

Page 13 of 25 

(https://CRAN.R-project.org/package=EpiEstim). The number of tests per day that were the first 

positive test for each patient was used as the daily incidence. We assumed a serial interval of 5.8 

(range 4.8–6.8) days (3). 

Considerations in Adapting to Alternative Scenarios 

The model code is available on Github (github.com/georgeshirreff/Hospital_R0_C19) 

with the intention that this model can be applied to other healthcare environments. With minimal 

adjustment, the could be directly adapted to a dataset aggregating positive and negative tests for 

active infection, admissions, and discharges each day. It could easily be adapted to different 

types of SARS-CoV-2 tests by adjusting the sensitivity and specificity for different stages of 

infection. Testing for both active infection and serology could also be included with 

consideration of the outcomes from testing at each stage of infection and adjustment to the 

likelihood function to account for both testing streams. 

Our model rests on an assumption of free mixing between persons, so ward-level analysis 

might be more appropriate where this is unrealistic. Simultaneous modeling of different 

subpopulations, such as HCWs and patients in different wards, could be straightforwardly 

achieved, requiring consideration of the relative contact rates between these groups. The number 

of iterations and particles used for the statistical inference, as well as the number of repetitions of 

the analysis, might need to be adjusted to the size of the dataset and the desired level of 

precision. 

Supplementary Results 

Validation of Statistical Inference of Model Parameters 

Simultaneous estimation of known parameter values was conducted for both the 1- and 2-

phase models on data at the scale of the whole hospital. We describe the relationship between 

known and estimated values of β and tinit for the 1-phase model (Appendix Figure 4). The value 

of β was well estimated throughout the range, but the estimate of tinit was slightly over-estimated 

from days −25 to −16, but not after this point. 

We also describe the relationship for the 2-phase model between known values of β1, β2, 

and tinit and their estimates (Appendix Figure 5). The first phase transmission rate, β1, was 

reliably estimated up to 1.0 with a slight overestimation after that point. The second phase 
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transmission rate, β2, was correctly estimated, except for values wrongly estimated to be close to 

zero. However, in the absence of estimates close to zero in the analysis of true data, the estimates 

could be considered reliable. As with the 1-phase model, the estimate of tinit deviated slightly 

when it fell in the first weeks but was more reliable after day −15. 

The ability of our framework to correctly estimate parameter values at the ward level was 

limited due to much smaller population sizes and specific distributions of tests. We illustrate the 

ability to estimate values of β and tinit simultaneously using the 1-phase model on individual 

wards (Appendix Figures 6,7). Our results suggest that only data corresponding to wards A2, C0, 

C1, C2, and C3 provided sufficient power to be analyzed through our framework, and C1 was 

also excluded due to the lack of visible relationship between true and estimated values. 

Results of Whole-Hospital Analysis  

We show results for all analyses of the 1-phase model (Appendix Table 2) and for 

Einit = 1 only (Table 1). We show results for all analyses of the 2-phase model with tinflect = day 

12 (Appendix Table 3) and those for Einit = 1 only (Table 1). We also show analyses exploring 

the effect of changing tinflect (Appendix Table 4). 

Results of Ward-Level Analysis  

We compared results from each ward (Appendix Table 5). These results demonstrate that 

the Akaike information criterion (AIC) for the 1-phase model is lower or equal for 3 of 4 wards. 

Sensitivity Analysis 

We calculated best estimates and 95% CI for β1, β2, and tinit (Appendix Figure 8). Many 

parameters affect the upper ranges of β1, most markedly ε which also affects the best estimate. 

However, the relative effects on β2 are much greater; δ and the sensitivity parameters of form Zx 

have a large effect on both the mean estimate and range. An early inflection point, tinflect, serves 

to suggest the possibility of an earlier epidemic initiation point, tinit, but the biggest effect on tinit 

comes from perturbing the number of index cases, Einit, with a larger number of indices pointing 

to a later introduction. 

Time-Varying Reproduction Number 

The estimated time-varying reproduction number (Rt) had an initially high value, 10 

(1.8–23.7), which is consistent with our own estimate of R0 in the first phase (Appendix Figure 

9). Rt drops to a low of 2.8 (0.7–5.8), which reflects the fall in our own estimate in the second 
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phase of the analysis, representing a decrease of 72%. A similar magnitude is observed by 

calculating the mean Rt before, 8.0 (1.5–18.9), and after, 2.1 (1.3–3.1), our estimated change 

point, tinflect. The analysis also displays a second peak after the first fall in Rt. Because this 

method only accounts for incident cases and ignores the evolving testing rate, it is likely that this 

peak reflects that substantial increase in testing rate rather than a true increase in transmission 

rate. 
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Appendix Table 1. Symbols, parameters, values, and state variables used in a model of basic reproduction number of nosocomial 
SARS-CoV-2 transmission 
Symbol Parameter Value (95% CI) Source 
tinit Date on which the initial infection occurs Estimated from the modeling analysis NA 
tinflect Date on which the value of β changes in 

the 2-phase model 
Estimated within range 1–16 (relative to 

date of first positive sample) 
NA 

Einit The number of initial infections at date tinit 1 (default), 3 or 10 cases NA 
β1 Transmission rate per day before the 

inflection date 
Estimated from the modeling analysis  

β2 Transmission rate per day after the 
inflection date 

Estimated from the modeling analysis NA 

β The current transmission rate per day, or 
the single transmission rate in the 1-

phase model 

Estimated from the modeling analysis  

ε Relative transmission rate from during 
pre-symptomatic infection compared with 

symptomatic infection 

0.63 (0.18–2.26) (1) 

1/α Mean duration of non-infectious 
incubation in days 

3.4 (3.3–4.0) (2) Latent period 

1/γ Mean duration of infectious incubation 
stage in days 

2.3 (0.8–3.0) (3) Duration of pre-symptomatic 
infection 

1/δ Mean duration of full-blown infection in 
days 

7 (2.4–9.1) (3) with uncertainty proportional 
to that of duration of infectious 

incubation 
1/ω Mean duration of viral shedding following 

recovery from infectious stage in days 
20 (0–60) Hospital data; see Appendix 

Methods; Appendix Figure 3 
Ψ Proportion entering symptomatic 

pathway 
0.69 (0.62–0.76) (1) 

κ1 Relative infectivity of asymptomatics in 
full infection relative to full symptomatic 

infection 

0.35 (0.1–1.27) (1) 

κ2, κ3 Relative rates of progression to full 
infection (Ea to Ia) and recovery in 
asymptomatic pathway, relative to 

symptomatic pathway 

1 Assumption 

μ Relative rate of discharge for 
symptomatic patients relative to any non-

symptomatic patient 

1 Assumption 

ZE, ZEa, 
ZEs, ZIa, 
ZIs, ZRp 

PCR test sensitivity for E, Ea, Es, Ia, Is, or 
Rp states 

0.1 (0–0.5), 
0.7, 0.7 (0.25–0.85), 
0.8, 0.8 (0.65–0.9), 

0.3 (0.2–0.5) 

(4) with (5) confirming that viral 
loads in symptomatic and 

asymptomatic infection are 
similar 

v PCR test specificity 0.99 (0.96–0.992) Assumption (lower bound of 
range comes from A.N. Cohen 

et al., unpub. data, 
http://medrxiv.org/lookup/doi/10.

1101/2020.04.26.20080911) 
φ Relative rate of retesting compared to 

testing for the first time 
0.6 (0.5–0.7) Hospital data; see Appendix 

Methods 
A(d) The number of admissions in the data on 

day d 
 Hospital data 

D(d) The number of discharges in the data on 
day d 

 Hospital data 

T(d) The number of tests in the data on day d  Hospital data 
C(d) The number of infections initiated 

(moved from S to E or ST to ET on day d) 
 tinit and Einit 

λ(t) Force of infection at time t  State variable 
   State variable 
W The total rate adjusted number of 

dischargeable individuals across all 
compartments at a given time 

 State variable 

M The total rate adjusted number of 
testable individuals across all 

compartments including those eligible for 
retesting, but excluding untested Is, at a 

given time 

 State variable 

N The total population size at a given time  State variable 
U The universal set of compartments  State variable 
Admissio
n(t) 

Admissions occurring into compartment 
S at time t 

 State variable 
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Initiation(
X,t) 

Infection initiations occurring from 
compartment X at time t 

 State variable 

Discharg
e(X,t) 

Discharges occurring from compartment 
X at time t 

 State variable 

Test(X,t) Tests occurring from compartment X at 
time t 

 State variable 

S Susceptible untested at a given time  State variable 
E Infected uninfectious untested at a given 

time 
 State variable 

Ea Early infectious infection on 
asymptomatic pathway, untested at a 

given time 

 State variable 

Es Pre-symptomatic infectious infection on 
symptomatic pathway, untested at a 

given time 

 State variable 

Ia Full-blown infection on asymptomatic 
pathway, untested at a given time 

 State variable 

Is Full-blown symptomatic infection, 
untested at a given time 

 State variable 

Rp Recovered but still shedding virus, 
untested at a given time 

 State variable 

R Recovered and no longer shedding virus, 
untested at a given time 

 State variable 

ST Susceptible tested at a given time  State variable 
ET Infected uninfectious tested at a given 

time 
 State variable 

EaT Early infectious infection on 
asymptomatic pathway, tested at a given 

time 

 State variable 

EsT Pre-symptomatic infectious infection on 
symptomatic pathway, tested at a given 

time 

 State variable 

IaT Full-blown infection on asymptomatic 
pathway, tested at a given time 

 State variable 

IsT Full-blown symptomatic infection, tested 
at a given time 

 State variable 

RpT Recovered but still shedding virus, tested 
at a given time 

 State variable 

RT Recovered and no longer shedding virus, 
tested at a given time 

 State variable 

 
 
Appendix Table 2. Best estimates and the ranges for β in the 1-phase model and corresponding R0 values to assess nosocomial 
SARS-CoV-2 transmission* 
Estimate β R0 Einit tinit† AIC 
β, tinit  0.38 (0.30–0.60) 2.6 (2.0- 4.1) 1 −22 (−39 to −4) 657.3257 

0.40 (0.29–0.62) 2.7 (2.0- 4.2) 3 −8 (−38 to −2) 656.5639 
0.38 (0.26–0.60) 2.6 (1.8- 4.1) 10 −4 (−11 to 0) 653.7993 

β, Einit 
 

0.37 (0.27–0.61) 2.5 (1.8- 4.1) 2.7 (1.5–19.9) –6 654.4575 
0.37 (0.26–0.61) 2.5 (1.8- 4.1) 2.5 (0.5–11.3) –13 656.2111 
0.40 (0.29–0.57) 2.7 (2.0- 3.9) 1.8 (0.5- 7.8) –20 655.3993 

*R0 values are calculated using equation 4. Bold text indicates fixed values. AIC, Akaike information criterion; NE, not estimated; β1, transmission rate 
per day before the inflection date; β2, transmission rate per day after the inflection date; Einit, number of initial infections at date initial infection occurs; 
R0, basic reproduction number; tinit, date initial infection occurs.  
†Values for tinit are relative to the day of the first positive sample. 

 
Appendix Table 3. Best estimates and their ranges for β1, β2 from the 2-phase model and corresponding R0 values to assess 
nosocomial SARS-CoV-2 transmission* 
Estimate Einit β1 β2 R0 before R0 after tinit AIC 
β1, β2, tinit 1 1.28 (0.76–2.40) 0.19 (0.10–0.30) 8.72 (5.14–16.32) 1.33 (0.68–2.04) −4 (−24 to 0) 628.85 

3 1.23 (0.68–2.20) 0.19 (0.10–0.28) 8.37 (4.65–14.96) 1.31 (0.66–1.89) −2 (−13 to 4) 628.4 
10 1.03 (0.59–2.80) 0.20 (0.10–0.27) 7.03 (4.00–19.04) 1.39 (0.67–1.85) 0 (−6 to 6) 631.21 

β1, β2, 
Einit 

0.70 (0.50–2.49) 1.10 (0.63–2.00) 0.20 (0.11–0.30) 7.48 (4.26–13.60) 1.39 (0.76–2.02) –6 634.51 
0.63 (0.50–2.43) 1.14 (0.69–2.10) 0.20 (0.10–0.29) 7.78 (4.68–14.28) 1.36 (0.69–1.96) –13 631.74 
1.12 (0.50–7.47) 1.24 (0.70–2.20) 0.19 (0.10–0.29) 8.42 (4.73–14.96) 1.32 (0.67–1.95) –20 629.24 

*R0 values were calculated using equation 4, substituting the corresponding β value. Bold text indicates fixed values. AIC, Akaike information 
criterion; NE, not estimated; β1, transmission rate per day before the inflection date; β2, transmission rate per day after the inflection date; Einit, 
number of initial infections at date initial infection occurs; R0, basic reproduction number; tinit, date initial infection occurs. 
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Appendix Table 4. Effect of changing tinflect on estimated parameter values in the 2-phase model to assess nosocomial SARS-CoV-
2 transmission* 

tinflect β1 β2 R0 before R0 after R0 combined† 
Intervention 

efficacy tinit AIC 
1 3.44 (0.29–49.50) 0.36 (0.23–

0.57) 
23.38 (2.00–

336.67) 
2.47 (1.60–

3.88) 
13.59 (2.41–

180.07) 
0.89 (−0.47 to 

0.99) 
−4 (−37 to 1) 654.27 

6 2.68 (0.99–49.50) 0.29 (0.17–
0.40) 

18.21 (6.71–
336.67) 

1.98 (1.16–
2.70) 

10.61 (4.50–
179.87) 

0.89 (0.64–
1.00) 

−2 (−19 to 6) 639.97 

8 2.24 (0.99–12.10) 0.25 (0.16–
0.34) 

15.22 (6.73–
82.30) 

1.68 (1.07–
2.35) 

8.87 (4.39–
44.43) 

0.89 (0.68–
0.98) 

−2 (−20 to 3) 633.56 

10 1.62 (0.91–4.00) 0.22 (0.14–
0.32) 

11.01 (6.18–
27.21) 

1.49 (0.96–
2.14) 

6.55 (4.14–
15.12) 

0.86 (0.67–
0.95) 

−3 (−22 to 1) 629.89 

12 1.28 (0.76–2.00) 0.19 (0.10–
0.30) 

8.72 (5.14–
13.60) 

1.33 (0.68–
2.04) 

5.26 (3.38–
7.94) 

0.85 (0.66–
0.94) 

−4 (−24 to 1) 628.85 

14 1.02 (0.70–1.50) 0.17 (0.08–
0.26) 

6.91 (4.73–
10.20) 

1.15 (0.56–
1.77) 

4.22 (3.06–
6.09) 

0.83 (0.63–
0.94) 

−5 (−27 to 2) 630.19 

16 0.84 (0.54–1.08) 0.16 (0.07–
0.26) 

5.69 (3.65–
7.31) 

1.07 (0.48–
1.78) 

3.53 (2.61–
4.29) 

0.81 (0.61–
0.93) 

−5 (−28 to 2) 634.83 

*Best estimates and ranges for β1, β2, corresponding R0 values, and tinit. R0 values are calculated using equation 4, substituting the corresponding β 
value. The risk ratio is calculated for each point estimate as β1/β2. AIC, Akaike information criterion; β1, transmission rate per day before the inflection 
date; β2, transmission rate per day after the inflection date; R0, basic reproduction number; tinflect, date on which the value of β changes in the 2-phase 
model; tinit, date initial infection occurs. 
†The combined R0 is an average R0 in each phase weighted by phase duration as in equation 5. 

 
Appendix Table 5. Best estimates and ranges for β1, β2, and R0 in each phase, combined, and tinit for each hospital ward in a 2-
phase model to assess nosocomial SARS-CoV-2 transmission* 

Ward 
2-phase, value (95% CI)†  1-phase 

β1 β2 Risk ratio‡ R0 combined§ tinit AIC  AIC 
A2 2.16 (0.30–NE) 0.70 (0.31–4.42) 0.33 (0.04–11.39) 10.41 (4.77–49.01) 4 (−20 to 7) 139.4  138.25 
C0 NE 0.35 (0.26–4.89) 0.04 (0.03–7.20) 39.44 (1.75–50.23) 10 (−38 to 11) 89.91  91.59 
C2 NE 0.00 (0.00–0.08) 0.00 (0.00–0.06) 37.25 (1.16–38.52) −14 (−33 to −12) 57.62  57.92 
C3 6.50 (0.00–NE) 0.41 (0.23–0.64) 0.06 (0.03–NE) 26.43 (1.03–39.82) 20 (−26 to 21) 47.25  45.25 
*The values of Einit was fixed at day 1 and tinflect was fixed at day 11. AIC, Akaike information criterion; NE, not estimated; β1, transmission rate per 
day before the inflection date; β2, transmission rate per day after the inflection date; Einit, number of initial infections at date initial infection occurs; R0, 
basic reproduction number; tinflect, date on which the value of β changes in the 2-phase model; tinit, date initial infection occurs. 
†In many instances, the upper bound of the 95% CI for β1, and in some also the most likely value of β1, could not be estimated due to a flat likelihood 
surface, in which case the value is given as NE.  
‡The risk ratio is calculated for each point estimate as β1/β2.  
§R0 values were calculated using equations 4 and 5. 
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Appendix Figure 1. Illustration of the observation process for a model of nosocomial SARS-CoV-2 

transmission. X1 represents any compartment of untested persons who are shedding virus (E, Ea, Es, Ia, 

Rp) who test positive at their compartment-specific sensitivity rate (zX1), and X2 represents any 

compartment of persons not recently tested who are not shedding virus (S, R) who test negative at rate v. 

X1T, IsT, and X2T represent tested counterparts. The symptomatic persons (Is and IsT) are shown 

separately because testing is conducted first on the non-recently tested symptomatic group, but retesting 

is equally likely for symptomatic persons as for asymptomatic persons. Upon testing or retesting, the 

dotted arrows indicate the probabilities of the possible observed outcomes, positive and negative. E, 

exposed; Ea, asymptomatic exposed; Es, symptomatic exposed; Ia, asymptomatic infected; Is, 

symptomatic infected; IsT, symptomatic infected and tested; R, recovered; Rp, recovered but shedding 

virus; S, susceptible; +, positive; – negative.  
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Appendix Figure 2. Weekly aggregated number of admissions, discharges, and PCR tests reported over 

the study periodin a hospital used for developing a model of basic reproduction number of nosocomial 

SARS-CoV-2 transmission. The daily disaggregated data are used in the model as A(d), admissions/day; 

D(d), discharges/day; and T(d), tests/day. 

Appendix Figure 3. Results from repeat tests taken after a first PCR–positive test among patients in a 

hospital used to develop a model of basic reproduction number of nosocomial SARS-CoV-2 transmission. 

A) Number of positive (pos) and negative (neg) PCR tests reported. The duration of the full-blown 

infection stage was 7 days (Table 1). B) Likelihood for each potential duration (in days) of the Rp stage 

according to the sensitivity of the subsequent stages and the number of tests from each. dur_I, duration 

of infectiousness; dur_Rp, duration of viral shedding after recovered; Rp, recovered but shedding virus. 
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Appendix Figure 4. Validation of simultaneous estimation of transmission rate and initial infection date 

using the 1-phase model of nosocomial SARS-CoV-2 transmission on datasets at the whole-hospital 

level. A) Estimation of β. B) Estimation of tinit. Each point represents a true value of the parameter on its x-

axis, with the value on the y-axis being the median across 10 attempts to estimate the true value using 

particle filtering. The solid black line indicates where the true and estimated values are equal. The value 

of Einit was fixed at 1. Einit, number of initial infections at date initial infection occurs; tinit, date initial 

infection occurs; β, current transmission rate per day. 

Appendix Figure 5. Validation of simultaneous estimations of transmission rates and initial infection date 

using a 2-phase model of nosocomial SARS-CoV-2 transmission on the datasets at the scale of the 

whole hospital. A) Validation for β1. B) Validation for β2. C) Validation for tinit. Each point represents a true 

value of the parameter on its x-axis; the value on the y-axis is the median across 10 attempts to estimate 

the true value using particle filtering. Values for Einit were fixed at day 1 and values for tinflect were fixed at 

day 12. Solid black line indicates where the true and estimated values are equal. Einit, number of initial 

infections on the date initial infection occurs; tinflect, date on which the value of β changes in the 2-phase 

model; tinit, date initial infection occurs; β1, transmission rate per day before the inflection date; β2, 

transmission rate per day after the inflection date. 
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Appendix Figure 6. Validation of the estimation of β using the 1-phase model of nosocomial SARS-CoV-

2 transmission on datasets at the ward level in a hospital used for developing a model to measure basic 

reproduction number. Columns represent the hospital buildings A–C (left–right); rows 0–3 represent the 

floors in each building. The black dashed line represents the median estimate on the y-axis for each true 

value of the parameter on the x-axis. The gray area represents the 95% range of estimates for each value 

of the true parameter. The solid black line indicates where the true and estimated values are equal. The 

value of Einit was fixed at 1. The numerical value given in the corner is the median ratio between the 

estimated and true values. Einit, number of initial infections at date initial infection occurs; β, current 

transmission rate per day. 

 



 

Page 23 of 25 

Appendix Figure 7. Validation of the estimation of initial infection date (tinit) using the 1-phase model of 

nosocomial SARS-CoV-2 transmission on datasets at the ward level. Columns A–C represent the hospital 

buildings; rows 0–3 represent the floors in each building. The black dashed line represents the median 

estimate on the y-axis for each true value of the parameter on the x-axis. The gray area represents the 

95% range of estimates for each value of the true parameter. The solid black line indicates where the true 

and estimated values are equal. The value of Einit was fixed at 1. Einit, number of initial infections at date 

initial infection occurs. 
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Appendix Figure 8. Results of sensitivity analysis of a 2-phase model of nosocomial SARS-CoV-2 

transmission. Analysis shows beta1 (β1), beta2 (β2), and their corresponding R0 values R0before 

(corresponds to β1), and R0after (corresponds to β2); and tinit under parameter values perturbed according to 

their uncertainty ranges (Table 1; Appendix Methods), with all other parameters held at baseline values. 

Error bars indicate 95% CI, the corresponding dot shows the values of the parameter values that had the 

highest likelihood. In the scenario modifying Zx, all Zx parameters were modified simultaneously, to their 

lower or upper bounds, or to 0.6. In the scenario kappa23, both κ2, the relative rates of progression from 

stage Ea, and κ3, the relative rate of progression from stage Ia, compared to the equivalent symptomatic 

stage, were modified by the same factor. R0, basic reproduction number; Ea, asymptomatic exposed; Einit, 

number of initial infections at date initial infection occurs; Ia, asymptomatic infected; tinflect, date on which 

the value of β changes in the 2-phase model; tinit, date initial infection occurs; β1, transmission rate per 

day before the inflection date; β2, transmission rate per day after the inflection date, Zx, PCR test 

sensitivity.  
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Appendix Figure 9. Time-varying reproduction number of nosocomial SARS-CoV-2 transmission. 

Estimation performed by using the EpiEstim package (https://CRAN.R-project.org/package=EpiEstim), 

and on the basis of incident cases, using a serial interval mean of 5.8 days and standard deviation of 

0.51. The solid black line indicates the median estimate. The gray area indicates the 95% credibility 

interval. The red arrow indicates our best estimate for the transmission rate change point in our 2-phase 

model analysis. tinflect, date on which the value of β changes in the 2-phase model; β, current transmission 

rate per day. 

 


