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1. Introduction

* Many regression models with spatially correlated data

y a vector of n observations of a response variable
X a matrix of p predictors

W an exogenous spatial (or neighbouring) weight matrix. Rows sum to
1 and diagonal elements are O.

Morans’l statistic
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* The general (non-identifiable) Manski model

y=pWy+Xp+WX0+u u=~AWu+¢
e ~ N(0,0°T, )

* SAR model y= pWy + XB + &
* Spatial Durbin Model 'y = ,OWy + XB + WX0+¢

* p reflects the strength of spatial dependence



Anselin, L. (1998). Spatial econometrics: Methods and models. Berlin: Springer.

Elhorst, J. P. (2010). Applied spatial econometrics: raising the bar. Spatial
economic analysis, 5(1), 9-28.
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and Hall/CRC.

Loonis, V. et al. (eds) (2018). Handbook of Spatial Analysis, INSEE-Eurostat.



* This presentation:
* Extensions of the SAR model for a functional predictor
* An extension of the SDM for a compositional predictor

e |llustration with real data
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2. Spatial regression with a functional predictor

x(t) a set of n time functions (or curves) observed on [O,T]

2.1 The Scalar on Function Regression model (SoFR)

y = jOT B()x(H)dt +¢

Ramsay, J.O. & Silverman, B.W. (1997); Cardot et al. (1999); Cai & Hall (2006); Hall & Horowitz (2007) etc.



........

R.A.Fisher « The Influence of Rainfall on the Yield of Wheat at Rothamsted »
Philosophical Transactions of the Royal Society, B: 213: 89-142 (1924)

Disregarding, then, both the arithmetical and the statistical difficulties, which a direct
attack on the problem would encounter, we may recognise that whereas with ¢ subdi-
visions of the year, the linear regression equations of the wheat crop upon the ramfall
would be of the form

W= c~}ar +ar,+ ... +ar,

where 7, 7y, ..., r, are the quantities of rain in the several intervals of time, and
@, ... a, are the regression coefficients, so if infinitely small subdivisions of time were
taken, we should replace the linear regression function by a |regression integral|of the
form

T
iﬁ:ﬁ,fjmda, R € 6 | §
i

where 1 d¢ is the rain falling in the element of time df ; the integral is taken over the whole
period concerned, and o is a conttnuous function of the time ¢, which it 18 our object to

__evaluate from the statistical data.,

w
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Minimizing E|Y — ! A X dr|: Wiener-Hopf equations:
X,

cov(X,.¥) = [ C(t.5)B(s)ds

An ill posed problem
00 2

C.
* Picard’s theorem states that f(t) is unique if and only if: Z 5 <®©

=1 7Y

where the ﬂ’i are the eigenvalues of the Karhunen-Loeve expansion of X(t) and the ¢

the covariances between Y and the functional principal components
X(t)= Zf;(t)gz ¢; =cov(Y,¢g;)
i=I

* Generally not true when n is finite and f(t) is not.



Constrained solutions or basis expansions:
* Projection onto the m first components of:

- Functional principal components regression (truncated KL
expansion)

- Functional PLS regression?
max (covz(Y, [ w(t)Xtdt)) [wif =1
cov(X,,Y)
\/ [ OT cov3 (X, Y)dt

W(t) = = jOT w(t) X dt

iteration under orthogonality

N

T A
Vossig =+t gty = [ Brsi (DX dt

R2(Y; ?PLS(q)) 2 Rz(Y; ?PCR(CI))

lpreda, C., Saporta, G.(2005) PLS regression on a stochastic process , Computational Statistics & Data Analysis, 48(1), pp. 149-
158



2.2 The Scalar on Function Spatial Regression model (SSoFR)

v = pWy + jOT B)x(t)dt +¢

e SSoFR has merits of both SoFR and SAR. It reduces to the classical
SoFR when p=0

* A reformulation shows that the error terms are not independent:
1 T _
y=(1,-pW)" jo BO)x(0)dt+(1, - pW) '
maximum likelihood should be used instead of OLS



* The spatial autocorrelation parameter p, the slope function B(t), and
the variance of the error term o2 are estimated by Maximum
Likelihood combined with a truncated functional PCR or PLS basis
expansion:

j=1
And its sample counterpart:

e=y-pWy-Ab normally distributed with variance o1
e'e

lom

InL(p,b,0°) = —%1n(27r0'2)+ln|l—pW| —



2.3 A Robust Scalar on Function Spatial Regression model (RSSoFR)

e Same formula:
T
y = pWy + jo B)x(t)dt +¢

* But with different iid residuals &, ~ o1
 Estimation by an EM algorithm using the following property:

2
u ~v,, and & |u, ~N(O,Z—)

l

then i~Tv
O



2.4 Application

e Data: monthly mean temperatures and total precipitation in 34 major
cities in China 2005-2007. Aim: investigate the effect of temperature
on precipitation over these 3 years. 2008 is the test set.

Q|
™

* y:logarithm of the mean annual
total precipitation for the ith city.
 Monthly temperature are smoothed
by a kernel function

Temperature curves

Jan Mar May Jul Sep Nov



e Residuals shows a spatial pattern. The non-spatial SOFR does not fit to
the data

Spatially Lagged Residuals of SoFR

-1.0 -0.5 0.0 0.5
Residuals of SoFR
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* The spatial weight matrix W is formed by the reciprocal of the
geodesic distance d;. between centers of two cities i and i’

* A distance threshold is then applied since if city i is very far from city i’
the spatial dependence between them will be very small. 626 km was
found to be optimal according to Moran’s statistic.

71 40.986

e Lhassa and Urumqi were removed.
* Only one component (PCR or PLS) was necessary

Proportions of variance
00 02 04 06 08 1.0
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Fig.5 The Moran Scatter plot of the residuals of the RSSoFR (top-left), the estimated B(t) of the RSSoFR
and the SOFR (top-right), the fitted error of the RSSoFR and the SOoFR (bottom-left), and the predicted error
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Toulouse, July 4-5, 2022 18



Comparison

MODEL

Moran’s | statistic

(residuals)

MSE
(fitted error)

MSE
(prediction error)

Variance
proportion

SOFR(PCA)
SOFR(PLS)
SSoFR (PCA)

SSoFR (PLS)

RSSOFR (PCA)

RSSOFR (PLS)

0.80

0.76

0.80

0.675

0.547
0.487
0.107

0.053

0.133

-0.14

0.149
0.128
0.092

0.089

0.090

0.088
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3. Spatial regression models with a
compositional predictor

3.1 A few notations
o, ® ' D
Composition: x”=(x",--,x;) [x)>0, Y x" =1
j=1
Perturbation and powering:
X @y’ =C(x v x vy xpyp ) @ Ox” =C (), (x)) e, ()

Inner Aitchison product:

b b vy
ey >“_JZ; (X ) R
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3.2 Models

- SAR Compositional Model (SARCD)*?
y=pWy+(X",B"), +&, e~ N(0,0°L)

- Spatial Error Model for Compositional Data (SEMCD)
y=(X",p"), +u, u=pWu+g, £~ N(0,0°1))

- Spatial Durbin Model for Compositional Data (SDMCD)

y = pWy+(X",p"), +(WOX",0”), +g, £~ N(0,0°1,)

1 Huang, T., Wang, H., & Saporta, G. (2019). Spatial autoregressive model for compositional data. Journal of Beijing
University of Aeronautics and Astronautics, 45(1), 93—98
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11 1)
* When p=0and0’=| —,—,---,— | y=(X",B"), +¢
P (D D Dj y= b,
linear model with a compositional predictor

1 1 1Y)
.When OD:(B,B’.”’BJ y:pwy+<XD7|3D>a+8

SAR Compositional Model (SARCD)



3.3 Estimation of the SDMCD

* First step : ilr ! transformation for x? and g?

e Regression equation:

E(Y[8)=r+n 8"+t yp1 &)

Y D_1SD 1

* 1Hron, K., Filzmoser, P., & Thompson, K. (2012). Linear regression with compositional explanatory variables. Journal
of Applied Statistics, 39(5), 1115-1128



Then (X" B”) =Zy, (WO X”,0°) =WE0
and one may rewrite the compositional equation of SDMCD as a scalar
equation:

y=pWy+Zy+WEO+¢

* Second step : Maximum Likelihood Estimation and back to the
original coefficients

. Important note:

¢« & represents the relative information of x as regard to average of the rest
flparts and 7, “can be assigned to this part.

* The remaining regression coefficients are not straightforward to interpret
since the assigned regressor variables do not fully represent one particular
part. Thus, the only way to interpret the role of each compositional part for
explammg the response Y is to consider D different regression models by

taking/ € {1, ...,D}, and to interpret the coefficient 7/1, representing part x( )



3.4 Application to real data

* SDMCD model is employed to investigate how three strata of
industry™ affect pollution of PM 2.5 (fine particulate matters with
diameter smaller than 2.5 micrometer) in 34 major cities of China in
2016.

* Moran's | statistics = 0.63. Spatial effects are significant and there is a
need to utilize spatial models.

* Weight matrix W is similar (but not identical, d;<459km) as in part 2

*proportions of the primary sector, the secondary sector and the tertiary sector in gross domestic product
(GDP)



vl |y sy ez secwrs
.55

W =28 v*¥=1299 4®=-102
BP =1.494x10° B =0.9999975 B =6x10""

(0.33) (0.0002) (0.40) (0.08) (0.09)

savco ey st ez ey __

8 =132 P =646 =177

6°=00149 G2 =0985119 A =9x10°
(0,26) (0.0003) (0.69) (0.34) (0.17)

Toulouse, July 4-5, 2022

27



0.74 0.07 0.58 0 =300 =118 ' =-9.8 o° =—-10.11 i =187 6> =-2.96

(0.26) (0.0003) (0.56) (0.11) (0.09) (0.02) (0.21) (0.74)
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 SDMCD provides a better interpretation for the first sector compared
to the SEMCD.

* the second and the third parts are positively and negatively
connected with PM2.5 concentration, respectively.

* The other coefficient 6’s indicates how a city’s air quality is related to
near cities’ industry structure.



Conclusion and perspectives

 Many more models could be imagined, mixing functional and compositional
predictors

Taking into account spatial autocorrelation avoids biases and provides safer
Interpretations

e Overparametrization needs regularization (PCR or PLS)

Prediction raises specific problems: deleting observations (cross-validation)
destroy connectivity *

* Variable importance measures could of be interest for interpreting
compositional regression analysis %3

1  Goulard, M., Laurent, T., & Thomas-Agnan, C. (2017). About predictions in spatial autoregressive models: Optimal and almost optimal
strategies. Spatial Economic Analysis, 12(2-3), 304—-325.

2 Gromping, U. (2015). Variable importance in regression models. Wiley Interdisciplinary Reviews: Computational Statistics, 7(2), 137-152.

3 Wallard, H. (2015). Using explained variance allocation to analyse importance of predictors. In 16th ASMDA conference proceedings, 1043-
1054.
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