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Abstract 

For the purpose of reducing computational cost, this paper presents an extension of the 

Proper Orthogonal Decomposition method (POD) to nonlinear dynamic analysis of 

reinforced concrete multistory frame structure. The material nonlinearity, due to plasticity 

and damaging, is modeled by the multifiber section approach. An initial expensive full model 

nonlinear time-history analysis is conducted for the frame structure subjected to a portion of 

an initial seismic base excitation. Then, POD modes are extracted and used to reduce the 

dynamic model for the rest of the initial base excitation or for multiple different ones. By 

comparing the full and reduced models, the computational cost was lowered by up to 94 % 

while maintaining good level of accuracy.  

Keywords: Reinforced concrete beam, Material nonlinearity, Multifiber section, Dynamic 

analysis, Reduced model, Proper Orthogonal Decomposition. 

1 INTRODUCTION 

In structural seismic design, engineered structures should be checked for multiple 

accelerograms of previously recorded earthquakes in the region that are likely to reoccur and 

for all possible directions of vibration [1]. Performing dynamic time-history analysis through 

direct time integration techniques is computationally demanding and the presence of material 

nonlinearities in the structure further increases the already expensive computational cost. For 

this reason, several model reduction techniques were proposed in the literature to reduce the 

computational cost of the dynamic time-history analysis.  

Modal truncation is classically applied for linear systems (or moderately nonlinear) 

systems, by considering only the most influential vibration modes of the structure in the 

truncated modal basis that is used to reduce the dynamic system [2-3]. For structures where 

nonlinear effects are significant, the traditional modal truncation approach proves to be 
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unreliable. Researchers inspired by the work of [4] have tried to make an analogy between 

nonlinear normal modes and linear ones. However, this nonlinear modal analysis was not very 

successful due to its limitations when non-smooth nonlinearities are present in the structure 

[5]. 

For seismic analysis considering nonlinear material behavior of reinforced concrete 

structures, the pushover analysis is commonly applied. This static nonlinear approach solely 

considers the fundamental vibration mode of the structure in the direction under consideration 

[6]. Horizontal loads representing earthquake effects are distributed on the structure 

proportionally to its fundamental mode shape vector and are increased progressively while 

conducting a nonlinear calculation. This approach provides only maximum response values 

and is only applicable to structures where the fundamental mode shape is the dominant mode 

of vibration and is thus limited to regular low-rise buildings. Alternative pushover analyses 

have been proposed to improve the estimation of the structural maximum response [7-8] but 

do not provide time-dependent responses.  

In the early 20
th

 century, a statistical approach, known under many names “Proper
Orthogonal Decomposition” (POD), “Principal Component Analysis” (PCA) or “Karhunen-

Loève Decomposition” (KLD) is proposed to reduce the computational cost of dynamic 

analysis [9]. Nowadays, this method is used in a wide variety of fields where large numerical 

models need to be reduced such as turbulent flow in fluid mechanics, dynamic models for 

microelectromechanical systems, structural dynamic models, etc… Though the POD method 

is linear by nature, it is frequently applied to reduced order modeling of nonlinear structural 

systems [10]. However, there are few examples of POD method being applied to nonlinear 

problems in earthquake engineering. In [11], Kerschen and Golinval applied this model order 

reduction method to a 3D portal frame with nonlinear stiffness elements. Bamer and Bucher 

applied it to a 2D frame system with friction beam elements in [12] and a 3D wall-frame 

structure with friction pendulum elements in [13]. To evaluate properly seismic demand on 

structures, there is currently a need for more accurate models, which explicitly account for the 

geometrical and material nonlinearities naturally present in reinforced concrete (RC) 

structures. To the authors’ best knowledge, the POD method was never used for the dynamic 

analysis of RC structures with material nonlinearities. The goal of this paper is to present a 

reduction strategy based on the POD method to study reinforced concrete multistory frame 

structures subjected to seismic base excitations. In this work, material nonlinearity is modeled 

by the multifiber section approach. This paper demonstrates the efficiency of the proposed 

POD Reduced Order Models (POD-ROM) approach in cutting down the computational cost 

for the nonlinear structural time-history analysis. 

Section 2 goes through the commonly used nonlinear structural models and justifies the 

choice of the multifiber section approach. Section 3 focuses on the full and reduced dynamic 

analysis of structures in addition to the POD techniques used for lowering the computational 

cost of a RC multistory frame structure with material nonlinearities. Section 4 presents 

numerical applications of the POD based time reduction techniques while assessing their 

accuracy and efficiency in time saving. 

2 NONLINEAR DISCRETIZED MODEL 

2.1 Modeling approach 

During earthquakes, RC structures generally undergo nonlinear deformations. On one 

hand, an advanced nonlinear modeling is required to predict accurately the structural 

behavior. On the other hand, a detailed modeling of nonlinear RC structures is very 

computationally expensive. Several approaches are available in the literature to model 
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nonlinear RC structures, with element models and constitutive models of various complexity 

[14-15]. A good compromise between accuracy and time efficiency is to consider frame 

structures with Euler-Bernouilli multifiber beam elements. This is the approach considered in 

this work, allowing distributed plasticity with an acceptable computational effort.  

This multifiber approach consists in dividing the structural element cross section into a set 

of longitudinal fibers. For reinforced concrete structures, the fibers can be made of steel 

reinforcements, confined or unconfined concrete (refer to Figure 1). Each fiber has the 

potential to undergo nonlinear inelastic longitudinal deformation according to the uniaxial 

stress-strain behavior of its corresponding material [16-22]. As a result, material nonlinearity 

is distributed all over the structural element length and cross section.  

Figure 1. Multifiber reinforced concrete section 

2.2 Finite element discretization 

After finite element discretization, the dynamic equation of the nonlinear system is: [𝑀]{𝑋̈(𝑡)} + [𝐶]{𝑋̇(𝑡)} + {𝐹𝑁𝐿({𝑋(𝑡)})} = {𝐹(𝑡)} (1) 

where {𝑋(𝑡)}, {𝑋̇(𝑡)} and {𝑋̈(𝑡)} are respectively the displacement, velocity and acceleration

nodal vectors. [𝑀] is the mass matrix, [𝐶] is the damping matrix, and {𝐹(𝑡)} is the excitation 

force vector applied on the system. {𝐹𝑁𝐿} is the nonlinear nodal force vector defined by the

following integral over the finite element volume 𝑉: {𝐹𝑁𝐿} = ∫ [𝐵(𝑥)]𝑇 { 1−𝑦} 𝜎𝑓𝑖𝑏𝑒𝑟(𝑥, 𝑦)𝑑𝑉𝑉 (2) 

where (𝑥, 𝑦, 𝑧) are local coordinates in the reference system as indicated in Figure 1, [𝐵(𝑥)] is the gradient operator containing the derivatives of the linear and cubic shape 

functions and 𝜎𝑓𝑖𝑏𝑒𝑟 is the axial stress of a given fiber described by the corresponding

constitutive equation. 

The dynamic structural response is generally computed from equation (1) by direct-

integration time-history analysis. In this approach, temporal discretization is considered and 

the direct time-integration is conducted using implicit methods like Newmark-𝛽 [23], Wilson 𝜃 [24], HHT-𝛼 [25] or explicit methods like central difference and Runge-Kutta. The 

Newmark-𝛽 method has the advantage of being unconditionally stable when the constant 

average acceleration is assumed. Therefore, it will be considered in this work along with the 

Newton-Raphson method for the full-order model nonlinear calculation. 
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3 REDUCED-ORDER MODEL (ROM) 

In reduced-order models, the dynamic structural response of a system with 𝑚 degrees of 

freedom {𝑋(𝑡)}, is reduced to 𝑠 degrees: {𝑋(𝑡)} ≅ [𝑇]{𝑄(𝑡)} (3) 

where [𝑇] ∈ ℝ𝑚×𝑠  (𝑠 ≪ 𝑚) is a transformation matrix and {𝑄(𝑡)} ∈ ℝ𝑠 is the reduced

coordinate vector. 

Replacing {𝑋(𝑡)} by [𝑇]{𝑄(𝑡)} in equation (1) and multiplying both sides by [𝑇]𝑇 lead to:[𝑇]𝑇[𝑀][𝑇]{𝑄̈(𝑡)} + [𝑇]𝑇[𝐶][𝑇]{𝑄̇(𝑡)} + [𝑇]𝑇{𝐹𝑁𝐿([𝑇]{𝑄(𝑡)})} = [𝑇]𝑇{𝐹(𝑡)} (4) 

The initially 𝑚 degrees of freedom dynamic system is thus reduced to 𝑠 degrees of freedom. 

However, the nonlinear restoring force {𝐹𝑁𝐿([𝑇]{𝑄(𝑡)})} cannot be reduced and always needs

to be calculated in the full coordinate model which makes this step the most time-consuming 

part of the entire process. Due to this setback and in order to maintain an effective time 

saving, the need for calculating the nonlinear restoring force should be kept minimum during 

the direct time-integration analysis of the reduced model. 

Implicit direct time-integration techniques are usually used in conjunction with the 

Newton-Raphson approach for solving nonlinear systems. At each time step, multiple 

iterations are needed to achieve convergence. For every iteration, the calculation of the 

tangent stiffness matrix and the nonlinear restoring force is required which is time-consuming. 

Using the modified or constant stiffness Newton-Raphson approaches will respectively reduce 

or stop the need for the tangent stiffness calculation. However, the number of iterations 

required for convergence at each time step will grow thus increasing the number of calls for 

nonlinear restoring force calculation. 

On the other hand, for explicit direct time-integration techniques, the popular central 

difference method requires no iterations per time step and no expensive calculation of the 

tangent stiffness matrix. Only the expensive nonlinear restoring force is calculated once per 

time step. However, the central difference approach is conditionally stable and needs to 

satisfy the following stability condition [26]: ∆𝑡 < 2𝜔𝑚𝑎𝑥 (5) 

where ∆𝑡 is the time step and 𝜔𝑚𝑎𝑥 is the largest natural pulsation of the system. In full model

analysis, the structure has a relatively large number of degrees of freedom which will result in 

high natural pulsations (for high vibration modes). In order to satisfy the stability condition, 

relatively small time steps should be adopted for the explicit central difference method and 

thus increasing the computational cost. Therefore, the implicit Newmark-𝛽 method will be 

considered for full dynamic model analysis in this work. On the other hand, for reduced 

model analysis, the reduced structure has significantly fewer number of degrees of freedom 

which will yield relatively smaller natural pulsations. Thus, it is possible to use larger time 

steps in the explicit central difference method while respecting the stability condition. As a 

consequence, this explicit central difference method is very effective and will be used in this 

work for reduced-order models. More details on direct time integration techniques for 

nonlinear dynamic structural systems can be found in [26]. 

The transformation matrix used to reduce the dynamic structural system is constructed 

such that the error 𝜀 is small: 𝜀(𝑡) = ‖{𝑋(𝑡)} − [𝑇]{𝑄(𝑡)}‖ (6) 

In this work, two reduced-order models are studied (and compared): 
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 The Modal Reduced-Order Model (M-ROM), based on the modal truncation 

method. 

 The POD Reduced-Order Model (POD-ROM), based on the Proper Orthogonal 

Decomposition method. 

3.1  Modal Reduced-order model (M-ROM) 

A classical linear modal analysis is conducted on the structure. Then the reduction base [𝑇] 
is defined based on the conventional modal truncation criteria (first 𝑠 linear modes with 

cumulated effective modal mass exceeding 90% of the total structural mass). The dynamic 

nonlinear structural model is reduced by projection on the base [𝑇]. It should be noted that in 

this dynamic analysis and due to the nonlinear return force 𝐹𝑁𝐿({𝑋(𝑡)}), the linear modes can 

no longer be decoupled. 

3.2  POD Reduced-order model (POD-ROM) 

The Proper Orthogonal Decomposition (POD) is a data-driven method based on the 

statistical Principal Component Analysis (PCA) of observation dataset. Let’s consider a data 
matrix [𝑋] containing 𝑛 observation vectors [𝑋] = [{𝑋1} ⋯ {𝑋𝑛}] and each observation 

vector is made of m dimensions 

 [𝑋] = [{𝑋1} ⋯ {𝑋𝑛}] = [ 𝑥11 … 𝑥1𝑛⋮ ⋱ ⋮𝑥𝑚1 … 𝑥𝑚𝑛] (7) 

It can be demonstrated that the principal component vectors of the data set [𝑋] are the 

eigenvectors of [𝑋][𝑋]𝑇 called POD modes and their corresponding eigenvalues 𝜆 are called 

Proper Orthogonal Values (POV). These Eigenvalues represent the quantity of action 

occurring on the corresponding eigenvectors. The higher the eigenvalue is the more action we 

have on the corresponding eigenvector and the more energy it holds. Therefore, the higher the 

POV is, the more essential its corresponding POD mode is in recreating [𝑋]. More 

information on the principal component analysis can be found in [27]. 

The reduction base [𝑇] is generally defined by POD modes truncation, the first 𝑠 POD 

modes carrying at least 99% of the total system energy (the POV represents the corresponding 

POD mode energy) are considered 

 
∑ 𝜆𝑖𝑠𝑖=1∑ 𝜆𝑗𝑚𝑗=1 ≥ 99% (8) 

However, this criterion is not sufficient. In fact, for a better POD modes truncation, the 

cumulated modes’ energy should be considered and each supplementary mode have to be 
assessed for its additional energy regardless of the cumulated energy percentage. In other 

words, truncation is made where the cumulated POV curve in function of the mode number 𝑓(𝑠) = ∑ 𝜆𝑖𝑠𝑖=1   forms an elbow transition from an increasing part to a relatively stable part 

(refer to Figure 2). 
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Figure 2. Example of POD modes truncation 

In structural dynamics, the snapshot matrix (data matrix containing observations of system 

displacement) requires the displacement vectors at selected time intervals of the full order 

dynamic model. Since there is no escape from this initial time consuming full model analysis, 

various techniques have been proposed to benefit from the POD modes after conducting the 

initial costly analysis. In [12], the dynamic analysis cost of a steel frame structure with 

nonlinear seismic base isolation is reduced by initially conducting the expensive full model 

analysis on a portion of the base excitation. Then, snapshots were taken, the POD modes 

calculated, the dynamic system reduced and the response corresponding to the remaining part 

of the base excitation was calculated using the reduced-order model. As previously 

mentioned, for a structural seismic design, the structure is studied for a range of possible 

earthquakes and is analyzed and checked for each excitation (earthquake record) separately. 

So, [13] reduced the analysis cost of a reinforced concrete structure with nonlinear seismic 

base isolation subjected to multiple base excitations. First, they conducted the expensive full 

model analysis for only one base excitation. Then they extracted the snapshot matrix, 

calculated the POD modes and used the reduced-order dynamic model for the calculation of 

the remaining base excitations. Neither [12] nor [13] have tried reducing the dynamic model 

of a reinforced concrete structure with material nonlinearities. In this article, the before 

mentioned time saving techniques will be extended and used on reinforced concrete 

multistory frame structure where the material nonlinearity is modeled by the multifiber 

section approach. 

4 APPLICATION 

In this section, the transient dynamic response of the frame structure subjected to seismic 

base excitations is studied. The objective is to demonstrate the efficiency of the POD Reduced 

Order Model (POD-ROM) in reducing the numerical cost. 

 The following 4 earthquake recordings obtained from the Center of Engineering for 

Strong Motion Data CESMD [28] were considered (refer to Table 1 and Figure 3). 

Earthquake  Location Date Magnitude Measurement Vibration Total Time 
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station direction duration  step 

Northridge 

Los 

Angeles, 

USA 

01/17/1994 6.4 ML 

Newhall LA 

county fire 

station 

0° 60s 20ms 

Elcentro 
California, 

USA 
05/18/1940 6.9 Mw Elcentro 0° 53.74s 20ms 

L’Aquila 
L’Aquila, 

Italy 
04/06/2009 6.3 Mw 

L'Aquila  

V.Aterno  

Centro Valle 

90° 60s 20ms 

Chile 

Off the 

coast of 

central 

Chile 

02/27/2010 8.8 Mw 
Constitucion 

city 
90° 120s 20ms 

Table 1: Considered earthquakes. 

Figure 3. Earthquakes accelerograms 

4.1 Description of the investigated benchmark structure 

The considered structure is a 2D Reinforced Concrete (RC) multistory frame made up of 

10 stories and 5 spans with a 3 m story height, a 5 m span length, a 4 t/m uniform load is 

applied on beams and the structural self-weight is neglected (refer to Figure 4). All concrete 

columns and beams are discretized into 1 m long finite elements of identical cross section 

40x40 cm, with four 20 mm High Bond HB reinforcing bars at both top and bottom sides 

(refer to Figure 5). The cross section is composed of 4 concrete fibers and 2 steel fibers. 

Rayleigh damping was used to set a 5% damping ratio for the first two eigenmodes (satisfying 

the classic linear modes truncation criterion, more than 90% of the total mass is participating 

in the first two eigenmodes). 

Nonlinear material deformations occur in the most stressed zones. For the case of a frame 

structure subjected to seismic loads, these zones are the columns and beams extremities in 

lower floors. Thus, nonlinear elements of the benchmark structure are considered near the 

Accepted Manuscript



 

beam column connections at the first 5 stories (refer to Figure 6). The bilinear backbone curve 

is adopted to model the reinforcing steel bars. Under cyclic loading, if nonlinearity is reached, 

the steel material will undergo a kinematic hysteresis behavior (for further details refer to 

Table 2 and Figure 7). 

Material 
Elastic Young 

Modulus 
Yield stress Yield strain Ultimate stress Ultimate strain 

Rebar 200 GPa 400 MPa 2‰ 420 MPa 2.5% 

Table 2: Steel rebar characteristics 

Concrete is unconfined and modeled according to a simplified version of Mander model [29] 

that takes into account the damaging phenomena (for further details refer to Table 3 and 

Figure 8). 

Material 

Elastic 

Young 

Modulus 

Maximum 

compressive 

stress 

Strain at 

maximum 

compressive 

stress 

Ultimate 

compressive 

stress 

Ultimate 

compressive 

strain 

Ultimate 

tensile 

stress 

Ultimate 

tensile 

strain 

Concrete 25 GPa 25 MPa 2‰ 20 MPa 4‰ 2.5 MPa 0.1‰ 

Table 3: Concrete characteristics 

 

Figure 4. RC frame geometry and loading 
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Figure 5. RC element multifiber section 

Figure 6. Position of nonlinear elements in RC frame 

Figure 7. Steel reinforcement axial stress-strain curve 
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Figure 8. Concrete axial stress-strain curve 

For linear dynamic properties of the structure, the first 5 vibration modes in the horizontal 

direction are presented in Table 4. 

Mode Period 
Effective 

mass 

Percentage 

of total 

mass 

1 1.74 s 815.7 t 81.57% 

2 0.57 s 97.4 t 9.74% 

3 0.33 s 35.9 t 3.59% 

4 0.23 s 19.3 t 1.93% 

5 0.17 s 12.1 t 1.21% 

Table 4: Linear dynamic properties of the RC frame 

4.2 Results 

Before investigating the efficiency of the POD in reducing nonlinear dynamic systems, it 

should be demonstrated that linear vibration modes are not effective for nonlinear problems. 

For this reason, a full model implicit nonlinear time-history analysis with a 20 ms time step 

was conducted for the Northridge earthquake. Then, 50 resulting displacement vectors were 

taken at equally spaced time intervals during the first 15 seconds of the vibration (where most 

of the powerful excitation occurs) and gathered in a snapshot matrix. POD modes were 

extracted from the snapshot matrix and the first 4 POD modes satisfied the truncation 

criterion. For the linear modes of vibration, the first two modes satisfy the classical truncation 

criterion of 90% effective modal mass participation. However, to make a fair comparison, the 

first 4 linear modes of vibrations were considered similarly to the POD modes (refer to Figure 

9). This structure with initially 1140 degrees of freedom is reduced to only 4. Then, explicit 

nonlinear time-history analyses with a 20 ms time step were conducted using two reduced-

order models respectively based on POD modes and linear eigenmodes (refer to Figure 10). 
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Figure 9. Classic structural eigenmodes Vs POD modes 

By comparing, in Figure 9, the first 4 POD modes with the first 4 classical linear 

eigenmodes of the structure, we can clearly see the nonlinear behavior of the first 5 stories of 

the structure in the POD modes, especially for modes 2 and 3. 

Figure 10. Structural top left corner horizontal displacement in function of time for Full Model 

(FM), POD Reduced-Order Model (POD-ROM) and Modal Reduced-Order Model (M-ROM) analyses 

By studying the top left corner horizontal displacement of the structure subjected to the 

Northridge earthquake in function of time, it is clear in Figure 10 that the POD Reduced-

Order Model (POD-ROM) is a lot more accurate than the Modal Reduced-Order Model (M-

ROM). In fact, the average error for the POD-ROM is 0.28 cm while it is 5.98 cm for the M-

ROM. Additional testing showed that the M-ROM required more than 500 linear modes to 

achieve the same accuracy obtained with only 4 POD modes.  

Another remarkable aspect in Figure 10 is the shift between POD-ROM and M-ROM 

results starting from the 10
th

 second. According to Figure 3, the vibration intensity of

Northridge earthquake decreases at this instant. So, the structure returns to vibrating in the 
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linear domain with residual deformations and some damaged properties. At this low vibration 

intensity stage, projecting on initial linear elastic vibration modes produces less errors. 

However, this projection was not doing well in the previous high intensity vibration phase, so 

M-ROM analysis entered the low intensity vibration stage with a result offset that continued 

with it. 

After demonstrating the accuracy of the POD modes, the efficiency of the POD-ROM in 

time reduction will be studied in the following. In a first approach (similar to [12]), each of 

the four earthquakes was studied separately. A full model implicit nonlinear time-history 

analysis with a 20 ms time step was conducted solely on the first quarter of the vibration time 

length.  Then, 50 snapshots at equally spaced time intervals were taken from the resulting 

displacement data. Next, POD modes were extracted while respecting the truncation criterion 

and used for a reduced-order model explicit nonlinear time-history analyses with a 20 ms time 

step carried on the remaining three quarters of the vibration time length (refer to Figure 11). 

Figure 11. Time length distribution in accelerograms between Full Model (FM) and Reduced Model (RM) 

analyses 

It should be noted that for comparison purpose, Full Model (FM) implicit nonlinear time-

history analysis was conducted for each earthquake over its entire time length in order to have 

a base reference. In addition, the process of starting with FM analysis for the first quarter and 

then continuing with a Reduced Model (RM) analysis will be designated as Partially Reduced 

Model (PRM) analysis. 
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Figure 12. Structural top left corner horizontal displacement in function of time for Full Model (FM) and 

Partially Reduced Model (PRM) analyses 

As shown in Figure 12, the PRM analyses results are very close to the FM results and at a 

reduced computational cost, for further details refer to Table 5. 

Earthquake FM time 
PRM 

time 

Time 

saving 
Speedup 

Average 

absolute 

displacement 

error 

Max horiz 

displacement 

Northridge 795.73 s 239.93 s 69.85% 3.3 0.12 cm 45.06 cm 

Elcentro 687.03 s 214.04 s 68.85% 3.2 0.31 cm 23.96 cm 

L’Aquila 774.31 s 243.96 s 68.49% 3.2 0.10 cm 15.85 cm 

Chile 1661.06 s 426.86 s 74.30% 3.9 1.67 cm 27.24 cm 

Table 5: Accuracy and time saving of the Partially Reduced Model (PRM) with respect to the Full Model (FM) 

It is clear that projecting the system on POD modes reduces the computational cost of a 

nonlinear dynamic analysis while maintaining a good level of accuracy. However, the current 

application process always requires conducting the expensive FM analysis over a portion of 

the earthquake’s time length and thus reducing the time saving efficiency of the approach. For 
a nonlinear dynamic analysis covering only a single accelerogram, nothing more can be done. 

On the other hand, for analyses covering multiple earthquake scenarios a second approach 

(similar to [13]) is possible. 

For this second approach, Northridge earthquake is taken as the initial vibration since it 

contains strong vibrations at the beginning of its accelerogram (refer to Figure 3). Full Model 

(FM) with a 20 ms time step was carried out for the first 15 seconds of this vibration.  

Similarly to the first approach, 50 snapshots were taken, POD modes were extracted and the 

dynamic system was reduced (first 4 POD modes required to satisfy the truncation criterion). 

Then, Reduced Model (RM) explicit nonlinear time-history analyses with a 20 ms time step 

were carried out for the entire time length of all earthquakes (Northridge, Elcentro, L’Aquila 
and Chile). 

Also here and for comparison purpose, Full Model analysis for each earthquake over its 

entire time length was considered for base reference.  
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Figure 13. Structural top left corner horizontal displacement in function of time for Full Models (FM) and 

Reduced Models (RM) analyses 

Figure 13 shows that the reduced model results are very close to the full models and at a 

fraction of the computational cost, for further details refer to Table 6. 

Earthquake  FM time RM time 
Time 

saving 

Speed

up 

Average 

absolute 

displacement 

error 

Absolute 

error at max 

horiz 

displacement 

Max horiz 

displacement 

Northridge  795.73 s 47.80 s 93.99% 16.6 0.28 cm 1.26 cm 45.06 cm 

Elcentro  687.03 s 44.51 s 93.52% 15.4 0.36 cm 0.24 cm 23.96 cm 

L’Aquila 774.31 s 47.94 s 93.81% 16.2 0.79 cm 0.52 cm 15.85 cm 

Chile  1661.06 s 106.57 s 93.58% 15.6 2.71 cm 0.85 cm 27.24 cm 

Table 6: Accuracy and time saving of the Reduced Model (RM) with respect to the Full Model (FM) 

The projection on POD modes has significantly reduced the computational cost of the 

nonlinear dynamic analysis. In addition, the POD modes extracted from the Full Model (FM) 

analysis of Northridge earthquake are working well in the reduction of the structural model 

subjected to other excitations (Elcentro, L’Aquila and Chile earthquakes). It should be noted 

that a reduced model calculation based on the implicit Newmark-𝛽 method was also tested. It 

gave similar precision but with only 25% time saving. Thus, highlighting the importance of 

adopting central difference method for reduced models. 

This second approach is a lot better in time reduction than the previous single earthquake 

one due to the fact that no computational costly FM analysis was required for Elcentro, 

L’Aquila and Chile earthquakes. However, the POD modes projection technique is criticized 
for being load dependent. The choice of the base excitation to consider for the extraction of 

the POD modes is suspected to have an influence on the accuracy of the reduction process. 

Nevertheless, in structural seismic analysis, the dynamic load resulting from a base 

excitation always has the same pattern (proportional to the product of the mass matrix by the 

influence vector) regardless of the considered vibration. In addition and as demonstrated in 

this last application, choosing a base vibration that generates nonlinear behavior while taking 
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good representative snapshots will result in a POD base that can be applied for reducing the 

dynamic model when subjected to other excitations. 

In Figures 12 and 13 and Tables 5 and 6, it is remarkable that reduced models were less 

accurate for Chile earthquake. This might be due to the fact that Chile earthquake data were 

measured close to the quake epicenter and in this case near fault effects are affecting the 

results. More information on this topic can be found in [30]. 

The model sensitivity to fiber discretization was investigated, tests were conducted with 

respectively 8 and 16 concrete fibers. No important effect was noticed on the precision and 

efficiency of reduction techniques. 

Lastly, to overcome issues related to the choice of base excitation for POD modes 

extraction and the dependency of these modes on the applied loading, a synthetic base 

excitation constructed from the frequency spectrums envelop of considered earthquakes might 

be a good candidate for the FM analysis used to obtain the POD modes. 

5 CONCLUSIONS AND PERSPECTIVES  

In this paper, the application of the Proper Orthogonal Decomposition was extended to 

reduce the computational cost of nonlinear dynamic analysis. It was applied to a reinforced 

concrete multistory frame structure where the material nonlinearity was modeled by the 

multifiber section approach. A system containing more than 1000 degrees of freedom was 

successfully reduced to only 4 while maintaining an acceptable accuracy level and achieving a 

speedup of 16 for analysis covering multiple earthquake scenarios. It was also shown that 

POD modes obtained from the analysis of a full structural model subjected to a base vibration 

were also convenient for reducing the same model when subjected to different earthquakes. 

The key points here are (i) choosing an earthquake that generates a nonlinear response of the 

structure and (ii) having a snapshot matrix representing well the dynamics of the system. 

A perspective for future work is to minimize the length of the seismic signal studied 

initially with full model analysis. This can be achieved by focusing the analysis around 

acceleration peaks of the signal. Also, a synthetic base excitation inspired from real 

earthquakes can be used for the calculation of the POD modes to decrease their dependency 

on the type of loading on the structure. Finally, the approach adopted in this work to deal with 

Reinforced Concrete (RC) beams and columns can be extended to RC plates, shells and 

membranes by using the layered 2D finite element model. 
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