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Abstract. With the ever-increasing number of RDF-based knowledge
graphs, the number of interconnections between these graphs using the
owl:sameAs property has exploded. Moreover, as several works indicate,
the identity as defined by the semantics of owl:sameAs could be too
rigid, and this property is therefore often misused. Indeed, identity must
be seen as context-dependent. These facts lead to poor quality data
when using the owl:sameAs inference capabilities. Therefore, contextual
identity could be a possible path to better quality knowledge. Unlike
classical identity, with contextual identity, only certain properties can
be propagated between contextually identical entities. Continuing this
work on contextual identity, we propose an approach, based on sentence
embedding, to find semi-automatically a set of properties, for a given
identity context, that can be propagated between contextually identi-
cal entities. Quantitative experiments against a gold standard show that
our approach achieved promising results. Besides, the use cases provided
demonstrate that identifying the properties that can be propagated helps
users achieve the desired results that meet their needs when querying a
knowledge graph, i.e., more complete and accurate answers.

Keywords: RDF, contextual identity, property propagation, knowledge graph,
linked data, sentence embedding

1 Introduction

Open and RDF-based knowledge graphs (KGs), like prominent Wikidata3 or
DBpedia4, are continuously growing in terms of size and usage. Consequently,
the number of entities described in those KGs leads to a problem for both data
publishers and data users: how to know if two entities are the same or
not? According to Noy et al. [18], this question remains one of the top challenges

3 https://www.wikidata.org
4 https://wiki.dbpedia.org/
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in knowledge graphs industry. To interlink KGs, the owl:sameAs property has
been defined by the W3C5 in 2004 to link entities that are the same. Indeed, a
(real world) object is described across several KGs, and those descriptions are
linked thanks to the owl:sameAs property. However, the semantic definition of
owl:sameAs is very strict. It is based on Leibniz’s identity definition, i.e., the
identity of indiscernibles: ∀x, ∀y(∀p,∀o, (〈x, p, o〉 and 〈y, p, o〉) → x = y). And
its converse, the indiscernibility of identicals: ∀x, ∀y(x = y → ∀p,∀o, (〈x, p, o〉 →
〈y, p, o〉)). Hence, two entities are considered identical if they share all their 〈
property,value 〉 pairs in all possible and imaginable contexts. In other words,
two entities are identical if all their properties are indiscernibles for each
value.

Once an identity link is stated between two entities, it is possible to use
〈property, value〉 pairs from one entity to another. However, it is a very strong
assertion to state that two objects are the same whatever the context. From a
philosophical point of view, there are multiple counterarguments to the definition
of Leibniz’s identity. For example, if we consider two glasses from the same set
of glasses, they are indiscernible from each other and yet they are two different
physical objects. Similarly, is a person the same as he or she was ten years ago?

It is also a technical problem because of the open-world assumption [6], on
the one hand, and on the other hand, because of what a data publisher has in
mind that could be different from what the user expects when using data. Be-
sides, when data is published, it is “almost” impossible to know the consensus
behind the decision of creating an owl:sameAs link. Several works such as [11]
and [5] have demonstrated that the use of owl:sameAs was inadequate. Indeed,
established links might be considered as true only in specific contexts.

As a first intuition, a contextual identity between two entities might be seen
as a subset of properties Π for which these entities share the same values for
each p ∈ Π.

Example 1. Two different generic drugs Drug1 and Drug2 can be identical
when considering the active ingredient. If a KG contains the triples 〈 Drug1
activeIngredient Molecule1 〉 and 〈Drug2 activeIngredient Molecule1〉, then
Drug1 ≡activeIngredient Drug2 when the context is activeIngredient.

One of the core features of owl:sameAs is to be able to propagate all prop-
erties from an entity to other identical entities. Hence, owl:sameAs allows to
discover more knowledge and to increase completeness. In the same way, contex-
tual identity must help to discover more knowledge and to increase com-
pleteness, but only under specific circumstances. So, to be useful, a contextual
identity must specify what is happening with properties that are not part of
the context. In other words, an identity context must have propagating
properties.

Example 2. Following the example 1, stating onlyDrug1 ≡activeIngredient Drug2
has a limited interest, if we do not know what to do with other properties be-
sides activeIngredient. Considering the context activeIngredient, the property

5 https://www.w3.org/TR/owl-ref/
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targetDisease is propagating, and if the statement 〈 Drug1 targetDisease Dis-
ease1 〉 exists then we can state that 〈Drug2 targetDisease Disease1〉. But if
we consider the property excipient as context, then the property targetDisease
is not propagating.

Moreover, the ability to propagate a property between entities depends on the
context, i.e., the same property might be propagating in a context C1 and not
propagating in a context C2 as illustrated in Example 2.

Research questions: With a given identity context between two entities,
how to find properties that can be propagated? Is it possible to find propagating
properties (semi-)automatically?

In this paper, based on the context definition of Idrissou et al. [14], we propose
an approach to find propagating properties to facilitate knowledge discovery
for users. Instead of manually listing the propagating properties as in Idrissou
et al. [14], we automatically identify the propagating properties for a given con-
text using semantic textual similarity, significantly reducing burden to users.
The semantic similarity is based on the sentence embeddings corresponding to
the textual descriptions of the properties. We validated our approach through
quantitative and qualitative experiments.

The rest of the paper is organized as follows. In following section, we present
the related work. In Section 4, we present our approach. In Section 5, we present
the experiments we have conducted. Finally, we conclude and define the next
directions for our future work in Section 6.

2 Related work

In the first part of this section, we describe papers that pointed out the problems
raised by the owl:sameAs usage. In the second part, we discuss the proposals
that tackle these problems.

2.1 Identity Crisis

As early as 2002, Guarino and Welty [10] raised the issue of identity for on-
tologies. Especially when time is involved, stating that two things are identical
became a philosophical problem. The authors proposed to involve in identity only
essential properties, i.e., a property that cannot change. As described in Hor-
rocks et al. [13], the owl:sameAs property purpose is to link two entities that
are strictly the same, i.e., both entities are identical in every possible context.
owl:sameAs has a strict semantics allowing to infer new information. Many ex-
isting tools produce such owl:sameAs links [9], and several surveys are available
to this end [1, 9, 17].

However, none of these approaches consider contextual identity links. Their
purpose is to discover identity links that allegedly always hold. This is, from a
philosophical point of view, hard to obtain as underlined by Leibnitz’s identity
definition. Indeed, as stated for example in Halpin et al. [11] or Ding et al. [5],
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because of the strict semantic of owl:sameAs, the burden of data publishers
might be too heavy. As a matter of fact, owl:sameAs links are not often ade-
quately used. Some might be simply wrong, and, more insidiously, some might
be context-dependent, i.e., the owl:sameAs link does not hold in every possible
context because it is hard to obtain a consensus on the validity of a statement.
What a data modeler means may not be what a data user expects. This misuse
of owl:sameAs is often referred to as the “identity crisis” ( [11]).

2.2 Contextual Identity

Beek et al. [2] addressed this issue by constructing a lattice of identity contexts
where contexts are defined as sets of properties. All entities belonging to a con-
text share the same values for each property of this context. Hence, a context
is a set of indiscernible properties for an entity. However, the authors do not
give indications about the usage of properties not belonging to such contexts.
Raad et al. [19] proposed an algorithm named DECIDE to compute contexts,
where identity contexts are defined as sub-ontologies. Nevertheless, as in the first
work, properties of entities that are not in the sub-ontology are ignored. So, in
both previous works, there is a limitation of properties that do not belong to a
context. This limitation cripples the interest of using such approaches. Indeed,
one of the goals of an identity context is to define an identity relation between
two entities to use information about one on the other. The solution by Idrissou
et al. [14] involves such propagation of properties, and thus, increases complete-
ness of an entity according to a context. However, this proposal requires users
to provide both the propagating and indiscernible properties as input. Hence, it
leaves the burden to the user to identify and provide context and properties.

In this work, we propose to remove this burden partially from the user,
i.e., to semi-automatically compute the propagation set of properties
given an indiscernibility set of properties. For this, we will use sentence
embedding (presented in Section 4.3) to compute the embeddings of properties
using their descriptions to discover the propagating properties with respect
to a given identity context (as defined in [14]).

3 Motivation

Sometimes, real-world entities may be close regarding their properties but not
the same. For example, the French capital, Paris, is both a city and a department
(an administrative subdivision of the French territory). While considering that
the city and the department are the same concerning their geography, they are
two distinct entities administratively (or legally) speaking, i.e., they are not
considered the same per owl:sameAs. Now, suppose both Paris are represented
in a KG as distinct entities, and both are linked to (possibly distinct) movie
theaters. If one wants to retrieve movie theaters located in the city of Paris,
results will not be complete if some of them are linked to the department (see
Figure 1).
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Fig. 1. Excerpt of a KG about Paris, France. The properties in red are indiscernible
for both the city and the department. The properties in blue are propagating given the
red properties are indiscernible.

Fig. 2. Simplified identity lattice from Figure 1: each node is an indiscernible set of
properties. Only the red nodes have similar entities.
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A French citizen might know this ground truth, but how to allow an auto-
mated agent to discover this fact? Contextual identity is a possible answer to
this question, i.e., a set of properties for which values are the same for both
entities. Considering the present example, both Paris (city and department) are
geographically the same and some properties related to geography might be
propagated. In Figure 1, the dotted red properties (geo and label) are indis-
cernible (have the same values) and the located in properties are propagating.
Although the two entities do not share the same values for the located in prop-
erty, this one is related to the geographic context. Indeed, for a human agent,
the located in property might be obviously propagated between the two entities.
While we expected to have the four movie theaters located in Paris, a query on
the City of Paris will only return movie theaters 1, 2 and 3 (see Figure 1).

Thus, discovering such contexts of identity between entities, might improve
completeness of query results. Our intuition is inspired by Tobler’s first law [23],
that is: “Everything is related to everything else, but near things are more re-
lated than distant things.” Therefore, we hypothesize that, from a semantic
point of view, the closer a property is to the identity context, the
more likely it could be a good candidate for propagation. In the pre-
vious example, located in clearly refers to a geographic fact, and the context of
identity is about geography since it is composed of geographical coordinates. So,
the idea is to compute a semantic distance between indiscernible prop-
erties and candidate properties for propagation. Consequently, numbers,
and in our case numerical vectors, are best suited to compute this distance. A
numerical representation of the textual description of each property through its
rdfs:comment or schema:description can provide a basis to get this vector. In
most KGs, properties are described with such sentences. For example, 99% of
properties in Wikidata have descriptions. Sentence embeddings of property de-
scriptions output numerical vectors such that semantically similar descriptions
appear closer in the vector space.

4 Approach

4.1 Preliminaries

As mentioned in Section 2, several proposals have been made to define an identity
context. We choose the one from Idrissou et al. [14] since it is the only one that
considers the propagation of properties. They give the following definition of the
identity context:

Definition 1. (Identity Context) An identity context C = (Π,Ψ,≈) is defined
by two sets of properties (Π and Ψ) and an alignment procedure (≈). Π is
the indiscernibility set of properties (equation 1) and Ψ is the propagation
set of properties (equation 2). In the following, x and y are entities.

x =(Π,Ψ,≈) y ↔ ∀(p1, p2) ∈ Π2 with p1 ≈ p2
and ∀v1, v2 with v1 ≈ v2 : 〈x, p1, v1〉 ↔ 〈y, p2, v2〉

(1)
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x =(Π,Ψ,≈) y → ∀(p1, p2) ∈ Ψ2 with p1 ≈ p2
and ∀v1, v2 with v1 ≈ v2 : 〈x, p1, v1〉 ↔ 〈y, p2, v2〉

(2)

Moreover, we define the level of a context |ΠC | as the number of its indis-
cernible properties.

In the case where similar entities according to an identity context belong to
the same KG, it is not necessary to have an alignment procedure.

An entity can have several identity contexts, depending on properties in the
indiscernibility set Π. Indeed, two different combinations of properties can give
different sets of similar entities. The identity lattice of all identity contexts of an
entity e is defined as follow:

Definition 2. (Identity Lattice) An identity lattice L is a lattice, where each
element is an identity context. The set inclusion between indiscernibility set of
properties of each context is the binary relation responsible for the partial order.

The last notion is the seed of a lattice or a context that we define as follows:

Definition 3. (Seed of a lattice or a context) Each context of a lattice is
constructed from the same entity e. This entity e is called the seed of the lattice.

As per Definition 2, to build an identity lattice, we need to start from a seed,
despite the fact that the lattice could potentially be valid with another seed (see
Figure 2).

Now that we have defined the necessary concepts, we will explain the core of
our approach.

4.2 Computation of contexts

We present Algorithm 1 that computes an identity lattice. It takes as input the
seed entity, the source KG to which the seed belongs, the target KG (possibly
the same as the source KG) and an alignment procedure if the two KGs are
distinct. The main idea is to start by computing level one identity contexts with
each seed’s property and finally combine those contexts to obtain upper-level
identity contexts. When building a context, its first part is its indiscernibility
set, from which we then get similar entities, to obtain candidate properties for
propagation and, in the end, propagating properties.

The first step, line 3, is to compute all level 1 identity contexts (see Defi-
nition 1). Indeed, for each property p of the seed, there is exactly one identity
context (its indiscernibility set is Π = {p}). Later, identity contexts with only
one indiscernibility property will be merged to give identity contexts of higher-
levels. Next, we retrieve similar entities entitiesp to the seed that have the same
value(s) for the given property p. If p is multi-valuated, then entities in entitiesp
are similar to the seed for all values o such that 〈seed p o〉. It is worth noting
that, when filling entitiesp, we search only entities that have the same type(s)
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Data: KG1: the source KG, KG2: the target KG, seed: an entity of KG1, ≈: an
alignment procedure between KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the
target KG

1 L = ∅;
/* Get all explicit and implicit types of the seed */

2 Tseed = {t : 〈seed rdf :type t〉 ∈ KG1};
/* the following will create all contexts of the level 1 (with only

one indiscernible property) */

3 for each property p of seed do
4 candidateEntities = ∅;
5 for each value o such as 〈seed p o〉 ∈ KG1 do

/* entitiesp,o is the set of indiscernible entities with seed
with respect to the p, o pair */

6 entitiesp,o = {e : (∃(p′, o′), p′ ≈ p, o′ ≈ o, 〈e p′ o′〉 ∈ KG2) ∧ (∃t ∈
Tseed, t′ ≈ t, 〈e rdf :type t′〉 ∈ KG2)};

7 if entitiesp,o 6= ∅ then
8 candidateEntities = candidateEntities ∪ {entitiesp,o};
9 end

10 end
/* entitiesp is the set of indiscernible entities with seed with

respect to the property p */

11 entitiesp =
⋂
candidateEntities;

12 Ψ = getPropagationSet(seed, entitiesp, {p});
13 if Ψ 6= ∅ then
14 Π = {p};
15 C = (Π,Ψ,≈);
16 L = L ∪ C;
17 end

18 end
/* Now we can combine contexts of the same level */

19 return constructUpperLevels(L,KG1,KG2, seed,≈)
Algorithm 1: createLattice: calculate identity lattice of an entity.

with the seed. This is because we want to avoid absurd results, e.g., comparing
a person with an airplane. It also has the advantage of lowering the number of
possible identity contexts to compute. Finally, based on entitiesp, we compute
the propagation set Ψ (line 8) as explained in the following section (Section 4.3).

The second step (see Algorithm 2) is to compute upper-level identity contexts
based on those from level 1. The loop (line 2) of the algorithm calculates these
upper-levels by combining contexts of the same level, and stops when it cannot
construct new upper-level identity contexts. This calculation is based on an
identity lattice operator, which is the set inclusion on indiscernibility sets. For
example, a level 2 context is built on two contexts from level 1. Again, to lower
the number of possible identity contexts to compute, if there is no similar entity
to the seed for a given context Ci, there is no need to compute higher-level
contexts based on Ci.
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Data: L: the lattice with only level one contexts, KG1: the source KG, KG2:
the target KG, seed: an entity of KG1, ≈: an alignment procedure
between KG1 and KG2

Result: L: a lattice of identity contexts between the seed and entities in the
target KG

/* lvl is the current level in the lattice */

1 lvl = 1;
2 while ∅ /∈ L do
3 contexts = ∅;
4 for (C1, C2) ∈ {(Ci, Cj) ∈ L × L : |ΠCi | = |ΠCj | = lvl, i > j} do
5 Π = ΠC1 ∪ΠC2 ;

/* getEntities function gives the set of entities that are

similar under the given identity context in the given KG

*/

6 entities = getEntities(C1,KG2) ∩ getEntities(C2,KG2);
7 if entities 6= ∅ and Π /∈ L then
8 Ψ = getPropagationSet(seed, entities,Π);

/* see Algo. 3 */

9 if Ψ 6= ∅ then
10 C = (Π,Ψ,≈);
11 contexts = contexts ∪ C;
12 end

13 end

14 end
15 L = L ∪ contexts;
16 lvl = lvl + 1;

17 end
18 return L

Algorithm 2: constructUpperLevels: calculate upper-levels of the identity
lattice of an entity.

4.3 Propagation set using sentence embedding

Our approach for computing propagation set (Line 8 in Algorithm 2) is elabo-
rated in Algo. 3. It is based on sentence embedding which maps a sentence to
a numerical vector. Ideally, semantically close sentences appear nearby in the
numerical vector space.

Sentence embedding is a technique that maps a sentence to a numerical vec-
tor. Ideally, semantically close sentences are represented by close vectors in the
numerical space considered. The reasons behind using sentence embedding in-
stead of a more classical distance measures, e.g., the edit distance, RDF graph
embedding like RDF2Vec [20], or an ontological alignment technique are: (i) clas-
sical string distances ignore sentence semantics, (ii) RDF graph embedding tech-
niques are not yet adapted to such task, and (iii) ontological alignment tech-
niques align pairwise properties and not sets of properties. Sentence embedding
is widely used in several tasks such as computing semantic similarities between
two texts. An encoder derives sentence embeddings, to capture the semantics of
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Data: seed: the entity that generated Π,
entities: set of entities similar to seed with respect to Π,
Π: an indiscernibility set
Result: Ψ : a propagation set
/* computation of the embeddings of each property in Π by using

one of the encoder */

1 indiscernibilityEmbeddings← getEmbeddings(Π);
2 meanV ector ← mean(indiscernibilityEmbeddings);

/* getCandidateProperties function returns the set of all candidate

properties for propagation */

3 candidates← getCandidateProperties(Π, {seed} ∪ entities);
/* then compute their embeddings */

4 candidatesEmbeddings← getEmbeddings(candidates);
5 Ψ ← ∅;
6 for candidateV ector in candidatesEmbeddings do
7 similarity ← cosineSimilarity(candidateV ector,meanV ector);
8 if similarity ≥ threshold then
9 Ψ ← Ψ ∪ {candidateV ector};

10 end

11 end
12 return Ψ

Algorithm 3: getPropagationSet: calculate the propagation set.

a language, from a large text corpus. State-of-the-art encoders include Universal
Sentence Encoder [3], GenSen [22] and InferSent [4]. A lot of attention has been
given to sentence embeddings lately.

As presented in Section 1, our intuition, based on Tobler’s first law, is that
a propagation set of properties can be found given an indiscernibility set, if
vectors of descriptions of those two sets are close enough. In this work, we pro-
pose to use property descriptions (e.g., rdfs:comment or schema:description as
“standard plug type for mains electricity in a country”) to find properties that
are semantically related and consequently good candidates for propagation for
a given indiscernibility set Π. For example, in Wikidata, the property “direc-
tor” has the follow description: “director(s) of film, TV-series, stageplay, video
game or similar”. Descriptions are mainly composed of one sentence. Most of
the properties are described with such annotations, e.g., properties of Wikidata
are annotated with an english schema:description at 98.9%. For the embedding
computation, any of the previously described encoders can be used.

Algorithm 3 presents our proposal to compute Ψ given a Π. It takes as
input three parameters: a seed (an entity), a set of property built from the seed
(indiscernibility set Π), and a set of entities that are similar to the seed with
respect to Π. The computation of Π is presented in the previous section (see
Algorithm 1).

First, for each property in the indiscernibility set Π, we calculate its repre-
sentational vector. Then, we compute the mean vector that represents the in-
discernibility set. Similarly, we consider each property of the seed or its similar
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entities, and compute their representational vectors. Therefore, on the one hand,
we have one vector that represents the set of indiscernibility and, on the other
hand, we have n vectors for the n properties that are candidates for propaga-
tion. Properties of similar entities (with respect to the indiscernibility set Π) are
also considered as candidates since possibly one of them can have a propagating
property that the seed does not have.

Then we loop on each candidate property to compute a cosine similarity [21]
between each candidate vector and the mean vector representing the indiscerni-
bility set Π. If the cosine similarity is high enough (above a specified threshold
as explained in the following section) the candidate property is considered as a
propagating property.

5 Experimental Results

For evaluation, we first implemented our approach, and then we present several
SPARQL queries that benefited from our approach.

5.1 Implementation and set-up

We implemented our approach in Python. For the sake of reproducibility, the
code is made available on a GitHub repository6. As mentioned earlier, we used
three sentence embedding approaches, namely InferSent7, GenSen8 and Univer-
sal Sentence Encoder9. We used an HDT file (see [16] and [8]) that contains a
dump of the last version of Wikidata10. The computer we used had an i7 pro-
cessor and 32 GB of RAM. As an indication, the complete calculation of the
identity lattice for an entity such as the city of Paris, France takes about 1396
ms. It has more than 1000 property-object pairs and, in Wikidata, the mean
number of property-object pairs is about 60. Thus, it is a rather large entity and
this approach could scale well.

5.2 Quantitative Study

The goal of quantity study is to evaluate how well the proposed approach can
retrieve the propagating properties specified in Ψ , given the indiscernibility set
of properties Π for each identity context (Π, Ψ , ≡). Since there is not a prior
work or dataset that we can leverage to evaluate our algorithm, we manually
constructed a gold standard dataset from the Wikidata KG that is known for
its high data quality [7].

The dataset consists of 100 identity contexts where each context contains
the indiscernibility set of properties Π and the propagation set of properties Ψ .

6 https://github.com/PHParis/ConProKnow
7 https://github.com/facebookresearch/InferSent
8 https://github.com/Maluuba/gensen
9 https://tfhub.dev/google/universal-sentence-encoder/2

10 http://gaia.infor.uva.es/hdt/wikidata/wikidata2018 09 11.hdt.gz
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We do not need an alignment procedure (≡) specified for identity contexts since
both source and target KGs are the same i.e., the Wikidata KG. To test the per-
formance across different classes, identity contexts were constructed across five
diverse class types: country, comics character, political party, literary work, and
film. We randomly selected 20 entities from each class type and computed their
identity lattices. One context was selected from each lattice. The propagation
set of properties (Ψ) for each context was manually identified by looking at its
indiscernibility set of properties Π.

Evaluation: We compared our algorithm with a baseline system that com-
putes, using Jaccard index (JI) [15], a similarity score (range 0-1) between a
candidate property and each property in Π of a given identity context. If the
mean similarity score is above a specified threshold, we considered the candidate
property as a propagating property for this context.

We evaluated the performance of a model using standard Precision = tp
tp+fp ,

Recall = tp
tp+fn , and Fmeasure = 2×Precision×Recall

Precision+Recall where tp (true positive) is

the number of predicted properties that are actually in Ψ , fp (false positive) is
the number of predicted properties which are not in Ψ , and fn (false negative)
is the number of predictive properties in Ψ not selected by the model.

We experimented with different sentence embeddings (namely InferSent, Uni-
versal Sentence Encoder, and GenSen) and with different thresholds (0 to 1). Due
to space constraint, we only present the results in Table 1 corresponding to In-
ferSent and thresholds of 0.1 and 0.9. The proposed approach outperformed the
baseline for every threshold. This is expected because the baseline uses Jaccard
Index, and thus it relies only on the exactly matching tokens between the prop-
erty descriptions. Because our approach uses InferSent, it can obtain semantically
similar descriptions even though the descriptions themselves do not contain the
exact tokens. As we increased the similarity threshold, precision increased, but
recall decreased. The threshold of 0.9 was a balance between precision and re-
call that yielded the F1 scores up to 0.69 (for film and literary work). In fact,
F1 scores were above 0.60 for every class except for the country class, which
had an F1 score of 0.36 due to overlapping descriptions among propagating and
non-propagating properties. The overlapping descriptions for the country class
appeared very close in the vector space, which reduced the precision and F1
scores. In addition, the performances were impacted by noisy descriptions, and
thus, better preprocessing techniques can potentially improve these scores. In
sum, we obtained an overall F1 score of 0.59 and validated our Tobler-inspired
hypothesis, i.e., properties can be sorted using their descriptions obtaining the
propagating properties at the top. Our result further provides a strong baseline
for future research for this novel research problem.

5.3 Qualitative Study

In this section, we describe three different queries that could demonstrate the
benefits of our approach by extending their results. To achieve our goal, we used
InferSent and the threshold value equal to 0.9. All of these queries are simplified
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Precision Recall F1

Class Threshold Baseline Approach Baseline Approach Baseline Approach

comics character
0.1 0.40 0.39 0.1 1.00 0.16 0.54
0.9 0.00 0.49 0.00 0.90 0.00 0.61

country
0.1 0.05 0.15 0.01 1.00 0.01 0.23
0.9 0.00 0.32 0.00 0.81 0.00 0.36

film
0.1 0.15 0.34 0.03 1.00 0.05 0.49
0.9 0.00 0.62 0.00 0.93 0.00 0.70

literary work
0.1 0.03 0.50 0.01 1.00 0.01 0.65
0.9 0.00 0.60 0.00 0.90 0.00 0.69

political party
0.1 0.39 0.20 0.51 1.00 0.36 0.31
0.9 0.00 0.55 0.00 0.87 0.00 0.62

overall
0.1 0.20 0.32 0.13 1.00 0.12 0.44
0.9 0.00 0.51 0.00 0.88 0.00 0.59

Table 1. Baseline and InferSent results with thresholds of 0.1 and 0.9.

queries tested on Wikidata (for ease of reading). The original queries can be
found on the GitHub repository11.

Fig. 3. Qualitative experiment workflow: the elements in red are the inputs and the ele-
ment in green is the output. To simplify the diagram, we consider only one instantiated
entity linked to one instantiated property in the query.

Task description: For each query, the goal is to find an identity context that
will allow expanding the query with similar entities according to the user’s ob-
jective. In this way, users can benefit from more complete results. The workflow
is the following (see Figure 3): first, from the query, we extract the instantiated
entity (or entities) that will be the seed(s) (step 1). Second, for each seed, we
compute its identity lattice (step 2) that will contain in each of its nodes an in-
discernible and a propagating set of properties (cf. Algorithms 1 and 3). Third,
with the instantiated property (or set of properties) linked to the seed in the
query, we select from the lattice, the node having this property in its propagation

11 https://github.com/PHParis/ConProKnow



14 P.-H. Paris et al.

set (step 4). This node will be considered as the identity context of the query.
Indeed, if multiple identity contexts are possible, the user must choose the best
suited for its task purpose. Finally, based on the selected identity context, we
can get similar entities (step 5) and rewrite the query with both the seed and
similar entities (step 6).

Queries: We tested our approach with three queries. The first query (List-
ing 1.1) is to retrieve all clinical trials of the drug “Paracetamol”. An interesting
expansion of this query could be to find all trials of similar legal drugs in terms
of medical conditions treated and physical interactions. The second query is to
retrieve all persons who once lead France. However, France has a complicated
history and has changed its political regime several times (for example, during
World War II, or the Napoleonian period). Thus, even if the French territory
was almost always the same during the past centuries, each political regime has
its own entity in Wikidata. Finally, the third query is to retrieve French politi-
cians from The Republican party that have been convicted. The peculiarity here
is that this major political party changed its name several times because of ei-
ther political scandal or humiliating defeats. We only give details about the first
query because of space limitation, the other two are available on the GitHub
repository.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE {
? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n : Paracetamol .

}
Listing 1.1. SPARQL query retrieving all studies about the painkiller named Parac-
etamol.

Listing 1.1 See GitHub Repo See GitHub Repo

Seed Paracetamol France The Republicans

Ψ research intervention head of member of political party

condition treated, capital, country,
Π interacts with, official language political

legal status ideology

Similar Ibuprofen French 2nd Republic, UMP,
entities Aspirin July Monarchy, . . . RPR, . . .

# of results
w/o context 586 12 2

# of results
w/ context 860 99 (77) 13

Table 2. Identity context contribution to queries.

Table 2 shows the additional results brought by our approach. Each column
corresponds to a query. For the first query (and also for the next ones), there
is only one seed “Paracetamol” (“France” and “the Republicans” in the second
and the third columns respectively) as it is the only instantiated entity in the
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query. To fill this table, we first computed the lattice of the seed. Then, we
selected a context containing the property “research intervention” in its Ψ since
this property is instantiated in the query. Moreover, as explained, our goal is to
retrieve trials of similar drugs in terms of the condition treated and legal status.
Finally, the query is expanded with similar entities, as shown in Listing 1.2. The
results show a 47% increase in the number of clinical trials for the considered
context. For the second query, it should be noted that among the 99 results,
22 persons were not head of France. 14 were head of Paris City Council, and 8
were Grand Master of Masonic obedience in France. This is because the council
and the obedience are misplaced in the Wikidata ontology. These errors cannot,
therefore, be attributed to our approach. The results show a 542% increase in
the number of France leaders for the considered context. The results of the
third query show a 550% increase in the number of convicted politicians for the
considered context.

SELECT DISTINCT ? c l i n i c a l T r i a l WHERE {
VALUES (? drug ) { ( : Paracetamol ) ( : Ibuprofen )

( : Asp i r in ) }
? c l i n i c a l T r i a l : r e s e a r c h I n t e r v e n t i o n ? drug .

}
Listing 1.2. Expanded SPARQL query retrieving all studies about Paracetamol similar
entities.

5.4 Discussion

As we have seen, our approach allows for discovering propagating properties for
a given indiscernibility set of properties Π. An identity context with its indis-
cernibility and propagation sets can provide more complete answers to queries
through query expansion. The results are very promising but need to be con-
fronted to more different kinds of KGs and to combination of distinct KGs. Also,
our approach does not work when the property of an entity lacks property de-
scribing it (such as rdfs:comment or schema:description). Hence, the first step
for future work is to circumvent this flaw with a multifaceted approach that can
include other information than the descriptions alone. Moreover, sophisticated
preprocessing and textual similarity techniques can be incorporated to further
improve the results.

6 Conclusion and future work

In this paper, we demonstrated that propagating properties can be discovered
semi-automatically. To this end, we presented an approach based on sentence
embedding. Given an indiscernible set of properties, the proposed system dis-
covers properties that could be propagated using semantic similarities between
the properties. Our approach computes, for an entity, an identity lattice that rep-
resents all its possible identity contexts, i.e., both indiscernible and propagating
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properties. We validated using quantitative and qualitative evaluations that the
proposed approach generates promising results for both discovering propagating
properties and providing complete answers to the given queries.

Future work includes using other features to improve the results, like values
of properties, number of property usage, or semantic features of the property
should be tried. However, capturing ontological information of a property when
embedding is still an open problem. Secondly, using only sentence embedding,
combined with intuition from Tober’s first law, might be näıve in some cases.
Therefore, there is a need to challenge our work with a combination of distinct
KGs. For the time being, we only considered in lattices the case where the entity
is subject to a triple, and we should also consider cases where it is the value of a
triple. Moreover, using SPARQL queries to help the user to select the best-suited
identity context might be an interesting starting point for later work. Finally,
to explore SPARQL queries expansion (presented in Section 5.3), a prototype
should be implemented to allow users selecting the proper context according to
an ordered list of contexts. Also, using RDF* and/or SPARQL* [12] to represent
the context as defined in this paper should be investigated.
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