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Abstract-Predefined-time stability is the stability of dynamical systems whose solutions approach the equilibrium point within a pre-decided time duration. In this technical note, we develop general results of predefined-time stability of nonlinear systems using vector Lyapunov functions. A vector comparison system, which is predefined time convergent, is constructed, and after that the stability of the original dynamical system is proved using differential inequalities and comparison principles. Moreover, we design predefined-time controllers for large-scale systems using vector control Lyapunov functions (VCLFs). Sliding mode control is introduced in the design approach to mitigate matched bounded disturbances/uncertainties. Also, we aggregate comparison systems to reduce their dimensionality in order to effectively apply the derived results on practical systems. The theoretical results are implemented on a 2 DOF Helicopter model. Index Terms-Finite-time stability, comparison principle, Lyapunov function.

I. INTRODUCTION

For nonlinear systems, various notions of stability, such as asymptotic and exponential stability, are used to describe the convergence of their trajectories to an equilibrium point in infinite time duration. However, as can be noted in the industrial and engineering sectors, several essential applications require a convergence of the trajectories to the equilibrium in finite/fixed-time or a pre-specified time.

Researchers studied the finite-time stability of autonomous systems using continuous Hölder energy functions [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]. Finitetime stability was explored for several families of systems which include, in particular, homogeneous systems [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF] and switched systems with uncertainty [START_REF] Orlov | Finite time stability and robust control synthesis of uncertain switched systems[END_REF]. This stability was further investigated for higher-order systems and using output feedback [START_REF] Hong | On an output feedback finite-time stabilization problem[END_REF] as well. Finite-time estimation issues have been considered, e.g., in [START_REF] Mazenc | Finite time estimation through a continuous-discrete observer[END_REF]. In most of these finite-time problems, the time of convergence primarily depends on initial conditions, which is indeed a crucial feature. The notion of fixed-time convergence to the equilibrium point has been Bhawana Singh, Anil Kumar Pal and Shyam Kamal are with the Department of Electrical Engineering, Indian Institute of Technology (BHU), Varanasi, U.P., India {e-mail: bhawanasingh.rs.eee17@iitbhu.ac.in, anilkp.rs.eee15@iitbhu.ac.in, shyamkamal.eee@iitbhu.ac.in} Thach Ngoc Dinh is with Conservatoire National des Arts et Métiers (CNAM), CEDRIC-Laetitia, 292 rue Saint Martin, Paris 75141 Cedex 03, France {email: ngoc-thach.dinh@lecnam.net} Frédéric Mazenc is with Inria, Laboratoire des Signaux et Systèmes (L2S, UMR CNRS 8506), CNRS, CentraleSupélec, Université Paris-Saclay, 3 rue Joliot Curie, 91192, Gif-sur-Yvette, France {email: frederic.mazenc@l2s.centralesupelec.fr} introduced to overcome finite-time stability limitations. Fixedtime stability of systems has been investigated in particular in [START_REF] Angulo | Robust exact uniformly convergent predefined order differentiator[END_REF] in which uniformity relative to the initial conditions is required for computing the upper bound of the convergence time. Moreover, in the problems studied in [START_REF] Corradini | Nonsingular terminal slidingmode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF], the fixed-time convergence depends on system parameters. Another notion of convergence that overcomes fixed-time problems' design constraints is prescribed-time convergence [START_REF] Song | Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite-time[END_REF], which utilizes time scaling functions to obtain convergence precisely in the chosen time duration. However, in most of the problems, convergence time depends on initial conditions and system parameters. On the other hand, discontinuous controllers guaranteeing finitetime convergence were also developed in the literature [START_REF] Khennouf | On the construction of stabilizing discontinuous controllers for nonholonomic systems[END_REF]. Nevertheless, they result in chattering due to uncertainties or unmodeled dynamics in practical applications.

As a matter of fact, in various applications, it is advantageous to obtain the convergence of the trajectories in a predecided time, this is the case, for example, for differentiators and missile guidance. Hence, predefined-time convergent systems have been studied in [START_REF] Pal | Design of controllers with arbitrary convergence time[END_REF], where scalar Lyapunov functions are the key tool of the proofs. The key feature of these systems is that the state and its derivative converge to zero as the time approaches the predefined time, independent of any initial condition.

Vector Lyapunov functions were first introduced in [START_REF] Bellman | Vector lyanpunov functions[END_REF] to relax certain strict conditions of scalar Lyapunov functions [START_REF] Lakshmikantham | Vector Lyapunov functions and stability analysis of nonlinear systems[END_REF]- [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF]. In particular, it is worth observing that the components of vector Lyapunov functions need not be all positive definite and that the derivative of the component of a vector Lyapunov function does not have to be necessarily negative or negative semidefinite to guarantee the stability of the studied systems. Hence, these functions enlarge the class of Lyapunov functions to analyze system stability.

In the present work, a general framework is developed to analyze the predefined-time stability of the equilibrium point of nonlinear systems using vector Lyapunov functions. Specifically, we formulate a vector comparison system in such a way that it is predefined-time stable and after that we relate these stability features with the stability features of the original system using differential inequalities and comparison principles. Besides, we design universal predefined-time convergent controllers for the large-scale systems and further discuss their robustness with respect to matched bounded disturbances. Moreover, in order to reduce the dimension of the comparison systems, we discuss the aggregation procedure of comparison systems which provides a simple and efficient way to derive control for practical systems. At the end, the efficacy of the theoretic approach is verified using as example a 2 DOF Helicopter model. The control of this system is a very challenging problem as it represents a higher-order, highly nonlinear, firmly coupled multi-input multi-output system. This technical note is organized as follows. Section II is devoted to definitions and notations. Section III provides the main results of the predefined-time stability of nonlinear systems by the exploitation of vector Lyapunov functions. Universal predefined-time controllers are designed for largescale systems and further their robustness with respect to matched bounded disturbances is discussed in Section IV. In addition, we discuss the aggregation procedure of comparison systems in order to apply the derived results effectively on practical systems. An illustrative example with the simulation results is given in Section V. Finally, conclusions are drawn in Section VI.

II. MATHEMATICAL PRELIMINARIES

In this section, we provide the necessary notations and Let R, R >q and R ≥q denote the sets of real numbers, real numbers greater than q and real numbers greater than or equal to q. The set of the n × 1 column vector is denoted by R n and [•] represents transpose. We denote p ≤≤ q, for p

= [p 1 , p 2 , • • • , p n ] and q = [q 1 , q 2 , • • • , q n ] , if p i ≤ q i for each i = 1, 2, . . . , n. • 1 and • denote the 1-norm and Euclidean norm in R n or the induced matrix norms. Given ζ ∈ R n , the Fréchet derivative of V ∈ R p at ζ is denoted by V (ζ). Define d = [1, 1, • • • , 1] ∈ R p .
C[E, F ] denotes the set of the continuous functions from the nonempty set E to F where E ⊆ R k , and F ⊆ R l . For the set U ∈ R n , Ū and ∂U denote the closure and the boundary of this set, respectively. A square matrix M is known as a Metzler matrix if its off-diagonal entries are non-negative. We denote the pseudoinverse of a non-square matrix T by T + . A function ψ : R ≥0 → R ≥0 is known as a class K function, if it is continuous and strictly increasing with ψ(0) = 0. It is known as K ∞ function, if it is a K class function and ψ(r) → ∞ as r → ∞. Further, to study finite-time, fixed-time and predefined-time cases, we consider generalized functions [START_REF] Hong | Finite-time input-to-state stability and applications to finite-time control design[END_REF]. A function ϕ : R ≥0 → R ≥0 is known as a generalized K class function, if it is continuous with ϕ(0) = 0 and satisfies ϕ(r 1 ) > ϕ(r 2 ), if ϕ(r 1 ) > 0, r 1 > r 2 , and ϕ(r 1 ) = ϕ(r 2 ), if ϕ(r 1 ) = 0, r 1 > r 2 . A function Λ : R ≥0 × R ≥0 → R ≥0 is said to be a generalized KL class function (GKL), if for each fixed t ≥ t 0 , the function Λ(r, t) with respect to r is a generalized class K function and the function Λ(r, t) with respect to t is continuous and tends to zero as t → T , T < ∞, for each fixed r. If T is some predefined time, then Λ is called predefined GKL function (PGKL function).

Definition 1: (Quasi-monotone increasing function [START_REF] Wažewski | Systèmes des équations et des inégalités différentielles ordinaires aux deuxiémes membres monotones et leurs applications[END_REF], [START_REF] Lakshmikantham | Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations[END_REF]

). Let E ⊆ R n and let e = [e 1 , e 2 , • • • , e n ] be an element of E. A function Q = [Q 1 , Q 2 , • • • , Q n ] ∈ C[E, R n ] is called quasi-monotone increasing on E if for every i ∈ {1, 2, • • • , n}, Q i is increasing in e k for all k = 1, 2, • • • , i - 1, i + 1, • • • , n.
Let us consider the nonlinear system

ζ = F (ζ, τ ), ζ(t 0 ) = ζ 0 (1) where state ζ ∈ D ⊆ R n , τ ∈ R m is the control and F : D × R m → R n is a continuous nonlinear vector field such that F (0, τ ) = 0, that is, origin ζ = 0 is an equilibrium point of system (1) when control τ is applied.
The following result is a fundamental comparison principle for nonlinear systems in the vector Lyapunov function framework.

Lemma 1: [START_REF] Nersesov | On the stability and control of nonlinear dynamical systems via vector Lyapunov functions[END_REF] Let us consider the system [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]. Suppose that the continuously differentiable vector function

W : D → l ⊆ R p ≥0 is such that, for a specific τ , W (ζ)F (ζ, τ ) ≤≤ Q(W (ζ)), ζ ∈ D, where Q : l → R p is a quasi- monotone increasing continuous function, such that ż(t) = Q(z(t)), z(t 0 ) = z 0 , admits a unique solution z(t) defined over [t 0 , ∞). If W (ζ 0 ) ≤≤ z 0 , z 0 ∈ R p ≥0 , then W (ζ(t)) ≤≤ z(t) for all t ≥ t 0 , where ζ(t)
is the solution of the system (1) defined over [t 0 , ∞) when control τ is applied. Now, we consider the time-varying differential system

ζ = -φ(t, ζ) := -γ(e ζ -1) e ζ (ta-t) , if t 0 ≤ t < t a 0, otherwise (2) 
where ζ ∈ R, γ ∈ R >1 , t 0 is the initial time and t a = T A +t 0 , T A is a predefined time duration. It is easy to prove existence and uniqueness of the solutions of this system and to see that ζ(t) = 0 and ζ(t) = 0 for all t ≥ t a [START_REF] Pal | Design of controllers with arbitrary convergence time[END_REF]. This system will be used when we establish the main results of the note. Further, consider the time-varying system

ζ = F(t, ζ, τ, σ), ζ(t 0 ) = ζ 0 (3) 
where state ζ ∈ D ⊆ R n , σ ∈ R p represent constant system parameters to be tuned, τ ∈ R m is the control, F : R ≥0 ×D × R m × R p → R n is a continuous nonlinear vector field such that F(t, 0, 0, σ) = 0 for all t ≥ 0, that is, origin ζ(t) = 0 is an equilibrium point of system (3). The following definition describes predefined-time stability. Definition 2: [10] The system (3) is known as predefinedtime stable at the origin for a control τ : τ (t, ζ, t a ) if

• it is asymptotically stable and any solution ζ(t, t 0 , ζ 0 ) of ( 3) reaches the origin at some finite time, that is,

ζ(t, t 0 , ζ 0 ) = 0 for all t ≥ t 0 + T (t 0 , ζ 0 )
, where T : R ≥0 × D → R ≥0 denotes the convergence time, • it is possible to choose a predefined convergence time duration T A > 0 (t a > t 0 ), which does not depend on initial conditions and can be chosen in advance, and • the inequality T A ≥ T tf (weak predefined-time stable) can be established where T tf denotes the true fixed time duration or actual time duration of convergence in which the system trajectories reach to the origin. Remark 1: Note that T A does not explicitly depends on any system parameter. In fact, T A itself is an independent parameter, which is explicitly predefined in advance. Theoretically, one can choose any arbitrarily small value of T A . However we recall that due to inherent dynamics of practical systems (in particular, the actuator dynamics), these systems usually impose restrictions on assuming arbitrarily small values of T A .

We provide following definitions to differentiate among finitetime, fixed-time and predefined-time stability using the generalized KL class functions.

Definition 3: The origin of the system (3) is called finitetime stable if there exists a GKL class function Λ with Λ(r, t) = 0 when t ≥ T (r), where T (r) is continuous with

T (0) = 0 and ζ(t) ≤ Λ( ζ(t 0 ) , t).
Definition 4: The origin of the system (3) is called fixedtime stable if it is finite-time stable and sup r∈R ≥0 T (r) < ∞.

Definition 5: The origin of the system (3) is called predefined-time stable if there exist a PGKL class function Λ with Λ(r, t) = 0 when t ≥ t a , where t a = T A + t 0 , T A is a predefined convergence time duration which does not depend on initial conditions and can be chosen in advance, and α as a class

K ∞ function, such that ζ(t) ≤ Λ( ζ(t 0 ) , t a - t), ∀ t ∈ [t 0 , t a ) and ζ(t) ≡ 0 ∀ t ≥ t a for all ζ(t 0 ) ≤ α(c).

III. PREDEFINED TIME STABILITY ANALYZED VIA VECTOR LYAPUNOV FUNCTION

In this section, we derive results by using vector Lyapunov functions to analyze the predefined-time stability of nonlinear systems.

Theorem 1: Consider the system (1). Suppose that there exist a continuously differentiable vector function

V = [V 1 , V 2 , . . . , V p ] : D → S, where p ≤ n, S ⊂ R p
≥0 is an open and connected set, 0 ∈ S and a vector r ∈ R p ≥0 such that r V (ζ) is a positive definite function, and there exists a control input τ (t, ζ, t a ) such that

V (ζ)F (ζ, τ (t, ζ, t a )) ≤≤ M Φ f r (t, V (ζ)) , ζ ∈ D (4)
where

Φ f r (t, V (ζ)) := [φ(t, V 1 (ζ)), • • • , φ(t, V p (ζ))] ,
φ is the function defined in (2), M ∈ R p×p is Metzler and Hurwitz, and such that y M ≤≤ -y for all nonnegative vector y ∈ R p ≥0 . Besides, suppose the following vector comparison system

η(t) = M Φ f r (t, η(t)), η(t 0 ) = η 0 , for all t ≥ t 0 , (5) 
admits a unique solution η(t) ∈ R p ≥0 defined over [t 0 , ∞). Let ζ(t) be any solution of (1) with τ (t, ζ, t a ) which satisfies (4), such that V (ζ 0 ) ≤≤ η 0 . Then, the solution ζ(t) = 0 is predefined-time stable if γ > p.

Proof: Let us consider the comparison system [START_REF] Mazenc | Finite time estimation through a continuous-discrete observer[END_REF]. Observe that M Φ f r (t, η) is a quasi-monotone increasing function of η uniformly in t 0 . As a consequence, the solutions to (5) are nonnegative when η 0 ∈ R p ≥0 [START_REF] Haddad | Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems[END_REF]. Now, let us consider the Lyapunov function v = η η, η ∈ R p ≥0 . Its time derivative along the trajectories of ( 5) is given by v = 2η (t)M Φ f r (t, η(t)). Then, from the definition of φ(•) in (2), it follows that v = 0 for all t ≥ t a . Now let us perform an analysis in the time interval [t 0 , t a ). Since η M ≤≤ -η , it follows that

v ≤ -2η (t)Φ f r (t, η(t)), for all t ∈ [t 0 , t a ). (6) 
Let us introduce the function Max defined by Max(y) = max i∈{1,...,p} y i . Observe that the inequality (6) implies that

v ≤ -2η 1 (t)φ(t, η 1 (t)), • • • , v ≤ -2η p (t)φ(t, η p (t)) (7)
because yφ(t, y) ≥ 0 for all y ∈ R and t ∈ [t 0 , t a ). Suppose that at any particular instant t ∈ [t 0 , t a ), Max(η(t)) = η 1 (t). Then

||η(t)|| 2 ≤ pη 1 (t) 2 =⇒ v(t) ≤ pη 1 (t) 2 =⇒ v(t) p ≤ η 1 (t). (8) 
Now using [START_REF] Corradini | Nonsingular terminal slidingmode control of nonlinear planar systems with global fixed-time stability guarantees[END_REF][START_REF] Song | Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite-time[END_REF] and noting the fact that -y 1 φ(t, y 1 ) ≤ -y 2 φ(t, y 2 ) when y 2 ≤ y 1 , it is easy to obtain v ≤ -2 v p φ t, v p . Let us introduce the function: w = v p . Then, when v(η 0 ) > 0, the inequality v(η(t)) > 0, is satisfied for all t ∈ [t 0 , t a ). We deduce ẇ = 1 2

√ vp v ≤ -wφ(t,w) √ vp ≤ -φ(t,w) p
, for all t ∈ [t 0 , t a ). From the definition of φ(•), it follows that ẇ ≤ -γ (e w -1) e w (ta-t) , γ = γ/p, for all t ∈ [t 0 , t a ). Using the fact that v = 0 for all t ≥ t a , we deduce that ẇ = 0, for all t ≥ t a . Note that if γ > 1 (i.e., γ > p), the dynamics of w is predefined-time stable [START_REF] Pal | Design of controllers with arbitrary convergence time[END_REF]. Consequently, the dynamics of v is also predefined time stable which implies that the solution η(t) = 0 is predefined-time stable. Then from the results of Lemma 1, we conclude that the solution ζ(t) = 0 is predefined-time stable if γ > p. Note that a similar analysis can be carried out to show the predefined-time of convergence in the cases when Max returns variables other than η 1 . Let us observe that in the scalar case, i.e., p = 1,

V reduces to V 1 and M is a constant m such that m ≤ -1. Then, the condition in (4) reduces to V 1 (ζ)F (ζ, τ (t, ζ, t a )) ≤ mφ(t, V 1 (ζ)), ζ ∈ D,
which directly ensures that if γ > 1, the dynamics is predefined-time stable. This completes the proof.

Remark 2: It is important to discuss about the matrix M being a Metzler and Hurwitz matrix that satisfies y M ≤≤ -y for y ∈ R p ≥0 . Let us see some examples of M . The given condition leads to y (M + I) ≤≤ 0, which can be alternatively written as (M + I)y ≤≤ 0. One obtains, by selecting M = λI, (λ+1)y ≤≤ 0 which holds for all λ ≤ -1. Although several other possibilities exist for M , above ones are the simplest. Theorem 1 is generalized as follows:

Theorem 2: Consider the system (1). Let us suppose that there exist a continuously differentiable vector function

V = [V 1 , V 2 , . . . , V p ] : D → S where p ≤ n, S ⊂ R p
≥0 is an open and connected set, 0 ∈ S and a vector r ∈ R p ≥0 such that r V (ζ) is a positive definite function, and there exists τ (t, ζ, t a ) such that

V (ζ)F (ζ, τ (t, ζ, t a )) ≤≤ Q(t, V (ζ)), ζ ∈ D, t ≥ t 0 (9) where Q ∈ C[R ≥0 × S, R p ]
is a quasi-monotone increasing function of V uniformly in t 0 with Q(t, 0) = 0 for all t ≥ t 0 . Besides, suppose the following vector comparison system

η(t) = Q(t, η(t)), η(t 0 ) = η 0 . ( 10 
)
admits a unique solution η(t) ∈ H ⊂ R p ≥0 defined over [t 0 , ∞) and is predefined-time stable. Let ζ(t) be any solution of (1) with τ (t, ζ, t a ) which satisfies [START_REF] Khennouf | On the construction of stabilizing discontinuous controllers for nonholonomic systems[END_REF], such that V (ζ 0 ) ≤≤ η 0 . Then, ζ(t) = 0 is predefined-time stable.

Proof: Let us assume that U ⊆ H is an open and bounded set such that 0 ∈ U and Ū ⊂ S. Hence, ∂U is compact.

We assume the same function v(•) as in Theorem 1 to be continuous, then, from the Weierstrass result, v(•) has a minimum on ∂U and α = min η∈∂U v(η) > 0. Suppose that 0 < β < α and D β = {η ∈ U : v(η) ≤ β}. From the classical Lyapunov stability and positive definiteness of v(•), one can state that if > 0, there exists δ > 0 such that the ball B δ satisfies, B δ ⊂ D β ⊂ H and η(t) ≤ , ∀ t ≥ t 0 , η 0 < δ. The above analysis establishes the boundedness of the solution η(t). Now, we analyze the scalar case and the vector case one by one. First let us consider the scalar case, i.e., p = 1. In this case, we have [START_REF] Pal | Design of controllers with arbitrary convergence time[END_REF] to obtain η = -φ(t, η), whose solution is denoted by η(t) = η(t, η 0 ). Let us choose the initial condition:

V = V 1 and we replace Q(t, V (ζ)) by -φ(t, V 1 (ζ)) in (9) to obtain V 1 (ζ)F (ζ, τ (t, ζ, t a )) ≤ -φ(t, V 1 (ζ)). Due to the continuity property of V 1 (•), there exists δ 2 > 0 such that V 1 (ζ 0 ) < δ, ∀ ζ 0 < δ 2 . Next, we replace Q(t, η) by -φ(t, η) in
η 0 = V 1 (ζ 0 ) ∈ B δ , ζ 0 < δ 2 . ( 11 
)
Let us consider a scalar Lyapunov candidate function v(η) = η 2 whose time derivative along the trajectories of ( 10) is v = 2η η = -2ηφ(t, η). This implies that v = 0 for all t ≥ t a and v ≤ -2|η|φ(t, |η|) for all t ∈ [t 0 , t a ). Noting the fact that v(η) = |η|, we can write v(η) ≤ -2 v(η)φ(t, v(η)). Let us consider w = v(η), then, when v(η 0 ) > 0, the inequality v(η(t)) > 0 is satisfied for all t ∈ [t 0 , t a ). We deduce that ẇ =

1 2 √ v(η)
v(η) ≤ -φ(t, w) for all t ∈ [t 0 , t a ). We also see that ẇ = 0 for all t ≥ t a leading to w = 0 for all t ≥ t a . Consequently, v(η(t)) = 0 for all t ≥ t a , from which it follows that η(t) = 0, for all t ≥ t a , η 0 ∈ B δ .

(

) 12 
Note that the conclusion ( 12) can be reached directly by observing that η = -φ(t, η) converges to the origin in predefined time t a . Now, by using the comparison principle [START_REF] Khalil | Nonlinear systems[END_REF], for the considered initial condition [START_REF] Bellman | Vector lyanpunov functions[END_REF] we have:

V 1 (ζ(t)) ≤ η(t), η 0 ∈ B δ , t ∈ [0, ∞). (13) 
From [START_REF] Lakshmikantham | Vector Lyapunov functions and stability analysis of nonlinear systems[END_REF][START_REF] Borne | Vector Lyapunov functions: nonlinear, time-varying, ordinary and functional differential equations[END_REF], it follows that V 1 (ζ(t)) = 0 for all t ≥ t a , ζ 0 < δ 2 . Consequently, ζ(t) = 0 for all t ≥ t a . Thus the solution ζ(t) = 0 is predefined-time stable. Now we consider the vector case, i.e., p > 1. Note that the vector comparison system ( 10) is assumed to be predefined-time stable, then it guarantees that the equality in ( 12) is also valid in the vector case of [START_REF] Pal | Design of controllers with arbitrary convergence time[END_REF]. Further, we notice that r

V (ζ) is positive def- inite. Now, since r V (ζ) ≤ max i=1,...,p {r i }d V (ζ), ζ ∈ D,
where d is a vector defined in Section II, we deduce that d V (ζ) is also positive definite on ζ ∈ D. Recalling the continuity property of V (•), there exists

δ 2 > 0 such that V (ζ 0 ) < δ, ∀ ζ 0 < δ 2 . Let us choose η 0 = V (ζ 0 ) ∈ B δ , for all ζ 0 < δ 2 . Then from Lemma 1, it follows that V (ζ(t)) ≤≤ η(t). Utilizing (12), d V (ζ(t)) ≤ d η(t) = 0, ∀ t ≥ t a and since d V (ζ(t)) is non-negative, it follows that d V (ζ(t)) = 0, ∀ t ≥ t a . Since d V (•) is positive definite, we conclude that ζ(t) = 0, ∀ t ≥ t a , ∀ ζ 0 < δ 2 .
Therefore, ζ(t) = 0 is predefined-time stable. This completes the proof.

IV. PREDEFINED-TIME STABILIZATION OF LARGE-SCALE NONLINEAR SYSTEMS

Let us consider the following nonlinear dynamical system consisting of p subsystems interconnected to each other:

ζi (t) = F i (ζ(t)) + H i (ζ(t))u i (t), (14) 
where F i : R n → R ni with F i (0) = 0 and H i : R n → R ni×mi with rank equal to min{m i , n i } for all ζ are the continuous functions, for i = 1, . . . , p, u i ∈ R mi is the control input, and

ζ = ζ 1 , ζ 2 , • • • , ζ p ∈ D ⊆ R n with n = n 1 + n 2 + • • • + n p , is the state. Furthermore, u(t) ∈ R p , where p = m 1 + m 2 + • • • + m p .
It should be noted that the following control structure ( 16) is motivated by the Sontag's universal formula [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF]. For brevity, we use

V i (ζ i (t)) = V i (ζ i ).
Theorem 3: Consider the system [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF]. Suppose that

V = [V 1 , . . . , V p ] : D → S with V i : R ni → R is a continuously differentiable vector Lyapunov function (VLF), where S ⊂ R p
≥0 is an open and connected set, 0 ∈ S and r ∈ R p ≥0 is a vector such that r V (ζ) is positive definite and

V i (ζ i )F i (ζ) ≤ Q i (t, V i (ζ i )), ζ ∈ R i , i = 1, • • • , p (15) 
where

R i = {ζ ∈ R n , ζ = 0 : H i (ζ)V i (ζ i ) = 0}. Let the proposed universal control be u(t) = τ (t, ζ, t a ) = [τ 1 (t, ζ, t a ), τ 2 (t, ζ, t a ), . . . , τ p (t, ζ, t a )] τ i =    - A+ √ A 2 +(b i (ζ)bi(ζ)) 2 b i (ζ)bi(ζ) b i (ζ), b i (ζ) = 0 0, b i (ζ) = 0 (16) 
where

A = a i (ζ) -Q i (t, V i (ζ i )) + βV i (ζ i ), a i (ζ) = V i (ζ i )F i (ζ), b i (ζ) = H i (ζ)V i (ζ i ), i = 1, • • • , p, β > 0, and Q ∈ C[R ≥0 × S, R p ] is a quasi-monotone increasing function of V uniformly in t 0 with Q i (t, 0) = 0 for all t ≥ t 0 .
Besides, suppose the following vector comparison system

η(t) = Q(t, η(t)), η(t 0 ) = η 0 (17) 
admits a unique solution η(t) ∈ R p ≥0 defined over [t 0 , ∞) and is predefined-time stable. Let ζ(t) be any solution of [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] with τ (t, ζ, t a ) which satisfies [START_REF] Hong | Finite-time input-to-state stability and applications to finite-time control design[END_REF], such that V (ζ 0 ) ≤≤ η 0 . Then, the solution ζ(t) = 0 is predefined-time stable. Proof: Simple calculations give, for i = 1 to p

Vi (ζ i ) = a i (ζ) + b i (ζ)u i (t) (18) 
First case: b i (ζ) = 0. Using the proposed universal control (16), Equation ( 18

) becomes, Vi (ζ i ) ≤ Q i (t, V i (ζ i )). Second case: b i (ζ) = 0. Control τ i (t, ζ, t a ) = 0. The chosen vector Lyapunov function V i satisfies V i (ζ i )F i (ζ) ≤ Q i (t, V i (ζ i )).
Thus, the derivative of VLF along the solutions of system [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] 

with the control u(t) satisfies Vi (ζ i ) ≤ Q i (t, V i (ζ i )).
Since, it is assumed that the comparison system ( 17) is predefined-time stable. Then from Theorem 2, the solution ζ(t) = 0 of system ( 14) is predefined-time stable when the control [START_REF] Wažewski | Systèmes des équations et des inégalités différentielles ordinaires aux deuxiémes membres monotones et leurs applications[END_REF] 

is selected if V (ζ 0 ) ≤≤ η 0 .

Robust Predefined-Time Stabilization

It can be noted that the control structure ( 16) is a nominal control that stabilizes the system (14) within the predefined time. The presence of matched disturbances can be handled with the incorporation of sliding mode control. This results in discontinuous right hand side differential equations whose solutions are realized in the Filippov's sense [START_REF] Filippov | Differential equations with discontinuous righthand sides: control systems[END_REF]. We consider the system [START_REF] Malisoff | Constructions of strict Lyapunov functions[END_REF] with bounded non-vanishing disturbances:

ζi (t) = F i (ζ(t)) + H i (ζ(t))(u i (t) + D i (t)), (19) 
where D i ∈ R mi with D i (t) 1 ≤ D 0i is the matched disturbance which persists even when ζ has converged to zero for all t ≥ 0 and H i (ζ(t)) = 0 for all ζ. In this case, we design the control u(t) to make the solutions of the system (19) converge to the origin in predefined time despite of the disturbances.

First case: b i (ζ) = 0. We propose the robust control u(t) = τ (t, ζ, t a ) = [τ 1 (t, ζ, t a ), τ 2 (t, ζ, t a ), . . . , τ p (t, ζ, t a )] τ i = - A b i (ζ)b i (ζ) b i (ζ) -K i H i Sign(V i (ζ i )), (20) 
where

K i ≥ Hi 1 HiH i 1 D 0i for all ζ, i = 1, 2, • • • , p, is a constant gain and Sign(V i (ζ i )) = [sign(V i (ζ i1 )), sign(V i (ζ i2 )), • • • , sign(V i (ζ ini ))] . Second case: b i (ζ) = 0. We select τ i (t, ζ, t a ) = 0. This choice ensures that V i (ζ i )F i (ζ) ≤ Q i (t, V i (ζ i )).
Thus, the derivative of VLF along the solutions of system [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF] with the constructed control u(t

) satisfies Vi (ζ i ) ≤ Q i (t, V i (ζ i )), when K i ≥ Hi 1
HiH i 1 D 0i for all ζ. Hence, we consider the comparison system: η(t) = Q(t, η(t)), η(t 0 ) = η 0 where η ∈ R p ≥0 , and assume that it is predefined-time stable. If V (ζ 0 ) ≤≤ η 0 , then from Theorem 2, the solution ζ(t) = 0 of system [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF] is predefined-time stable despite of the bounded disturbances when the control (20) is selected. It can be observed that the aforementioned control structure [START_REF] Aoki | Control of large-scale dynamic systems by aggregation[END_REF] is discontinuous due to the inclusion of the signum multi-valued function to mitigate matched bounded disturbances. Note that such control scheme cannot be constructed using Sontag's universal formula [START_REF] Sontag | A 'universal' construction of Artstein's theorem on nonlinear stabilization[END_REF] for these cases.

Aggregation of comparison systems

In order to make the results derived above simpler and more elegant, we aggregate comparison systems to reduce their dimension. To that end, consider the following aggregation procedure for the linear systems: ζ = Aζ + Bτ where ζ ∈ R n is the state vector, τ ∈ R p is the control input and A, B are constant matrices with appropriate dimensions. We use the transformation as z = T ζ to convert this linear system into the aggregated model: ż = Pz+Gτ, where z ∈ R m is the state vector, T = [•] m×n is a non-square matrix with m < n and the matrices P and G are P = T AT + (T T ) + and G = T B [START_REF] Aoki | Control of large-scale dynamic systems by aggregation[END_REF] under the assumption that T is a full rank matrix which possesses a pseudoinverse [START_REF] Greville | The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations[END_REF]. It is also assumed that ζ ∈ N (T ) if and only if ζ = 0, where the nullspace N (T ) is defined as N (T ) = {ζ : T ζ = 0}. In a similar way, we can aggregate the nonlinear system of the form

ζ = F (ζ, τ ) (21) 
where ζ ∈ R n represents the state, τ ∈ R p is the control and F is a nonlinear vector field. Let us apply the transformation z = T ζ, where T is a full rank matrix that possesses a pseudoinverse to convert the system (21

) into ż = f (z, τ ),
where z ∈ R m is the state vector with m < n and f (z, τ ) = T F (T + z, τ ).

V. SIMULATION EXAMPLE

Example 1: Consider the nonlinear dynamical equations of a 2 DOF Helicopter system

M(x)ẍ + C(x, ẋ) ẋ + g(x) = U + D (22) 
where x = [x 1 , x 3 ] denotes the pitch and yaw angles, ẋ = [x 2 , x 4 ] denotes the pitch and yaw velocities,

U = [U 1 , U 2 ] = [K pp V mp + K py V my , K yp V mp + K yy V my ]
is the control input vector, where K pp , K py , K yp , K yy are the constant gains and V mp , V my are the input voltages to the pitch and yaw motors respectively. The disturbance

D = [D 1 , D 2 ] is supposed to be bounded: |D i (t)| ≤ D 0i , i = 1, 2 for all t ≥ 0, M = m11 0 0 m22 , C = c11 c12 -2c12 c22 , g = m h gl cos(x1) 0
where m 11 = J p + m h l 2 , m 22 = J y + m h l 2 cos 2 (x 1 ), c 11 = B p , c 12 = m h l 2 x 4 sin(x 1 ) cos(x 1 ), c 22 = B y . The parameters description and their values are specified in [START_REF] Sadala | A new continuous sliding mode control approach with actuator saturation for control of 2-DOF helicopter system[END_REF]. Now, consider a regulation problem to design a feedback control law U so that x tracks a constant reference x r in predefined time despite of the bounded disturbances. Let e = x -x r . Then e satisfies the differential equation:

M(x)ë + C(x, ẋ) ė + g(x) = U + D.
Our aim is to stabilize this system at (e = 0, ė = 0), but this point is not an equilibrium point when 

U = D = 0. Let U = g(x) -k p e + τ ,
We apply the aggregation procedure as discussed in Section IV. Let us apply the transformation as z = T ζ with

T = 3 2 0 0 0 0 3 2 , ζ = [e 1 , e 2 , e 3 , e 4 ] , z = [z 1 , z 2 ] to transform the system (23) into ż1 = -2.3901z1 -0.0262z 2 2 sin(0.2308z1) cos(0.2308z1) -5.3499kp1z1 + 23.18(τ1 + D1) ż2 =0.461z2 - 0.308C1z1 M1 - (0.462kp2 + 0.098)z2 M1 + 2(τ2 + D2) M1 (24) 
where C 1 = -0.0147z 2 sin(0.2308z 1 ) cos(0.2308z 1 ) and M 1 = 0.0432 + 0.0478 cos 2 (0.2308z 1 ). We design controls τ 1 and τ 2 as discussed in Section IV to make the solutions of the system (24) converge to the origin in predefined time under the effect of disturbances D 1 and D 2 . Let us consider the vector Lyapunov function,

V = [V 1 , V 2 ] with V 1 = (z1-z2) 2 2 and V 2 = (z1+z2) 2 2
. It is easy to check that r V is positive definite, where r = [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF][START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF] . In this case,

a 1 = (z 1 -z 2 )E 1 , a 2 = (z 1 + z 2 )E 2 , b 1 = H 1 (z 1 -z 2 ), b 2 = H 2 (z 1 + z 2 ), A 1 = (a 1 -φ 1 (t, V 1 ) + β 1 V 1 ) and A 2 = (a 2 -φ 2 (t, V 2 ) + β 2 V 2 ), where E 1 = -2.3901z 1 - 0.0262z 2 2 sin(0.2308z 1 ) cos(0.2308z 1 ) -5.3499k p1 z 1 , E 2 = 0.461z 2 -0.308C1z1 M1 - (0.462kp2+0.098)z2 M1 , H 1 = 23.18, H 2 = 2 M1
, β i > 0 and φ i (t, •), i = 1, 2 is the function defined in (2) with γ = γ i . Now, the derivative of V 1 along the trajectories of ( 24) for all t ∈ [t 0 , t a ) after substituting controls designed according to [START_REF] Aoki | Control of large-scale dynamic systems by aggregation[END_REF], where i = 1, 2, becomes, when

K 1 ≥ 1 |H1| D 01 : V1 ≤ -γ1(e V 1 -1)
e V 1 (ta-t) . In a similar way, when K 2 ≥ 1 |H2| D 02 , V2 ≤ -γ2(e V 2 -1) e V 2 (ta-t) . Also, note that the designed controls τ 1 and τ 2 will maintain z(t) = 0 for all t ≥ t a , hence, Vi = 0 for all t ≥ t a . Thus, the comparison system constructed over t ∈ [t 0 , t a ) is ẇi = -γi(e w i -1) e w i (ta-t) . For all t ≥ t a , ẇi = 0, for i = 1, 2. The comparison system is quasi-monotone increasing and predefined-time stable in time t a with γ 1 > 2 and γ 2 > 2 as p = 2. Hence, it follows from Theorem 1 that the pitch and yaw angles regulate at the desired position in the set predefined time t a with the designed input voltages V mp and V my respectively. The simulation results are shown in Fig. 1 with K i = 0.002, γ i = 30.5, k p1 = k p2 = 1, β i = 5 i = 1, 2, D 1 (t) = 0.01 sin 10t and D 2 (t) = 0.005 sin 10t with predefined time t a = 5 sec, and t a = 10 sec, respectively. VI. CONCLUSION We presented the generalized control design approach to stabilize nonlinear systems in predefined time. We have shown that it is robust to matched bounded disturbances by using the framework of vector Lyapunov functions and comparison systems. We designed control so that the comparison system is predefined-time stable. After that, we relate these stability conditions with that of the original system by employing comparison principles. Furthermore, we aggregated the comparison system to reduce its dimension in order to make the proposed approach efficient and straightforward. Finally, we assessed through an example accompanied by simulations the efficacy of the mathematical results. In the future, the proposed work can be implemented on experimental setups.

Fig. 1 .

 1 Fig. 1. States and input voltages of system (22) in predefined time ta = 5 sec (1(a)(b)(c)(d)) and 10 sec (1(e)(f)(g)(h))