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Abstract

Colistin is a critically important antimicrobial for human medicine, and colistin-

resistant Escherichia coli are commonly found in poultry and poultry products in South-

east Asia. Here, we aim at disentangling the within-farm and outside-farm drivers of

colistin resistance in small-scale chicken farms of the Mekong delta of Vietnam. Nine-

teen Vietnamese chicken farms were followed up along a whole production cycle, dur-

ing which weekly antimicrobial use data were recorded. At the beginning, middle and

end of each production cycle, commensal E. coli samples from birds were collected,

pooled and tested for colistin resistance. Twelve models were fitted to the data using

an expectation–maximization algorithm and compared. We further tested the spatial

clustering of theoccurrenceof resistance importations fromexternal sources using the

localMoran’s I statistic. In thebestmodel, colistin resistance inE. coli fromchickenswas

found tobemostly affectedby importations of resistance, and, to a lesser extent, by the

use of antimicrobials in the last 1.73weeks [0.00; 2.90], but not by the use of antimicro-

bials in day-olds, nor their colistin resistance carriage fromhatchery. The occurrence of

external source importations proved to be sometimes spatially clustered, suggesting a

role of local environmental sources of colistin resistance.

KEYWORDS

antimicrobial resistance, colistin, Escherichia coli, poultry, Southeast Asia, spatial

1 INTRODUCTION

Antimicrobial resistance (AMR) is a major threat worldwide and it is

hastened by excessive antimicrobial use (AMU) (Ferri et al., 2017).

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Transboundary and Emerging Diseases published byWiley-VCHGmbH.

Antimicrobials intended for veterinary use amount to a substantial

fraction of total AMU (Carrique-Mas et al., 2020; ECDC et al., 2017),

and AMU and AMR in food-producing animals are thought to con-

tribute to the burden of resistance in human populations (Puyvelde

Transbound Emerg Dis. 2022;69:e2185–e2194. wileyonlinelibrary.com/journal/tbed e2185
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et al., 2017), especially in low- and middle-income countries (Nadim-

palli et al., 2018).

Polymyxins, a class of antibiotics that includes colistin (polymyxin

E), are last resort antimicrobials formultidrug-resistantGram-negative

bacterial infections, and are thus classified as critically important

antimicrobials for human medicine by the World Health Organization

(WHO, 2019). The fact that resistance of Enterobacterales to colistin is

reported in livestock worldwide, specifically in Asia, is a serious public

health concern (Apostolakos & Piccirillo, 2018; Boeckel et al., 2019;

Kempf et al., 2016).

In particular, high levels of colistin resistance have been reported

in Escherichia coli collected from chicken products (Yamaguchi et al.,

2018) and chicken flocks (Kawahara et al., 2019;Nguyen et al., 2016) in

Southeast Asia. Chicken is the most consumed meat in this region and

is the livestock production sector that grows the fastest (OECD&FAO,

2020). Moreover, the zoonotic potential of colistin-resistant bacteria

carried by poultry has been shown in chicken farms in Vietnam (Trung

et al., 2017).

Previous studies have investigated the factors that drive AMR

in food-producing animals and, among them, some have specifically

focused on colistin resistance in chicken farms. Hypothesized factors

include AMU (Majewski et al., 2020; Nguyen et al., 2016), carry-over

from a previous flock raised in the same building (Mo et al., 2019)

or colistin resistance in day-old chicks on arrival at the farm (Baron

et al., 2014). A major limit of these studies is that they rarely consider

external sources of contamination that may impact levels of resistance

measured on farms, for example, transmission from the surrounding

environment such as water sources, or from humans to the flock (Lee

et al., 2020). Indeed, such accidental resistance importations from out-

side the farm are difficult to detect directly (as compared with mea-

suring AMU for instance), requiring the use of specific methods to

account for these unobserved data. The multiplicity of potential resis-

tance selection and transmission mechanisms renders the identifica-

tion of an association between use and resistance difficult to unravel

at the scale of a farm, and spatial (in addition to temporal) analyses

become necessary (Rosenkrantz et al., 2019; Singer et al., 2006).

In this study, we analyze longitudinal AMU and colistin resis-

tance data collected from small-scale commercial chicken farms of

the Mekong delta in Vietnam, a region that accounts for ∼13% of

Vietnam total chicken production (Truong et al., 2021). We apply an

expectation–maximization algorithm to (i) assess the contributions of

within-flock factors (such as AMU) on colistin resistance in chickens

during production and (ii) estimate for each farm the probability of

importation of resistance from external sources. We finally assess the

spatial distribution of this probability, to investigate the presence of

local hotspots of introduction of colistin resistant bacteria into chicken

flocks.

2 MATERIALS AND METHODS

2.1 Study farms and data collection

The study took place in 19 farms raising chickens for meat located in

the districts of ThapMuoi and Cao Lanh, Dong Thap province (Mekong

Delta region of Vietnam), as part of the baseline phase of the ViParc

research project described in Carrique-Mas and Rushton (2017) and

Phu et al. (2021). Briefly, all farmers registered in the two districts and

raising more than 100 meat chickens as single age (i.e. 200–300 farm

owners in each district) were invited to participate to the project. 102

farms were included in the ViParc project (Phu et al., 2021), among

which 19were randomly selected for this study. These 19 farms corre-

spond to small-scale commercial productions, with flock size between

100 and 2000 chickens of the same age (all-in/all-out system), raised

over production cycles of 4–5 months in a dedicated area of the farm,

and fed and watered manually. The use of antimicrobials in the flocks

was recorded on a weekly basis by the farmers (Figure 1). All commer-

cial containers were kept to ensure the generation of reliable AMU

data (Cuong et al., 2019).

In each flock, three rounds of faeces sampling were performed: on

arrival of day-old chicks (restocking), in themiddle and at the endof the

production cycle (Figure 1). The day before each sampling visit, farmers

were asked to place a tarp on the pen’s floor, in order to collect com-

mensal E. coli from chickens’ gut flora. Indeed, E. coli is a classical indi-

cator of AMR in commensal gut bacteria in human and animal popula-

tions (EFSA & ECDC, 2021; Tadesse et al., 2012). The faeces samples

collected from the whole flock on the tarp were pooled for each sam-

pling round of each flock, resulting in 19× 3 samples.

2.2 Estimation of colistin resistance in samples

From each pooled sample of faeces, 30–50 colonies of E. coli were

selected and pooled to have a resulting sample representative of the

population of commensal E. coli in the collected faeces on each farm

at each time point. Growth curves of E. coliwere determined by grow-

ing a standardized suspension andmeasuring its OD600nm (optical den-

sity), in presence of different colistin concentrations: 0, 0.5, 1, 2, 4, 8,

12 and 16 mg/L (Supplementary Material SM1). For each sample, this

measure was repeated twice and averaged. The method, validated by

Nhung et al. (2021), aims to obtain an aggregated estimate of colistin

resistance among a representative sample of the whole E. coli popula-

tion circulating in the guts of all the chickens of the flock of each farm

and at each time point.

The chosen metric of colistin resistance is the area between the

growth curve of E. coli in presence of colistin and the reference growth

curve in absence of colistin (Figure 1 and SM1). If, for a given non-

null colistin concentration, the growth curve is lower than the refer-

ence, the bacteria are considered susceptible to this concentration of

colistin.

Because the objective is to explain the variance in the colistin resis-

tancemeasured in samples, we first pre-select concentrations showing

both low-growth (susceptible bacteria) and high-growth curves (resis-

tant bacteria) (SM1). In order to increase the power of our analysis, we

then select the colistin concentration c that provides themaximal stan-

dard deviation of our resistance metric. A robustness analysis on the

value of c is also performed (see Section 2.7).

Because the distribution of the metric is bimodal (see SM1), we

use a Gaussian Mixture Model with two components to determine the
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BASTARD ET AL. e2187

F IGURE 1 Description of the data collection. Rows correspond to the 19 chicken production cycles. The colour of the square indicates the
weekly use of antimicrobials. Black crosses indicate weeks of pooled faecal sample collection, which happened on three occasions for each cycle:
on restocking, in themiddle and at the end of the production cycle. For each pooled sample, growth curves of E. coliwere determined by optical
density, in presence of different colistin concentrations. Themetric of colistin resistance in our study is the area between the growth curve under
1mg/L of colistin and the growth curve under 0mg/L of colistin (see Section 2.2)

probability for each sample to belong to the ‘resistant’ or ‘susceptible’

categories. The value of probability 0.5 is the threshold for considering

a sample either as ‘resistant’ or ‘susceptible’ (SM1).

Note that the classificationwemake between susceptible and resis-

tant strains is based on a statistical rationale only (based on the

bimodality of the resistance metric) and not on a clinical breakpoint.

Indeed, the objectives of this study are to assess the factors increas-

ing or decreasing the level of colistin resistance, independently of the

threshold conventionally used to characterize colistin resistant versus

susceptible bacteria.

2.3 Models

For each sample (i,j) collected in the flock i at the jth sampling round of

the production cycle (j∈{2;3}), that is, 2 × 19 = 38 samples, we aim at

explaining the observed resistance status Rij, 0 for ‘susceptible’ and 1

for ‘resistant’.

The resistance status is assumed to follow the Bernoulli trial:

Rij ∼ B
(
pij
)

where pij, the probability for bacteria in sample (i,j) to be resistant, is

defined as:

pij =
1

1 + e−[𝜇+𝛼.Lij+𝜑.Si+
∑

k∈{1; j−1}(𝜆k .Rik )]
if Zij = 0

pij = 𝜂 if Zij = 1

where (Table 1):

∙ α is the effect of using antimicrobials before the sampling week. Lij is

the number of weeks of AMU during the β weeks preceding the jth
sampling round in flock i (see SM2 for illustration), where β is esti-
mated (Table 1). Lij is defined as:

Lij =

tij−1

∫
tij−1−𝛽

Ui (t) dt

where tij is the week of sampling round j in flock i. Ui(t) = 1 if antimi-

crobials were used in the flock i during week t, and Ui(t) = 0 otherwise

(SM2).

∙ φ is the effect of using antimicrobials at the beginning of the produc-

tion cycle. Si is a measure of the AMU occurring during the first δ
weeks of the production cycle of flock i (SM2), where δ is estimated

(Table 1). Si is similarly defined as:

Si =

𝛿

∫
0

Ui (t) dt

∙ λ1 and λ2 represent the effect of the resistance in the previous sam-

ples of the same flock (assuming potential autocorrelation), Ri1 and

Ri2 (Table 1).

∙ μ is the baseline within-flock acquisition of colistin resistance, with-
out AMUnor previous resistancemeasured (Table 1).

∙ Z is a latent (unobserved) binary variable, such that Zij = 1 (j∈{2;3}) if

anunobservedeventof importation fromexternal sources increased

the load of colistin resistance in the flock i between the sampling
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e2188 BASTARD ET AL.

TABLE 1 Parameters used in the analysis

Parameter Description Value Unit Domain of definition

c Colistin concentration chosen for the colistin

resistancemetric in samples

1

(See Section 2.2 and SM1)

mg/L –

α Effect of AMU shortly before sampling (recent

AMU) on colistin resistance

Estimated – ]−∞;+∞[

β Number of weeks considered for the effect of recent

AMU (see SM2)

Estimated Weeks ]0; 5[

φ Effect of AMUduring the first fewweeks of the

production cycle (initial AMU) on colistin

resistance

Estimated – ]−∞;+∞[

δ Number of initial weeks in the production cycle

considered for the effect of initial AMU (see SM2)

Estimated Weeks ]0; 5[

η Probability of colistin resistance of the sample after

an importation of resistance from external

sources

0.999

(assumption)

– –

λk Effect of the colistin resistance previously measured

in the kth round of sampling (autocorrelation)

Estimated – ]−∞;+∞[

μ Baseline within-flock acquisition of colistin

resistance, without AMUnor previous resistance

measured

Estimated – ]−∞;+∞[

D Distance used to compute the local’ Moran I statistic

(see Section 2.6)

Tuned km [0.1; 24]

rounds j − 1 and j, and Zij = 0 otherwise. Therefore, if Zij = 1, the

probability of the sample to be resistant is η, a fixed parameter with

a value close to 1 (but cannot be equal to 1 to allow model fitting)

(Table 1). On the contrary, if no importation event occurred (Zij = 0),

the probability of resistance pij follows a logistic function account-

ing for AMU and the resistance in the previous samples of the same

flock.

We consider 12 versions of the model, described in Table 2, that are

particular cases of the full model detailed above. We note θ the set of
model parameters.

2.4 Estimation using the
expectation–maximization algorithm

For a given model, let Ym be the vector of values of the observed vari-

ables for sample m = (i,j), including Rm and the explanatory variables.

Because our model includes both observed Y and unobserved data Z,

we use an expectation–maximization algorithm (Dempster et al., 1977)

to (i) estimate the parameters of the model, noted θ, and (ii) determine

for each samplem theprobability to haveZm =1, that is, the probability

that an external source importation of resistance occurred. This algo-

rithm comprises two steps detailed in SM3. In the expectation step, we

determine for each observation the probability that an external source

importation occurred given a set θ(s) of parameters for the model, that

is, P(Zm= 1|Ym, θ(s)). In the maximization step, we estimate θ(s+1) by
maximizing the complete-data LogLikelihood (also called Q function,

TABLE 2 Variants of themodel

Model

Previous resistance Antimicrobial use

Ri1 Ri2 Initial Recent

1

2 X

3 X X

4 X

5 X X

6 X X X

7 X

8 X X

9 X X X

10 X X

11 X X X

12 X X X X

All models are particular cases of the full model (model 12) described in

Section 2. Crosses indicate, for each model in rows, the inclusion in the

model of the variables in columns. The different models are all possible

combinations of the variables, excepted those based on Ri2 without Ri1.
Indeed, those would represent a situation where the autocorrelation of E.
coli resistance in chickens would affect sampling round 3 but not sampling

round 2.

see SM3), based on the value of P(Zm = 1|Ym, θ(s)) computed in the pre-

vious expectation step. The algorithm is terminatedonce the complete-

data likelihood of themodel has converged.
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2.5 Model selection

Classic criteria for models’ comparison and selection, such as the

Akaike information criterion (AIC),most oftendependon the likelihood

based on the observed data, and are not directly suited for incomplete

data problems like ours. Therefore, we use the ICH,Q criterion, defined

in Ibrahim et al. (2008), that is similar to the AIC if we set the penalty

term to two times the effective number of parameters (see SM4 for

details). The model presenting the lowest value of ICH,Q is selected as

the best model.

To validate the method, we simulate mock resistance data accord-

ing to four scenarios, and apply the E–M algorithm and model selec-

tion process to each of these scenarios. The method is validated if,

for each scenario, the best model retrieves the simulated relation-

ships between explanatory variables and the outcome (see details

in SM5).

2.6 Investigation of local spatial clusters of the
occurrence of external source importations of
resistance

As a result of the E–Malgorithm, for each observation (sample)m= (i,j),

we obtain an estimate of Pinfm = P(Zm = 1|Ym, θ*), the probability of

occurrence of an external source importation at convergence of the E–

M algorithm, in the best model. Here, we test if the values of Pinf from

each location are spatially clustered. We compute the local Moran’s I

statistic (Anselin, 1995; Zhu et al., 2019), defined for any observation

m as:

Im =

(
Pinfm − Pinf

)

S2
∑
n
Wmn

(
Pinfn − Pinf

)

where S2 is the variance of Pinf, andWmn = 1 (resp. = 0) if the distance

between samplesm and n is≤D (resp.>D).D is a tuning parameter that

is searched exhaustively (Table 1).

The more positive (resp. negative) Im is, the more Pinfm is similar

(resp. dissimilar) to neighbouring values of Pinf. This allows to classify

observations as high–high, low–low, high–low, low–high or not signifi-

cant. A high–high (resp. low–low) point has a high (resp. low) value of

Pinf surrounded by other high (resp. low) values of Pinf, which corre-

sponds to a significant spatial cluster of high (resp. low) probability of

external source importation. A high–low (resp. low–high) point has a

high (resp. low) value of Pinf surrounded by low (resp. high) values of

Pinf, forming an outlier. To compute this statistic, we use the R package

spdep version 1.1-3 (Bivand &Wong, 2018).

2.7 Robustness of the results

We test the robustness of our results with regard to the assumed value

of two parameters: the colistin concentration used to measure colistin

resistance, c (among the pre-selected values, see Section 2.2), and the

assumed probability of colistin resistance of the sample after an exter-

nal source importation, η. We run the analysis five additional indepen-

dent times using respectively (c; η) = (2; 0.999), (4; 0.999), (1; 0.99), (2;

0.99) and (4; 0.99), on topof thebaseline analysis using (c;η)= (1; 0.999)

(see Table 1). All analyses are performed using R version 3.6.1 (R Core

Team, 2019).

3 RESULTS

3.1 Measure of colistin resistance

Among the seven non-null colistin concentrations used to determine E.

coli growth curves from the pooled sampled, we pre-select concentra-

tions 1, 2 and 4mg/L because they are the only ones showing both low-

growth (susceptible bacteria) and high-growth curves (resistant bacte-

ria) (SM1).

The distributions of the resistance metric for each concentration of

colistin are shown in SM1. The standard deviation is 18.1 for 1 mg/L,

17.4 for 2mg/L and 15.0 for 4mg/L.We therefore select the resistance

metric under c= 1mg/L asmeasure of resistance in all samples.

As a result, out of 57 (19 × 3) samples, 31 (54.4%) are classified as

resistant and 26 (45.6%) as susceptible. Among the 38 (19 × 2) sam-

ples belonging to the 2nd and 3rd sampling rounds and included in

the model (see Section 2.3), 21 are classified as resistant and 17 as

susceptible.

3.2 Model selection and fit

Our validation study shows that our methodology allows to success-

fully identify the scenario generating the simulated data (see SM5).We

can therefore apply themethod to the real field data.

The model presenting the lowest ICH,Q is Model 7 (Figure 2 and

SM6). In this model, parameters estimates are: 𝜇̂ = −12.1 (95% con-

fidence interval: [−33.3; −4.05]), 𝛼̂ = 9.78 [4.61; +∞[ and 𝛽 = 1.73

[2.80 × 10−7; 2.90]. Therefore, the use of antimicrobials during the

1.73 weeks preceding a sampling round is positively associated with

colistin resistance in the sample.

The recent use of antimicrobials is a variable included in the two

models with the lowest ICH,Q. The models including an effect of initial

AMU always have a higher value of ICH,Q than their counterpart with-

out this effect (Figure 2 and SM6).

3.3 Local spatial clusters of the probability of
external source importation

For the computation of the localMoran’s I statistic, the tuning distance

parameter D is set to 2.3 km. Figure 3 presents the spatial distribution

of the colistin resistance metric (Figure 3(a)), and of the probability of
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e2190 BASTARD ET AL.

F IGURE 2 Ranking of themodels. Models are ranked by increasing ICH,Q order. Themodel with the lowest ICH,Q value (Model 7) is considered
to be the best model. The variables included are displayed for eachmodel

F IGURE 3 Geographical distribution of colistin resistance, and of the probability of external source importation of resistance into farms. For
the farms studied, located in the districts of ThapMuoi and Cao Lanh (Vietnam): susceptibility to colistin measured in samples (panel a), probability
that an external source importation occurred in the flock (panel b) and spatial clusters of this probability (panel c). In panel c, high–high (resp.
low–low) dots correspond to a significant spatial cluster of high (resp. low) probability of external source importation. For visualization purposes,
overlapping dots are randomly shifted by up to 670m from their actual coordinates

external source importation Pinf estimated in Model 7 for each obser-

vation (sample) with the E–M algorithm (Figure 3(b)). Six (resp. four)

data points show significant spatial high–high (resp. low–low) cluster-

ing (p < .05) (Figure 3(c)). This indicates that there is one local spatial

cluster of high probability of external source importation, and one local

spatial cluster of low probability. For all other observations, Pinf is not

significantly spatially clustered.

3.4 Robustness of the results

Results are similar to the baseline analysis for all five tested values

of (c; η) (see details in SM7). Indeed, in all cases, the selected model –

that is, the model with the lowest ICH,Q – is also Model 7. Estimates

of parameters are similar, especially 𝛽 that ranges from 1.63 to 1.69. It

means the estimated antimicrobials effect, including its duration, does
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not depend on the assumption for (c; η). Moreover, we always detect

a high–high cluster of the probability of external source importation

Pinf in the same geographical area than in the baseline analysis. How-

ever, low–low spatial clustering is not always retrieved as in the base-

line analysis (SM7).

4 DISCUSSION

In this study, we explore the contributions of within-farm and outside-

farm factors to the phenotypic colistin resistance observed in commen-

sal E. coli isolated from chicken farms of the Mekong delta of Vietnam.

Our methodology was validated using a simulation study (SM5), allow-

ing to have confidence in our results.

4.1 Main findings

Some studies (Nguyen et al., 2016; Poolperm et al., 2020) have sug-

gested an association between AMU and colistin resistance of Enter-

obacterales isolated from food-producing animals in Southeast Asia.

Here, the collection of detailed and reliable AMU data on a weekly

basis allows us to account for the dynamics of the effect of AMU on

AMR. We find that our measure of colistin resistance is associated

with the use of antimicrobials during the 1.73 weeks preceding the

sample collection, similarly to (Nhung et al., 2021). The reason may be

that AMU selects for colistin resistant E. coli strains that were already

present at low level or that were introduced to the farm. This suggests

that mitigating the global exposure of chickens to antimicrobials – and

not only the exposure to colistin – during the production cycle would

help preserve the effectiveness of colistin. The effect of other antibi-

otic classes on colistin resistance could be explained bymechanisms of

co-selection.

However, AMU in the first weeks is not found to lastingly affect col-

istin resistance measured later in the production cycle. This could be

due to the non-persistence of the effect of AMU on colistin resistance

over time, after the interruptionof antimicrobials use, aswas described

before (Poolperm et al., 2020). Consistently, our estimate of parame-

ter β (1.73 weeks) suggests that the effect of AMU does not last longer

than 2 weeks in the chicken flocks. This might be explained by the evo-

lutionary costs associated with resistance in bacteria (Melnyk et al.,

2015). Nonetheless, these findings must be confirmed by other stud-

ies exploring the impact of AMU at different periods of the production

cycle.

A second result is that, during the course of our study, most of

the colistin resistance observed in chickens (17 out of 21 of resis-

tant samples) was actually not explained by within-farm AMU, but

imported from outside the flock. Although we cannot determine the

nature of these events of infection, an explanation may be the intro-

duction of colistin-resistant bacteria to the flock from other animals

or humans, as it is known that antibiotic-resistant bacteria can be

transmitted between species (Kawahara et al., 2019;Woolhouse et al.,

2015).

The source of these unexplained external source importations may

also be the environment, for example as a result of the contamina-

tion of water sources or the soil with antibiotic residues or resis-

tance genes (Liang et al., 2020; Sun et al., 2017; Zhou et al., 2019).

In our study, the presence of a local spatial cluster of high probabil-

ities of external source importations was suggested from the com-

putation of the local Moran’s I statistic (Figure 3). It supports the

hypothesis of a common environmental source of colistin resistance

in this geographical area. A previous publication (Rosenkrantz et al.,

2019) also found spatial drivers of AMR in food-producing animals,

whereas another did not (Huber et al., 2021). More studies should

be carried out to investigate the relative contribution of geographi-

cal factors to AMR, as compared with within-farm factors, for instance

using genomic data to detect introductions of new E. coli clones to the

flock.

The contribution of antimicrobials administered at the hatchery

level to AMR in poultry production farms has been suggested (Baron

et al., 2014;Okorafor et al., 2019; Seoet al., 2020;Verrette et al., 2019).

However, in our analysis, the best model does not include an effect of

colistin resistance carriage in day-old chicks on its carriage later in the

production cycle. This does not necessarilymean that the phenomenon

does not occur, but simply that in our farms it is not the predominant

mechanism.

Because we use a statistical classification to distinguish suscepti-

ble from resistant strains, and not a clinical breakpoint, the percent-

age of resistant samples presented here should not be interpreted as

a prevalence result comparable to other prevalence surveys. This said,

our method has the advantage to overcome the usual difficulties of

measuring susceptibility to colistin due its poor diffusion in agar (Apos-

tolakos & Piccirillo, 2018; Kempf et al., 2016). Furthermore, our results

are not affected by the exact value chosen for the parameter c used to

perform the statistical classification (see Section 3.4).

4.2 Limitations

A limitation of our work is that we use only phenotypic data. Genomic

data would be useful to test the hypothesis of a common environmen-

tal source of colistin resistance in different farms for instance. Such an

approach is not possible with the design used, as samples are pooled.

Conversely, this pooling method has the advantage to provide a repre-

sentative aggregate of the colistin resistance observed in the gut flora

of all chickens of the flock.

Another limitation of our model is that it does not account for the

antimicrobials used in the previous production cycles of each farm,

as this information was not systematically collected. In the future, it

would be interesting to build model variants accounting for such data,

as a previous study (Mo et al., 2019) suggested that AMR in successive

broiler flocks of a same farm could be associated.
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4.3 Implications for AMR study and control

Our study confirms the importance of considering the landscape scale

when investigating the determinants of AMR (Singer et al., 2006; Zhao

et al., 2021). Here, we could interpret our results in terms of sources

and sinks of resistance. Farms in which colistin resistance can be

explained bywithin-farm factors (such as AMU)might act as sources of

colistin resistance to their environment and therefore to other farms.

Inversely, farms where the resistance is only driven by events of exter-

nal source importation may act as sinks of colistin resistance, exposed

to environmental contamination with resistance genes. Geographical

areas with high environmental exposure can be characterized as local

hotspots of colistin resistance.

The detection of such local hotspots of resistance suggests that it

would be more efficient to account for geographical factors in AMR

mitigation interventions. Indeed, if a farm is located in a geographi-

cal hotspot of AMR, the benefits of mitigation strategies implemented

in the farm (e.g., AMU reduction) might be cancelled by the influence

of its neighbours (Rosenkrantz et al., 2019). Therefore, it would be

interesting to compare the efficacy of interventions (e.g., raising AMR

awareness or veterinary advice) implemented in a large percentage of

farms of a small area, versus in a smaller percentage of farms of a larger

area.
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