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ABSTRACT Acoustic simulation of sound propagation inside the vocal tract is a key element of speech
research, especially for articulatory synthesis, which allows one to relate the physics of speech production
to other fields of speech science, such as speech perception. Usual methods, such as the transmission line
method, have a very low computational cost and perform relatively good up to 4-5 kHz, but are not satisfying
above. Fully numerical 3D methods such as finite elements achieve the best accuracy, but have a very high
computational cost. Better performances are achieved with the state of the art semi-analytical methods, but
they cannot describe the vocal tract geometry as accurately as fully numerical methods (e.g. no possibility
to take into account the curvature). This work proposes a new semi-analytical method that achieves a better
description of the three-dimensional vocal-tract geometry while keeping the computational cost substantially
lower than the fully numerical methods. It is a multimodal method which relies on two-dimensional finite
elements to compute transverse modes and takes into account the curvature and the variations of cross-
sectional area. The comparison with finite element simulations shows that the same degree of accuracy
(about 1% of difference in the resonance frequencies) is achieved with a computational cost about 10 times
lower.

INDEX TERMS Acoustics, acoustic waves, simulations, waveguide, human voice, speech synthesis, vocal
tract.

I. INTRODUCTION
A. GENERAL CONTEXT
Speech sounds are produced by sound sources (vocal fold
oscillations and/or turbulent flow) placed inside a waveguide,
the vocal tract, defined as the air volume between the vocal
folds and the lips. The motion of the articulators, such as the
tongue or the jaw, modify the vocal tract shape and the speech
sound produced. Resonances are generated inside the vocal
tract by the wave propagating forward and backward from

The associate editor coordinating the review of this manuscript and
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the glottis to the mouth and the mouth to the glottis. They
enhance some part of the speech spectrum, usually referred
to as formants, which constitute acoustic cues allowing us to
differentiate phonemes.

Acoustic simulation of the vocal tract is useful to establish
a relationship between the vocal tract shape and the acoustic
properties of speech. Thus, it is possible to synthesise speech
directly from the vocal tract shape using articulatory synthesis
[8], [23], [36], [48], [49], [51].

The most popular method to simulate vocal tract acoustics
is the transmission line model (TLM) [49]. It takes advantage
of the fact that acoustic waves are guided along the vocal tract,
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and that under a low frequency assumption (valid up to about
5 kHz), only plane waves propagate. This means that the local
cross-sectional shape has little impact on the propagation and
that one needs to consider the cross-sectional area only. Thus,
under these hypotheses, the curvature of the vocal tract can
be ignored and the description of its shape can be limited
to the variation of its cross-sectional area. The TLM can be
implemented in both frequency and time domain. It requires
very few computational resources and can run in real time.

B. LIMITS OF CURRENT SIMULATION METHODS
A first limitation of the TLM is the impossibility to take
into account accurately the three-dimensional (3D) shape
of the vocal tract. A second one is that it can intrinsically
not describe a non uniform transverse acoustic field. The
consequence of this is particularly visible at high frequencies,
above about 4-5 kHz, when other modes than plane waves
(higher order modes) can propagate [11], [40], [41]. This
induces additional resonances and antiresonances in the vocal
tract that cannot be predicted by TLM. However, it has also
consequences at lower frequencies in the vicinity of disconti-
nuities where the transverse acoustic field can be slightly non-
uniform. This induces inaccuracies in the prediction of the
resonance frequencies. Note that it is theoretically possible
to reduce these inaccuracies by applying length corrections
to the TLM segments [49].

These limitations motivated the use of 3D simulation
methods to study vocal tract acoustics. For this purpose,
finite elements (FEM) [2], [24], [55], boundary elements
(BEM) [34], finite differences (FDM) [53], waveguide
meshes [20], [31] and the multimodal method [11], [42], [56]
have been used.

The consequences of each of the two limitations of the
TLM have been explored. On one hand, the effect of geo-
metrical details such as the piriform fossae,1 the vallecula,2

the inter-dental space, the nasal cavity or more generally the
precise 3D vocal-tract shape have been observed to affect
resonance frequencies and induce additional resonances
and anti-resonances [53], [54]. On the other hand, the
higher-order modes have been shown to induce addi-
tional resonances and anti-resonances at frequencies above
4-5 kHz [11] and affect speech radiation patterns [12], [16].
Note that side branches can be modelled with TLM, however,
to our knowledge, no correction has been proposed to take
into account transverse modes.

So far, most of the works using 3D acoustics simulations
have been limited to small numbers of static geometries.
Some of the most recent works are focused on the generation
of articulated sounds such as specific diphthongs [3], [5],
[18], [31] or consonant-vowel sequences [4], [32].

The main reason for this limitation is that the 3D numerical
methods are strongly limited by their high computational
cost, which prevent to use them as a substitute for the TLM.

1Two small sides cavities located at the base of the vocal tract.
2A groove between the base of the tongue and the epiglottis.

To illustrate that, using the FEM in the frequency domain,
about 10 hours are required to simulate 1000 frequencies
using a standard single processor (without meshing the outer
space though) [10]. The BEM may have a lower compu-
tational cost because it does not require to mesh the outer
space and involves a smaller number of degree of freedom
compared to FEM and FDM [35]. However, its application to
vocal tract acoustics simulation is very anecdotal [34].

One possibility to reduce this cost is to use analytical or
semi-analytical methods which have a lower computational
cost, but are limited in term of geometrical accuracy. As for
the TLM, it is possible to take advantage of the elongated
shape of the vocal tract to simulate the propagation of higher-
order modes, in addition to the plane waves simulated with
the TLM. This type of method, which simulates several
transverse modes instead of just the plane mode is called
multimodal method. For example Motoki [42], [43] have
taken advantage of the lower computational cost of this type
of method to run numerous simulations with small perturba-
tions of the geometry. However, the use of rectangular cross-
sections, which allowed a fully analytical solution with a
very small computational cost, implied a strong geometrical
approximation of the vocal tract shape. Blandin et al. [11]
improved this method by introducing a numerical compu-
tation of the transverse modes that substantially increased
the realism of the cross-sectional shapes. However, the cur-
vature was not taken into account, the cross-sectional area
was piecewise constant and no wall losses were simulated.
The multimodal method can also help to understand the
physical phenomena involved in speech production better
than fully numerical methods, as they provide a theoretical
background (higher-order modes propagation) that can be
related to experimental observations. For example, it was
useful to Yoshinaga et al. [56] for understanding better the
mechanisms of sound generation of the fricative /s/. However,
in this case as well, the use of rectangular cross-sections made
the geometry used less realistic than what could be achieved
with fully numerical methods.

C. PROPOSED APPROACH
The objective of this work is to achieve a better trade-off
between geometrical accuracy and computational cost by
combining the advantages of numerical methods and the
state-of-the-art multimodal method.

For this purpose the vocal tract geometry is sliced in
segments in which the cross-sectional shape is considered
constant, as illustrated in Fig. 1. The local transverse modes
are computed with two-dimensional (2D) FEM, and the prop-
agation along the waveguide axis is solved using a multi-
modal formulation. The wave problem is solved for a static
geometry. Similar semi-analytical finite-elements (SAFE)
methods have already been applied to the simulation of street
acoustics [47] or vibrations in rails [6], [26], [33], [38]. The
multimodal formulation of the propagation along the waveg-
uide axis allows us to take into account the effects of the
curvature and cross-section area variations, as detailed below
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FIGURE 1. a) Vocal tract geometry corresponding to the vowel /a/
generated by the articulatory model implemented in the speech
synthesizer Vocaltractlab 2.3 [8] sliced into 129 segments, b) examples of
cross-sectional shapes of different segments at various locations in the
vocal tract geometry. (Figure adapted from [14]).

in Sec. II. An implementation of this method is compared
with a full FEM solution of the wave equation in a single
segment and in three vocal tract geometries corresponding
to the vowels /a/, /i/ and /u/. The geometries, the parameters
used for the multimodal simulations and the method used for
the full FEM simulations are presented in Section III. The
outcomes of both methods are compared in Section IV.

II. MULTIMODAL METHOD
Throughout the paper, small bold letters denote vectors, cap-
ital bold letters denote matrices and ∂x is understood as ∂

∂x .

A. SEGMENTATION OF THE 3D GEOMETRY
The 3D vocal tract geometry can be provided as a 3D surface
mesh (e.g. frommedical image) or by a set of functions defin-
ing 3D surfaces (e.g. from an articulatory model). In order
to apply the proposed method, they are first segmented in
portions with constant cross-sectional shape, as illustrated in
Fig. 1. For this purpose, a curve, referred to as the centerline,

FIGURE 2. Constant cross-sectional shape waveguide segment
represented a) in Cartesian coordinates (X ,Y ,Z ) and b) in the
transformed coordinates (x, y, z) removing curvature and cross-sectional
area variations (Figure adapted from [14]).

passing through the vicinity of the centers of the trans-
verse cross-sections and contained in the sagittal plane is
defined [9]. The 3D geometry is cut in several planes perpen-
dicular to the centerline. A segment is defined between two
consecutive cuts. It is characterized by a contour extracted
from one of the cuts, the local curvature of the centerline and
a scaling factor describing the area variation along the center-
line (see Fig. 2a). Keeping the contour shape constant along
the segment allows one to use the same transverse modes
along the segment. Several methods have been proposed to
implement this segmentation process [7], [9], [28], [36]. For
classical TLM simulation, the number of segments generated
for vocal tract geometries ranges between 40 and 80 [50],
[52]. For 3D simulations, the comparison of FEM simulations
of geometries without segmentation and segmented with 40,
60 and 80 segments showed that the segmentation process
induces an upward shift of the resonance frequencies (lower
than 5% below 5 kHz for 80 segments), the global shape of
the transfer functions being preserved [2].

B. EXPRESSION OF THE WAVE EQUATION INSIDE THE
SEGMENTS
1) GEOMETRICAL TRANSFORMATION
Following earlier works on the multimodal formulation in
complex-shaped waveguides (2D [39] or 3D with circular
cross-section [30]), we define a geometrical transformation
from the Cartesian coordinates (X ,Y ,Z ) in which the seg-
ments are curved with a varying cross-sectional area (see
Fig. 2a), to the coordinates (x, y, z) in which they are straight
with a constant cross-sectional area, as illustrated in Fig. 2b.
The positionm of a point can be described by the coordinates
(x, y, z) in a Frenet-Serret frame (t,ny,nz), whose origin is a
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point C of the centerline, to which is associated the position
vector s. The vector t is tangent to the centerline, and the
vectors ny and nz are orthogonal to each other and contained
in the local transverse plane (y, z). x is the curvilinear abscissa
along the centerline curve. A scaling function l(x) is defined
that describes the variations of the cross-section dimensions
along the centerline.

The position vectorm of a point in both coordinate systems
can be expressed as

m = X i+ Y j + Zk = s(x)+ yl(x)ny + zl(x)nz. (1)

An angle α(x) is defined between t and i (see Fig. 2a). The
differentials of the vectors s, ny and nz are

ds
dx
= t,

dny
dx
= 0 and

dnz
dx
= −κ(x)t, (2)

where κ(x) is the local curvature of the centerline.
In order to apply the proposed transformation to the wave

equation, it is necessary to compute its Jacobian matrix J . For
this purpose, using the derivatives given in Eq. (2), Eq. (1) is
differentiated

dm = dX i+ dY j + dZk

=
(
f t + yl ′ny + zl ′nz

)
dx + lnydy+ lnzdz , (3)

where f (x) = 1−zκl and l ′ = dl/dx. The vectors t, ny and nz
are expressed as a function of the vectors i, j, k and the angle
α(x), and Eq. (3) is expressed in a matrix format∂x∂y

∂z

 = J−1

∂X∂Y
∂Z

, (4)

with the Jacobian matrix

J =
∂(x, y, z)
∂(X ,Y ,Z )

= Rα−1


1
f
−
yl ′

fl
−
zl ′

fl

0
1
l

0

0 0
1
l

, (5)

where Rα is a rotation matrix of angle α. The determinant of
this Jacobian is det J = 1

fl2
.

2) WAVE EQUATION
The wave equation in Cartesian coordinates (X ,Y ,Z ) is

(1X + k2)p = 0, (6)

where 1Xp = ∂2Xp + ∂
2
Y p + ∂

2
Zp is the Laplacian operator,

p the acoustic pressure, k = ω/c the wavenumber, ω the
angular frequency, c the sound speed and a time factor ejωt

is understood. The wall boundary condition is expressed in
Cartesian coordinates as

∇Xp · nX + jkζp = 0, (7)

where ∇Xp =
(
∂Xp ∂Y p ∂Zp

)t is the gradient operator,
nX the outward pointing normal to the boundary and ζ =
Z0/Zw is a boundary admittance coefficient related to the air

impedance Z0 = ρc, with ρ the volumic mass and c the sound
speed. The wall impedance Zw is defined as

u · nX =
p
Zw
, (8)

where u is the particle velocity. According to Eq. (2.1) in [44],
the Laplacian1X can be expressed as a function of the diver-
gence div and the gradient ∇ expressed in the transformed
coordinates as

1Xp = det(J)div(H∇p) (9)

where

H =
J tJ
detJ

=
1
f

 l2 −yl ′l −zl ′l
−yl ′l f 2 + (yl ′)2 yzl ′2

−zl ′l yzl ′2 f 2 + (zl ′)2

.
(10)

Substituting directly this expression in the wave equation
Eq. (6) gives the wave equation in transformed coordinates

div (H∇p)+
k2

det J
p = 0. (11)

According to Eq. (2.10) in [44], the outward pointing
normal nX in Cartesian coordinates can be expressed as a
function of the outward pointing normal n in the transformed
coordinates as

nX =
J

detJ
n. (12)

Knowing that from Eq. (4) the gradient in Cartesian coordi-
nates is related to the gradient in the transformed coordinates
as ∇X = J∇, the boundary condition equation Eq. (7) can
be written as

(J∇p) ·
(

J
detJ

n
)
+ jkζp = 0. (13)

After rearrangement, it can be rewritten as

H∇p · n+ jkζp = 0, for y, z ∈ 0W , (14)

where 0W is the surface constituting the wall boundary of the
waveguide. In order to transform the wave equation Eq. (11)
in a first order evolution equation along x, a secondary field
q is introduced

q ≡ (H∇p) · t =
l
f

(
l∂xp− yl ′∂yp− zl ′∂zp

)
, (15)

Identifying its expression in the wave equation, it can be
rearranged as

∂x

(
p
q

)
=

(
l′
l v ·∇⊥

f
l2

−div⊥ (f∇⊥)− f (kl)2 l′
l div⊥(v.)

)(
p
q

)
,

(16)

where the local frame transverse coordinate vector is
v =

(
y z
)t , the transverse gradient is ∇⊥ =

(
∂y ∂z

)t and
VOLUME 10, 2022 69925
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the transverse divergence is div⊥u = ∂yuy + ∂zuz. Likewise,
an expression is obtained for the boundary condition

nxq+ f (∇⊥p) · n⊥ −
l ′

l
v · n⊥q+ jkζp = 0, (17)

where nx is the x component of the outward pointing normal
n and n⊥ is the projection of the normal n in the local frame
transverse plane (y, z).

3) MODAL FORMULATION
The fields p and q are decomposed into the transverse modes
ϕn(y, z)

p(x, y, z) =
∞∑
n=0

pn(x)ϕn(y, z) = p · ϕ ,

q(x, y, z) =
∞∑
n=0

qn(x)ϕn(y, z) = q · ϕ ,
(18)

where p ≡ {pn(x)}, q ≡ {qn(x)} and ϕ ≡ {ϕn(y, z)}.
The transverse propagation modes ϕn fulfill the orthogonality
relationships{

〈ϕm, ϕn〉 = δmn ,

〈∇⊥ϕm,∇⊥ϕn〉 = γ 2
mδmn ,

(19)

where 〈a, b〉 ≡
∫
S āb dS and 〈a, b〉 ≡

∫
S ā · b dS is the scalar

product, S is the cross-sectional surface, ā is the complex
conjugate of a and γ 2

m is the eigenvalue associated to the
transverse mode ϕm.
Combining Eqs. (16) and (17) and projecting them onto

the transverse propagation modes ϕn yields a set of coupled
equations describing the evolution of the vectors p and q

∂x

(
p
q

)
=M(x)

(
p
q

)
=

(
M1 M2

M3 M4

)(
p
q

)
, (20)

where

M1 =
l ′

l
E, (21)

M2 =
1
l2
(I − κlC) , (22)

M3 = K2
+ κl

(
C (kl)2 − D

)
, (23)

M4 = −
l ′

l
Et , (24)

where

Emn = 〈ϕmv,∇⊥ϕn〉, (25)

Cmn = 〈ϕmz, ϕn〉, (26)

K 2
mn =

(
γ 2
m − (kl)

2
)
δmn + jklζnKR2

mn, (27)

KR2
mn =

∫
0

ϕ̄mϕnd0, (28)

Dmn = 〈∇⊥ϕm, z∇⊥ϕn〉, (29)

where 0 is the contour of the segment and the component
ζn corresponds to the boundary impedance specific to the

mode ϕn. This allows one to account for the tangential veloc-
ity specific to each mode in the computation of viscous losses
as proposed in [17]. For the full development of the modal
projection, see Appendix V-B.

C. COMPUTATION OF THE ACOUSTIC FIELD
1) COMPUTATION OF THE TRANSVERSE MODES AND THE
PROPAGATION MATRICES
Since the vocal tract cross-sectional shapes are quite different
from simple shapes such as ellipses or rectangles, the trans-
verse eigenvalues problem giving the transverse modes ϕn
and the associated eigenvalues γ 2

n is solved using 2D finite
elements. A Neumann boundary condition is considered as
it is closer to the properties of the vocal tract walls and
thus, ensure a faster convergence of the method. Note that an
improved formulation using a so called supplementary mode
would further improve the convergence [21]. The solution
obtained is used to compute the propagation matrices E, C,
K2 and D, defined in Eqs. (25), (26), (27) and (29).
The transverse functions ϕn can be expressed as the sum-

mation of shape functions ei(y, z) corresponding to the finite
elements

ϕn =

N∑
i=1

ξniei = ξn · e, (30)

where ξni are the amplitudes of the shape functions. The
transverse modes ϕn and their associated eigenvalues γ 2

n are
obtained solving the eigenvalue problem

ξn
tA = k2n ξn

tM, (31)

where A is the stiffness matrix whose terms are

Aij = 〈∇⊥ei,∇⊥ej〉, (32)

andM is the mass matrix whose terms are

Mij = 〈ei, ej〉. (33)

The propagationmatricesC,D,E andKR2 can be obtained
from the eigenvectors ξn solutions of Eq. (31) as

Cmn = ξmtMZξn, (34)

Dmn = ξmtAZξn, (35)

Emn = ξmtBξn, (36)

KR2
mn = ξm

tRξn, (37)

where

MZij = 〈zei, ej〉, (38)

AZij = 〈z∇⊥ei,∇⊥ej〉, (39)

Bij = 〈vei,∇⊥ej〉, (40)

Rij =
∫
0

eiejd0. (41)

For the details of the implementation of the 2D finite element
method the reader is referred to classical textbooks such
as [37].
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FIGURE 3. Relative error between the matrices C, D, E and KR2

computed numerically with Eqs. (34), (35), (36) and (37) and analytically
with the expressions provided in Appendix V-A for the first (a) 10 and
(b) 50 transverse modes.

The computation of the transverse modes and the propaga-
tion matrices has been validated comparing it with analytical
solutions obtained for a rectangular shape of dimensions
5.5 cm× 3.2 cm. The expression of the transverse modes and
the propagation matrices for a rectangular shape are provided
in Appendix V-A.

The relative error of the matricesC,D,E andKR2 has been
computed as the ratio of the norm of the difference between
the numerical and the analytical solutions over the norm of the
analytical solution. For example, for the matrix C the relative
error is ||CA − C||/||CA||, with CA the analytical solution.
It is presented for various densities in Figs. 3a and 3b for
the 10 and 50 first modes respectively. The mesh density is
defined as the ratio of the square root of the cross-sectional
surface over the average side length of the triangular ele-
ments. It can be seen as the number of elements per char-
acteristic length.

As expected, the relative error decreases when the mesh
density is increased. For the 10 first modes a density of 15 is
sufficient to obtain an error lower than 1%. But for the 50 first
modes, one need a density of 30 to achieve this. The error
depends on the type of matrix: the matrix C has the lowest
errors, and the matrix D has the highest. This may be due
to the approximation of the gradient of the modes ∇⊥ϕ for
the matrices D and E which could potentially generate more
errors, and of the integration on the contour for the matrix
KR2 which involves less elements than surface integration.
The impact of themesh density on the computation of transfer
functions is evaluated in Section IV-A.

2) CONNECTION OF THE SEGMENTS
As shown in Fig. 1, the vocal tract geometry is described by
a succession of segments which need to be connected to each
other. This is done by assuming the continuity of the acoustic
field at the junctions, as proposed by Pagneux et al. [45].
Fig. 4 illustrates a junction between two waveguide

segments with different cross-sectional contours and area
varying along the propagation axis. The cross-section of the
segment a is contained in the one of the segment b, and,
hence, the surface Sa (in grey in Fig. 4) is smaller than the
surface Sb. The variations of cross-sectional area inside the

FIGURE 4. Junction between two waveguide segments with different
cross-sectional contours and area varying along the propagation axis.

segments a and b are described by the scaling functions la(xa)
and lb(xb) respectively.

Relationships between the modal amplitudes at both sides
of the interface between the segments a and b can be derived
from the condition of continuity of the acoustic field on the
common surface Sa and the boundary condition qb = 0 on
the surface Sb − Sa of the wall of the largest segment

pa =
lb
la
Fpb, (42)

qb =
lb
la
Ftqa, (43)

where

F =
∫
SaX
ϕaϕb

t dYdZ
lalb

, (44)

where SaX is the surface Sa expressed in Cartesian coordinates
(X ,Y ,Z ). The scaling factors la and lb must be introduced as
the integration is done in Cartesian coordinates (X ,Y ,Z ) (see
Appendix V-C).

Combining Eqs. (42) and (43) and introducing the
impedance and admittance matrices Z and Y defined as
p = Zq and q = Yp allows one to derive relationships
between the impedance and admittance matrices on side a
and b

Za =

(
lb
la

)2

FZbFt , (45)

Yb =

(
lb
la

)2

FtYaF. (46)

However, the segment interfaces obtained by slicing vocal
tract geometries do not always correspond to this case: the
cross-section of side a may not be fully contained in the
cross-section of side b. According to Ginsberg [27], this
case cannot be treated directly using an orthogonality based
method as used here. To overcome this limitation, zero length
segments whose cross-section is the intersection between the
cross-section a and b are introduced in this case. This allows
one to use the expression derived above. Note that, according
to Ginsberg [27], a collocation based method would not have
this limitation, and could be used as an alternative.
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FIGURE 5. Disposition of the physical quantities solution of the wave
problem: the impedance Z and admittance Y matrices, the modal
amplitude of the acoustic pressure p and the related quantity q, at the
input and output of the segment sn.

3) PROPAGATION
The vectors p and q and the impedance and admittance
matrices Z and Y can be computed solving numerically the
Ricatti equation with a Magnus-Möbius scheme as proposed
by Pagneux [46]. The vectors p(xn+1) and q(xn+1) can be
obtained at a position xn+1 from their value at the position
xn through the relationship(

p(xn+1)
q(xn+1)

)
= 3

(
p(xn)
q(xn)

)
=

(
31 32

33 34

)(
p(xn)
q(xn)

)
(47)

where 3 is, for the fourth order of the Magnus scheme

3 = exp
(
xn+1 − xn

2
(M(xa)+M(xb))

+

√
3(xn+1 − xn)2

12
[M(xb),M(xa)]

)
, (48)

where [M(xb),M(xa)] = M(xb)M(xa) − M(xa)M(xb) is a
commutator,M(x) is defined in Eq. (20) and

xa = xn +

(
1
2
−

√
3
6

)
(xn+1 − xn), (49)

xb = xn +

(
1
2
+

√
3
6

)
(xn+1 − xn). (50)

As the boundary condition at the mouth is a radiation
impedance matrix, it is necessary to compute the impedance
matrix ZZZn+1 at a position xn+1 from the impedance Zn at a
position xn. This is obtained through the relationship

ZZZn+1 = (31Zn +32) (33Zn +34)
−1 . (51)

Likewise, the admittance YYYn+1 can be related to YYYn by

YYYn+1 = (33 +34Yn) (31 +32Yn)
−1 . (52)

D. GENERAL WORKFLOW
The whole process of solving the wave problem is described
in the pseudo-code algorithm 1. The different physical quan-
tities implied in solving the wave problem are shown in Fig. 5.

The equation (20) is solved by setting a radiation
impedance boundary condition at the mouth end and a parti-
cle velocity field at the glottis end. The radiation impedance
condition is described by a radiation impedance matrix which
can be numerically integrated following themethod described
in [13]. It is necessary to compute this radiation impedance
matrix in the Cartesian coordinates system. Thus, the dis-
tances must be multiplied by the factor l at the end of the
last of the Ns segments. In an infinite baffle, the radiation
impedance matrix Zout

Ns is given by

Zout
Ns =

−1
2π

∫
S

∫
S0
ϕ(y, z)ϕt (y0, z0)

e−jklh

lh
dS0 dS, (53)

where h =
√
(y− y0)2 + (z− z0)2. Alternatively, the radi-

ation impedance matrix can be computed using the method
proposed by Felix and Doc [22].

The impedance and admittance matrices are computed
from the mouth to the glottis, and the acoustic field is com-
puted from the glottis input particle velocity to the mouth
using the impedance and admittance matrices computed
previously.

The acoustic pressure radiated to an external point
(xr , yr , zr ) is computed with the Rayleigh-Sommerfeld inte-
gral in the same scaled space

p(xr , yr , zr ) =
−1
2π

∫
S
qoutNs · ϕ(y, z)

ejklr

lr
dS, (54)

where r =
√
x2r + (y− yr )2 + (z− zr )2 and (y, z) ∈ S.

This simulation method was implemented as a new func-
tionality of the articulatory synthesizer VocalTractLab [8],
whichwill bemade available to the public soon on thewebsite
www.vocaltractlab.de.

III. SIMULATIONS
The method presented in section II has been applied to test
geometries and compared to FEM simulations. This section
presents the test geometries used, the parameters for the
multimodal simulations and the FEM used. The results of
these simulations are compared and discussed in Section IV.

A. GEOMETRIES
1) SINGLE SEGMENT
The first test geometry is a single horn shaped segment with
a circular cross-section. Its centerline is defined as a circle
arc of radius 7.5 cm and angle 130◦ yielding a total length
L = 16.95 cm (see Fig. 8). These dimensions are chosen to
be of the same order as vocal tract dimensions. The scaling
factor l(x) along the centerline is

l(x) =
1
4
+

9
4

( x
L

)2
−

3
2

( x
L

)3
. (55)

2) VOCAL TRACT GEOMETRIES
After testing the method on one segment, it was tested on
more realistic vocal tract geometries constituted of multiple
segments. They were generated by the articulatory model
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Algorithm 1 Solve Wave Problem in a Segmented Geometry
1: Slice the vocal tract geometry in Ns segments
2: for Each segment do
3: Mesh the contour
4: Compute the matricesA,M,Mz,Az,B andR integrat-

ing Eqs. (32), (33), (38), (39), (40) and (41)
5: Compute the transverse modes ϕm and their eigenval-

ues γ 2
m solving Eq. (31)

6: Compute the matrices C,D,E and KR2 using
Eqs. (34), (35), (36) and (37)

7: end for
8: for Each segment do
9: if the segment is connected to another one then

10: Compute the mode matching matrix F integrating
Eq. (44)

11: end if
12: end for
13: for each frequency do
14: Compute the radiation impedance matrixZout

Ns follow-
ing [22] or [13]

15: n = Ns
16: while n > 0 do
17: Propagate either Zn or Yn depending on the input

using Eqs. (51) or (52) inside the segment sn
18: if exit area of sn−1 > entrance area of sn then
19: If necessary, computeZZZ in

n = YYY in
n
−1

20: Compute the impedance matrixZout
n−1 at the exit

of the next segment using Eq. (45)
21: else
22: If necessary compute YYY in

n = ZZZ in
n
−1

23: Compute the admittance matrix YYYout
n−1 at the exit

of the next segment using Eq. (46)
24: end if
25: n = n− 1
26: end while
27: Compute the input modal amplitude

qin0 =
∫
S0
ϕ0qin0 dS0

28: Compute pin0 = Z in
0 q

in
0 (if necessary compute

Z in
0 = Y in

0
−1

)
29: n = 0
30: while n < Ns do
31: Propagate pn and qn using Eq. (47)
32: if entrance area of sn+1 > exit area of sn then
33: Compute qinn+1 at the entrance of the next section

using Eq. (43)
34: Compute pinn+1 = ZZZ in

n+1q
in
n+1

35: else
36: Compute pinn+1 at the entrance of the next section

using Eq. (42)
37: Compute qinn+1 = YYY in

n+1p
in
n+1

38: end if
39: n = n+ 1
40: end while
41: If necessary, compute qoutNs = ZZZ−1

Nout
s
poutNs

42: Compute the radiated acoustic pressure using the
Rayleigh-Sommerfeld integral Eq. (54)

43: end for

implemented in VocalTractLab 2.3 (www.vocaltractlab.de).
The geometries provided by this software have been fitted on
MRI scans of a male subject [8]. The vowels /a/, /i/ and /u/
were selected as they represent well the variety of vocal tract
shapes for vowels. To ensure the best geometrical accuracy
possible, the maximal number of segments provided by the
segmentation algorithm implemented in VocalTractLab 2.3
was used. This results in 129 segments whose length ranges
between 0.55 mm and 1.6 mm. The corresponding contours
were exported in text files so that they could be used with
Matlab and GID3 to generate finite element meshes. During
this process, the consecutive contours were linked by straight
segments. This introduces slight differences with the geome-
try actually simulated with the multimodal method. In fact,
since the proposed method considers the contour shape as
constant within each segment, small discontinuities are intro-
duced, making the geometry simulated rough compared to the
one simulated with FEM. The potential consequences of such
discontinuities are discussed in the section IV-B.

B. PARAMETERS FOR THE MULTIMODAL SIMULATIONS
For both the single segment and the vowel geometries, the
multimodal simulations were performed using the same value
of wall boundary admittance coefficient ζ = 0.005 as in [2].
A uniform input particle velocity G(f ) = qin · ϕ, with f the
frequency, was imposed on the glottal cross-sectional surface
0G. This was done setting the amplitude of the plane mode
to qin0 = −j2π f ρ and the other ones to zero. A vocal tract
transfer function was computed as

H (f ) =
Po(f )
AgG(f )

[Pa/m3s−1], (56)

wherePo(f ) is the acoustic pressure tracked inside the geome-
tries at 3 mm from the center of the exit surface, G(f ) =
−j2π f ρϕ0 the uniform input velocity (ϕ0 being the plane
mode) and Ag the glottal cross-sectional area.

1) SINGLE SEGMENT
A zero pressure boundary condition was simulated at the
open end of the single segment. It was approximated by
setting a uniform impedance of 10−16 kg.m−2.s−1 on the
exit surface. This was done by defining Zout

Ns as a diagonal
matrix whose diagonal terms are all equal to this value. The
impact of different numbers of modes, mesh densities and
number of integration points were evaluated. Simulations
were performed using the 6, 17, 32 and 53 first modes
(ordered by increasing cutoff frequency). The choice of these
numbers is done to include the second, third, fourth and fifth
axi-symmetric modes which have significant contribution to
the acoustic field in geometries with circular cross-section.
The mesh density was varied from 10 to 30 and the number
of integration points from 25 to 200 (about 1.5 to 12 points
per centimeter).

3https://www.gidhome.com/
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2) VOWELS
The boundary condition at the open end was simulated using
a radiation impedance matrix numerically integrated using
the method proposed in [13]. The number of modes in each
segment was determined by amaximal cutoff frequency crite-
rion: all the transverse modes having a cutoff frequency lower
than a chosen value were included. This results in a reduced
number of modes for the smaller segments, which allows one
to minimise the number of modes to be simulated over the
entire geometry for a given accuracy. For a maximal cutoff
frequency of 40 kHz the number of transverse modes ranges
between 2 and 42. Different values of this criterion ranging
from 20 kHz to 60 kHz were used to evaluate the influence of
this parameter (see section IV-B).

Different geometrical approximations were explored:
• straight segments with constant cross-sectional area
(κ = 0, l(x) = 1), corresponding to the state of the art
multimodal simulations of vocal tract geometries [11],

• segments with curvature (κ = 1/Rc, l(x) = 1),
where Rc is the curvature radius determined by the angle
between the normals of the cutting planes at both ends
of the segment,

• segments with curvature (κ = 1/Rc) and area variations
defined as a linear interpolation between the area at the
entrance and the end of the segments (case presented in
Fig. 2).

C. FINITE ELEMENT SIMULATIONS
FEM simulation were performed to compare to the multi-
modal simulations. It was used to numerically solve the wave
equation in the time domain for the acoustic pressure p(m, t)
and particle velocity u(m, t)

1
ρc2

∂tp+∇ · u = 0, (57a)

ρ∂tu+∇p = 0, (57b)

in a computational domain�. Equation (57) is supplemented
with the following set of boundary and initial conditions
(see Fig. 6)

u · nX = g(t) on 0G, t > 0, (58a)

u · nX = p/Zw on 0W , t > 0, (58b)

u · nX = 0 on 0H , t > 0, (58c)

u · nX = p/Z0 on 0∞, t > 0, (58d)

p = 0, u = 0 in �, t = 0. (58e)

g(t) is used to introduce a particle acoustic velocity at the
glottal cross-sectional area 0G, Zw is the wall impedance
imposed at the vocal tract walls 0W to introduce losses, and
Z0 = ρc is the air impedance used in (58d) to implement a
Sommerfeld boundary condition so as to absorb sound waves
reaching the outer boundary 0∞. Zw is computed from the
boundary admittance coefficient ζ = Z0/Zw, whichwas set to
the same value as for the multimodal simulations: ζ = 0.005.
A rigid wall boundary condition was enforced on the baffle
surface 0H of the external domain.

FIGURE 6. Computational domain � used for the FEM simulation of
vowel /a/, with boundaries 0G for the glottis, 0W for the vocal tract
walls, 0H for the circular baffle representing the head, and 0∞ for the
outer boundary absorbing all incoming sound waves as if they were
propagating towards infinity.

For the vocal tract geometries, the computational
domain � consists of a vocal tract set in a hemisphere of
radius 0.16 m to allow sound waves radiate outwards from
the mouth (see Figure 6). In the single segment geometry,
however, the radiation domain is removed and � terminates
at the horn exit. A zero pressure release condition (p = 0) is
imposed on it to emulate an open-end condition. A volume
mesh was next generated discretizing � in a set of tetrahedra
of average size 0.003 m in the horn or vocal tract, and
{0.004, 0.0065} m in the inner and outer radiation domains
of the vocal tract geometries.

The wave equation (57) with boundary and initial condi-
tions (58) was next solved in � using a custom FEM code
based on the stabilization strategy defined in [29]. The stabi-
lization parameter was reduced from 0.05 to 0.01 compared
to [29], which allowed us to use larger time steps while pre-
serving a low numerical dissipation. The following Gaussian
pulse was used as input for the vocal tract,

g(t) = e−[(t−Tgp)/0.29 Tgp]
2
[m/s], (59)

with Tgp = 0.646/fc and fc = 10 kHz. This pulse was
low-pass filtered at 10 kHz to avoid numerical errors above
the maximum frequency of analysis (10 kHz). A numerical
simulation of a time event lasting 0.05 s was then performed
using a time step of 2e-6 s. The acoustic pressure po(t) was
tracked close to the vocal tract exit, inside of it, at 3 mm from
the mouth aperture center. This helped us to minimize possi-
ble spurious reflections coming from 0∞, compared to cap-
turing the acoustic pressure in the radiation domain. A vocal
tract transfer function was finally computed in the same way
as for the multimodal simulations defined in Eq. (56). Po(f )
andG(f ) were computed as the Fourier transform of po(t) and
g(t) respectively.
This simulation method showed in previous studies a good

agreement with experimental data [2], [11]. More generally,
the FEM can be trusted to describe accurately vocal tract
acoustics, as illustrated by the good agreement obtained by
Fleischer et al. [25] between a different implementation of
FEM and experimental data.
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FIGURE 7. Amplitude of the transfer function between the input volume
velocity and the acoustic pressure at a point located inside 3 mm away
from the center of the exit of a single segment computed with finite
element and the proposed multimodal method.

FIGURE 8. Acoustic pressure amplitude (Pa) computed for an input
volume velocity of 1cm3/s in the plane (X , Z ) with the proposed method
inside a single segment at the frequency 5755 Hz which corresponds to a
trough in the transfer function presented in Fig. 7. The iso-amplitude lines
are higlighted in black.

IV. COMPARISON WITH FINITE ELEMENT SIMULATIONS
A. SINGLE SEGMENT
The figure 7 shows the transfer function of the single seg-
ment computed with FEM and the multimodal method with
53 modes, a mesh density of 30 and a 200 integration points
(about 12 points per centimeter). It shows the typical reso-
nances produced by the plane mode, but also exhibits troughs
and additional resonances related to transverse resonances
induced by the curvature and higher order modes propaga-
tion. See as an example the trough located at 5755 Hz and the
corresponding acoustic field, computed with the multimodal
method, presented in Fig. 8, in which these effects are clearly
observable. The wall boundary condition described in Eq. (7)
implies that in the vicinity of the walls the normal gradient of
the acoustic pressure is very small. This implies that the iso-
amplitude lines are almost perpendicular to the walls. This
can be observed in Fig. 8, thus, confirming that this boundary
condition is properly simulated.

The influence of the number of modes, the mesh density
and the number of integration points on the simulations was
examined by computing the transfer function with different
values of these parameters. The resonance frequencies, -3 dB
bandwidths and amplitude of the resonances of the obtained

FIGURE 9. Relative difference (percentage) between the resonance
frequencies, bandwidth and amplitude of the transfer functions of a
segment with curvature and varying cross-sectional area computed with
different number of modes, mesh density and number of integration
points. The transfer function corresponding to the reference case (53
modes, a mesh density of 30 and 200 integration points) is presented in
Fig. 7. The outliers are plotted individually as crosses.

transfer functions were compared with a reference case of
53 modes, a mesh density of 30 and 200 integration points
(corresponding to about 1.5 to 12 points per centimeter).

This reference case was first compared with the FEM
simulation with which a very good agreement was observed.
As can be seen in Fig. 7, the amplitude of both transfer
functions is almost perfectly superimposed, with some slight
differences increasing toward the high frequencies which
consists mainly in stronger losses and slightly higher res-
onance frequencies for FEM. The latter can be attributed
to the stiffening effect of FEM [19]. More precisely, the
average differences are 0.16%, 15.6% and 1.2% for the res-
onance frequencies, bandwidth and amplitudes respectively.
The maximal differences are 0.33%, 51.3% and 3.7% for the
frequencies, bandwidth and amplitudes respectively. The sig-
nificant differences in bandwidth can be attributed to the time
and spatial discretization of FEM, which tends to artificially
increase the losses with frequency. Indeed, note that below
8 kHz the FEM and MM curves match to a large extend,
reducing the average differences to 0.1%, 6.8% and 0.45%
for the resonance frequencies, bandwidths, and amplitudes,
respectively. It is to be mentioned that FEM results could be
improved using a finer mesh and smaller time step, but at the
price of increasing the computational cost.

The relative difference between different values of parame-
ters and the reference case (mesh density of 30, 53 modes and
200 integration points) are presented as box plots in Fig. 9.
When a parameter is changed, it is implicitly understood that
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FIGURE 10. Transfer functions between the input volume velocity at the
glottis and the acoustic pressure at a point located inside 3 mm away
from the center of the exit surface for vocal tract geometries
corresponding to the vowels /a/, /i/ and /u/ of a male speaker (129
segments). The transfer functions have been computed with FEM and
with the proposed multimodal method using different geometrical
approximations for the segments, a mesh density of 15 for the
computation of the transverse modes, 3 integration points per segment
and a maximal cutoff frequency of 60 kHz.

the other parameters are set to their maximal values (e.g. the
mesh density and the number of integration points are set
to 30 and 200 when the number of modes is varied). The
differences reduce as the parameters get closer to the refer-
ence case. The parameter which induces the greatest impact
is the number of modes. Large differences are observed for
the bandwidth which is equally influenced by the three tested
parameters. 32 modes are sufficient to achieve an average dif-
ference lower than 0.1% for the frequencies and amplitudes,
but still more than 1% for the bandwidths.

B. VOCAL TRACT GEOMETRIES
1) TRANSFER FUNCTIONS
The transfer functions of the vowel geometries obtained with
different geometrical approximations and with FEM are pre-
sented in Fig. 10. There is an overall good agreement for
the 3-4 first resonances between the different geometrical
approximations: the difference in resonance frequencies with

FIGURE 11. Acoustic pressure amplitude computed with the proposed
method in the sagittal plane and in two transverse cutting planes
indicated as dashed lines in a vocal tract geometry corresponding to the
vowel /i/ at 7500 Hz for an input volume velocity of 1cm3/s. This
corresponds to the 6th resonance of the transfer function obtained with
curved segments in Fig. 10. The iso-amplitude lines are highlighted in
black.

FEM remains lower than 5% in all cases. This is in line with
the fact that the plane wave assumption is a good approxima-
tion up to 4-5 kHz [15].

The agreement with the FEM solution is better when the
curvature is considered, and further improved when the vari-
ations of cross-sectional area are taken into account. The
resonance frequencies are generally lower with the straight
segment approximation. In particular for the second reso-
nance of the /i/ (see Fig. 10b). This is in line with the findings
of Arnela et al. [2]. Furthermore, taking into account the
curvature just by changing a parameter of the model confirms
that this effect is induced by the curvature alone. As a matter
of fact, in the study of Arnela et al. [2] this could have also
been induced by the method used to straighten the vocal tract
geometries.

There is overall more difference between the geometri-
cal approximations above 4-5 kHz, in particular for /i/ and
/u/. Taking into account the variation of cross-sectional area
substantially improves the agreement with FEM in this fre-
quency range for /u/ (see Fig. 10c). Thus, the high frequency
acoustic properties of the vocal tract appear to be sensitive to
small geometrical details. This is in line with the findings of
Motoki [43] who showed that small geometrical perturbations
of simplified vocal tract geometries induced more important
variations of the transfer function above 4 kHz. Despite the
roughness introduced by the contour change, there is a rela-
tively good agreement with FEM simulation performed with
a smoother geometry.

Substantial differences remain between FEM and the mul-
timodal method for the case accounting for the curvature and
the cross-sectional area variations (about 1% of difference in
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the resonance frequencies), see also around 8 kHz for /i/ and
/u/ (see Figs. 10b and 10c). This can be attributed to remaining
geometrical differences due to the discontinuities introduced
by the contour changes, and to intrinsic differences between
both methods. The small geometrical differences could be
slightly reduced, for example by using a better interpolation
of the cross-sectional area, or by refining the segmentation
of parts having significant changes of cross-sectional shape.
However, the gain in accuracy may be of the order of the
uncertainties in the extraction of the vocal tract geometries
from medical images. It would also be possible to optimise
the segmentation by using longer segments in the parts having
little variations of cross-sectional shape, and thus further
reduce the computational cost. The algorithm used to gen-
erate the centerline curve can have an impact as well, as it
was observed by Arnela et al. [5]. However, it is expected to
be smaller for 3D simulations than for TLM simulations.

The losses are slightly lower with the multimodal method:
the resonances have smaller -3 dB bandwidths (of the order
of 10%). This can be attributed to the perfectly reflective
surfaces which are considered at the discontinuities between
the segments (see Section II-C2). On the other hand, the
numerical scheme used for the FEM could tend to slightly
artificially increase the losses as the frequency increases due
to the adopted stabilization strategy and the time and space
discretization (see Section III-C).

2) ACOUSTIC FIELD
The Fig. 11 illustrates the acoustic field computation inside
a segmented geometry with the field corresponding to the
6th resonance of the vowel /i/ (7500 Hz). As for the single
segment, the effect of the transverse modes is clearly visible
as transverse variations both in the sagittal and transverse
planes. The iso-amplitude lines tend to be perpendicular to the
walls of the geometry, confirming that the boundary condition
is properly simulated. When looking carefully, the effect of
the segmentation is visible as small discontinuities in the
iso-amplitude lines where there is a strong discontinuity at
the interface between two segments (see as an example at
the expansion at the base of the geometry). This may be
improved by using more transverse modes to describe the
strong discontinuities.

3) INFLUENCE OF THE NUMBER OF MODES
Multimodal simulations were run with values of the maxi-
mal cutoff frequency ranging from 20 kHz to 60 kHz using
the best geometrical approximation (taking into account the
curvature and the variations of cross-sectional area). The
resonance frequencies of the transfer functions were com-
pared with the solution obtained with 60 kHz and the FEM
solution. The distribution of the relative error is presented as
box plots in Fig. 12. For the 3 vowels tested the simulations
converge toward the 60 kHz solution, with less than 1% of
difference from 40 kHz. It does not strictly converge toward
the FEM solution, as from 40 kHz onward the difference with
FEM remains stable or slightly increases, but remains smaller

FIGURE 12. Relative error of the resonance frequencies for different
values of the maximal cutoff frequencies for segmented vocal tract
geometries corresponding to the vowels /a/, /i/ and /u/. The outliers are
plotted individually as crosses.

FIGURE 13. a) Computation times for the transfer function of the vowels
/a/, /i/ and /u/ for different values of the maximal cutoff frequency,
a mesh density of 15, about 20 integration point per centimeter and
1000 frequencies. b) Share of the computation time taken by the different
tasks for the vowel /i/: transverse modes, junction matrices, radiation
impedance matrix, computation of the matrix exponential for the
propagation, other tasks for the propagation and radiated field.

than 1%. Note also that for some resonances the difference
does not decrease rigorously monotonously: it can increase
for some specific values of the maximal cutoff frequency (see
as an example the outlier at 30 kHz for /a/).

4) COMPUTATION TIME
Fig. 13a presents the computation times for the transfer func-
tions of the vowels /a/, /i/ and /u/ for different values of the
maximal cutoff frequency, a mesh density of 15, 3 integration
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points per segment (about 20 points per centimeter) and
1000 frequencies. The computations were run in a single
thread on a processor Intel R© Xeon R© W-2145 3.7 Ghz. The
computation time varies with the vowel geometries, and from
30 kHz onward, it increases exponentially.

Fig. 13b shows the distribution of the computation time
over the different tasks required to solve the wave problem
for the vowel /i/ (vowels /a/ and /u/ show similar trends).
They consist in the computation of the transverse modes,
the junction matrices (Eq. (44)), the radiation impedance
matrix (Eq. (53)), the propagation of the physical quantities
(Z , Y , p and q) and the computation of the radiated field
(Eq. (54)). The computation time for the propagation is split
into the computation of the matrix exponential in Eq. (48)
and the other parts of the task since this part of the process
requires a lot of computation time. Most of the computation
time is dedicated to the computation of the transverse modes
and the matrix exponential. When few modes are used, the
computation time is mainly spent in the computation of the
modes. As the number of modes used is increased, the time
spent in the computation of the matrix exponential increases
and becomes the task occupying most of the computation
time. Note that the computation of the transverse modes, the
junction matrices and the radiation impedance are done only
at the beginning of the whole process. Thus, the time required
for these tasks is not affected by the number of frequencies
at which the transfer function is computed. A maximal cut-
off frequency of 40 kHz appears to be a good compromise
between the accuracy and the computation time.

For frequency domain FEM, 10 hours were necessary to
compute 1000 frequencies with a single processor [10]. How-
ever, in this example a simplifying assumption was made
for the radiation and the external space was not meshed,
which reduces the computation time in comparison to a more
accurate simulation. Thus, it can be concluded that the pro-
posed method provides simulations with the same degree of
accuracy as FEM, but with a computation time reduced by
about a factor 10. The implementation used can be optimised
to achieve even shorter computation times. One can also
mention that it requires far less exchange memory, and it
is thus easier to run on a standard laptop without special
equipment for simulations (e.g. additional memory).

V. CONCLUSION
The proposed method can simulate curved vocal tract geome-
tries with realistic cross-sectional shapes and cross-sectional
area variations within the segments. The same degree of
accuracy as FEM is achieved for the computation of transfer
functions of a single segment (about 0.2% of differences
in the resonance frequencies). Accounting for the curvature
and the cross-sectional area variation substantially improves
the agreement with FEM, particularly above 4-5 kHz. The
segmentation process of realistic 3D vocal-tract geometries
introduces small differences, but the agreement with FEM
simulations remains very good (less than 1% of difference
in the resonance frequencies). A good trade-off between

accuracy and computation time is achieved using a mesh
density of 15, about 10 integration points per centimeter and
a maximal cutoff frequency of 40 kHz. With these parame-
ters, the proposed method achieves computation times about
10 times shorter than FEM while preserving the same degree
of accuracy. The proposed method can be used to synthe-
size articulated sounds by simulating a succession of static
geometries corresponding to various instants of the articula-
tion motion and following the approach proposed by Sondhi
and Schroeter [49].

APPENDIX
A. ANALYTICAL EXPRESSIONS OF THE TRANSVERSE
MODES AND PROPAGATION MATRICES FOR A
RECTANGULAR SHAPE
1) TRANSVERSES MODES
The transverse modes corresponding to a rectangular shape
of side lengths a and b along y and z respectively, can be
expressed as

ϕmn(y, z) =

√
2− δ0m

a
cos

(mπy
a

)
×

√
2− δ0n

b
cos

(nπz
b

)
, (60)

and the corresponding eigenvalues are

γ 2
mn =

(mπ
a

)2
+

(nπ
b

)2
. (61)

2) MATRIX C
The terms of the matrix C are

Cij,mn =
∫
S
zϕijϕmndS = CyCz, (62)

where Cy and Cz are the integrals over y and z respectively.

Cy = δim (63)

Cz =



b
2

if j = n,

b
π2

(
cos((j+ n)π)− 1

(j+ n)2
+

cos((j− n)π)− 1
(j− n)2

)
if j 6= n 6= 0,

√
2b

(nπ )2
(cos(nπ)− 1) if j = 0 and n 6= 0,

√
2b

(jπ )2
(cos(jπ )− 1) if j 6= 0 and n = 0.

(64)

3) MATRIX D
The terms of the matrix D are

Dij,mn =
∫
S
z(∂yϕij∂yϕmn + ∂zϕij∂zϕmn)dS

= D1yD1z + D2yD2z, (65)
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where

D1y =


(
iπ
a

)2

if i = m 6= 0,

0 if i 6= m or i = m = 0,
(66)

D1z has the same expression as Cz of the matrix C (Eq. (64)),
D2y has the same expression as Cy of the matrix C (Eq. (63)),

D2z =



0 if j = 0 and n = 0,
jn
b

(
cos((j− n)π )− 1

(j− n)2
−

cos((j+ n)π )− 1
(j+ n)2

)
if j 6= n 6= 0,

(jπ )2

2b
if j = n 6= 0.

(67)

4) MATRIX E
The terms of the matrix E are

Eij,mn =
∫
S

(
yϕij∂yϕmn + zϕij∂zϕmn

)
dS

= E1yE1z + E2yE2z, (68)

where

E1y =



0 if m = 0,
√
2 cos(mπ) if i = 0 and m 6= 0,

1
2

if i = m 6= 0,

m
(
cos((i+ m)π)

i+ m
−

cos((i− m)π)
i− m

)
if i 6= m 6= 0

(69)

E1z =

{
1 if j = n,
0 if j 6= n,

(70)

E2y =

{
1 if i = m,
0 if i 6= m,

(71)

E2z =



0 if n = 0,
√
2 cos(nπ) if j = 0 and n 6= 0,

1
2

if j = n 6= 0,

n
(
cos((j+ n)π )

j+ n
−

cos((j− n)π)
j− n

)
if j 6= n 6= 0.

(72)

5) MATRIX KR2

The terms of the matrix KR2 are

KR2
ij,mn = (1+ (−1)i(−1)m)

√
1− δ0i

√
1− δ0m

b
δjn

+ (1+ (−1)j(−1)n)

√
1− δ0j

√
1− δ0n

b
δim

(73)

B. MODAL PROJECTION
Both sides of Eq. (16) are multiplied by ϕ̄m and p and q are
decomposed using the expression in Eq. (18). This yields for
the first line of Eq. (16)

ϕ̄m∂xϕnpn = ϕ̄m
l ′

l
v ·∇⊥ϕnpn

+
1
l2
(ϕ̄mϕn − ϕ̄mκlzϕn) qn. (74)

Integrating over S and identifying Eq. (19) yields

δmn∂xpn =
l ′

l
〈ϕmv,∇⊥ϕn〉pn

+
1
l2
(I − κl〈ϕmz, ϕn〉), (75)

where the expressions Eqs. (25) and (26) of the matrices E
and C can be identified

∂xp =
l ′

l
Ep+

1
l2
(I − κlC) q. (76)

The second line of Eq. (16) is

∂xq = −div⊥(f∇⊥p)− f (kl)2p+
l ′

l
div⊥(vq). (77)

Multiplying by ϕ̄m yields

ϕ̄m∂xq = −ϕ̄mdiv⊥(f∇⊥p)

− ϕ̄mf (kl)2p+ ϕ̄m
l ′

l
div⊥(vq). (78)

Using the properties of the divergence operator, it can be
expressed as

ϕ̄m∂xq = −div⊥(ϕ̄mf∇⊥p)
+ (∇⊥ϕ̄m) · (f∇⊥p)− ϕ̄mf (kl)2p

+
l ′

l
(div⊥(ϕ̄mvq)− (∇⊥ϕ̄m) · (vq)). (79)

Integrating over S and applying the divergence theorem yields

δmnqn = 〈∇⊥ϕm,∇⊥ϕn〉pn − κl〈∇⊥ϕmz,∇⊥ϕn〉pn
− (kl)2δmnpn + κl(kl)2〈ϕmz, ϕn〉pn

−
l ′

l
〈∇⊥ϕm, vϕn〉qn

+

∫
0

(
l ′

l
ϕ̄mvq− ϕ̄mf∇⊥p

)
· ln⊥d0, (80)

where 0 is the contour. The normal must be written as ln⊥ in
the contour integral because the other vectors are expressed as
a function of the unit vectors ny and nz which are normalized
in the Cartesian space (X ,Y ,Z ) whereas the normal n is
normalized in the transformed space (x, y, z), and ||n⊥||X =
l||n⊥||. Considering that the contour is the same all over the
waveguide, the component nx of the normal n to the boundary
is 0 and n = n⊥. The expression of the boundary condition
Eq. (17) can be identified in the last integral, and the last
integral term of Eq. (80) becomes

jklζnKR2
mn = jklζn

∫
0

ϕ̄mϕnd0. (81)
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Identifying the expressions of the matrices K2, C, D and E
defined in Eqs. (27), (26), (29) and (25) yields

∂xq =
(
K2
+ κl

(
(kl)2 C − D

))
p−

l ′

l
Etq. (82)

C. CONNECTION OF THE SEGMENTS
The condition of continuity of the acoustic pressure is

pa = pb (83)

on the common surface Sa. Multiplying both sides of this
equation by ϕa and integrating over Sa yield∫

Sa
ϕapadS =

∫
Sa
ϕapbdS, (84)

in which the expression of the modal amplitude
pa =

∫
Sa
ϕapadS can be identified. In order to integrate pb

one must operate a change of variable from the transformed
coordinate (xa, ya, za) to the Cartesian coordinates (X ,Y ,Z ).
On the other hand, pb = ϕbtpb, which yield

pa =
∫
SaX
ϕa

(
Y
la
,
Z
la

)
ϕb

t
(
Y
lb
,
Z
lb

)
dYdZ
l2a

pb, (85)

where the expression of the matrix F (Eq. (44)) can be
identified and Eq. (42) is obtained.

Multiplying qb by ϕb and integrating over SbX in the Carte-
sian coordinate system (X ,Y ,Z ) yield∫

SbX
ϕbqb

dYdZ

l2b

=

∫
SbX−SaX

ϕbqb
dYdZ

l2b
+

∫
SaX
ϕbqb

dYdZ

l2b
. (86)

Identifying the expression of the modal amplitude vector
pb =

∫
Sb
ϕbpbdS, applying the boundary condition on the

surface SbX − SaX , qb = 0, applying the condition of conti-
nuity of q on the surface SaX , qb = qa and expressing pa as
pa = ϕatpa yield

qb =
∫
SaX
ϕb

(
Y
lb
,
Z
lb

)
ϕa

t
(
Y
la
,
Z
la

)
dYdZ

l2b
qa, (87)

where the expression of the matrix F (Eq. (44)) can be
identified and Eq. (43) is obtained. The Eqs. (45) and (46)
are obtained by combining Eqs. (42) and (43).
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