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Abstract: The study deals with the computation of the linear vibrations of prestress elastic
structures. The originality of the proposed approach is based on a Proper Orthogonal Decom-
position (POD) associated with a modal projection-based Reduced Order Model (ROM) to
evaluate the natural frequencies of an elastic structure in function of a static pressure load
parameter. It is shown that a finite number of POD modes combined with linear prestress
eigenmodes are able to evaluate efficiently the frequencies function of the evolution parameter.
The generated reduced order model can be used in future works on parametric studies, sensitivity
analyses, optimization procedure or feedback control loops systems.
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1. INTRODUCTION

The prestress state is defined as the stress field acting in
the structure when geometrical nonlinearities are taken
into account in a static analysis. This paper is based on
the theory of nonlinear elasticity, in which geometrical
nonlinearities are considered with Saint-Venant Kirchhoff
constitutive equations (see e.g. Ciarlet (1988), Belytschko
et al. (2000), Wriggers (2008)). Concerning the dynamic
analyses, it is shown in Ogden and Roxburgh (1993)
and Herrmann (1956) that the stress has an influence on
the natural frequencies of linear vibration analysis and
the associated modal shape of the structure. Recently
in Carrera et al. (2020), an efficient approach has been
proposed to evaluate the influence of the prestress on
the natural frequencies: (i) static nonlinear solutions are
first computed in a given range of load leading to a
change of the global stiffness of the system, (ii) then
a linearized modal analysis is performed around each
prestress state. However, this approach necessitates the
computation of tangent stiffness matrices followed by an
eigenvalue analysis at each increment of the parameter
value. Moreover, for parametric studies, this procedure
requires time and memory resources depending on the
number of degrees of freedom.

The approach considered here is based on off-line and on-
line steps. In the off-line phase, snapshots of the static
solutions are selected to generate an a posteriori Proper
Orthogonal Decomposition (POD) basis (see e.g. Berkooz
et al. (1993)). This step is fundamental to obtain a
Reduced Order Model (ROM) as seen in Radermacher
and Reese (2016). It is shown here that the tangent
stiffness matrix can be expressed as a sum of a finite
number of matrices depending of the number of modes,
which constitutes the originality of the present study.
The feasibility and the efficiency of the methodology

is analyzed through a numerical example involving non
uniform follower forces. The numerical developments are
based on the use of the open-source library FEniCS
developed by Alnaes et al. (2015).

2. PRELIMINARY DEFINITIONS

Let Ω be an open bounded domain of R3, of boundary ∂Ω.
We denote by u : Ω → R3 the displacement vector field in
Ω. From nonlinear elasticity theory, the Green-Lagrange
strain tensor is defined by:

E(u) = εL(u) + εQ(u,u) (1)

where εL and εQ are given by:

εL(u) =
1

2
(GradTu+Gradu) (2)

εQ(u,v) =
1

2
(GradTuGradv) (3)

The gradient operator Grad is defined in the reference
configuration Ω. Using the second Piola-Kirchhoff stress
tensor, the Saint-Venant Kirchhoff (SVK) constitutive
equation is written as:

S(u) = D : E(u) (4)

where D is a constant fourth order tensor of elasticity for
isotropic material defined by two constants.

3. EXPRESSION OF THE VIRTUAL WORK

3.1 Virtual work principle

The problem consists in finding u(X, t) in Cu such that,
∀ δu(X) ∈ Cu and for given initial conditions, we have:

δWacc(ü, δu) + δWint(u, δu) + δWext(u, δu) = 0 (5)

in which δu is the virtual displacement field, X is the
reference coordinate vector, t is the time and Cu is an
admissible space of regular functions such that:

Cu = {u “regular” : u = 0 ∈ Σu} (6)
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Conservatoire national des arts et métiers, Paris, France

(e-mail: christophe.hoareau@lecnam.net).

Abstract: The study deals with the computation of the linear vibrations of prestress elastic
structures. The originality of the proposed approach is based on a Proper Orthogonal Decom-
position (POD) associated with a modal projection-based Reduced Order Model (ROM) to
evaluate the natural frequencies of an elastic structure in function of a static pressure load
parameter. It is shown that a finite number of POD modes combined with linear prestress
eigenmodes are able to evaluate efficiently the frequencies function of the evolution parameter.
The generated reduced order model can be used in future works on parametric studies, sensitivity
analyses, optimization procedure or feedback control loops systems.

Keywords: Geometrical nonlinearities, Follower forces, POD, Prestress modal analysis

1. INTRODUCTION

The prestress state is defined as the stress field acting in
the structure when geometrical nonlinearities are taken
into account in a static analysis. This paper is based on
the theory of nonlinear elasticity, in which geometrical
nonlinearities are considered with Saint-Venant Kirchhoff
constitutive equations (see e.g. Ciarlet (1988), Belytschko
et al. (2000), Wriggers (2008)). Concerning the dynamic
analyses, it is shown in Ogden and Roxburgh (1993)
and Herrmann (1956) that the stress has an influence on
the natural frequencies of linear vibration analysis and
the associated modal shape of the structure. Recently
in Carrera et al. (2020), an efficient approach has been
proposed to evaluate the influence of the prestress on
the natural frequencies: (i) static nonlinear solutions are
first computed in a given range of load leading to a
change of the global stiffness of the system, (ii) then
a linearized modal analysis is performed around each
prestress state. However, this approach necessitates the
computation of tangent stiffness matrices followed by an
eigenvalue analysis at each increment of the parameter
value. Moreover, for parametric studies, this procedure
requires time and memory resources depending on the
number of degrees of freedom.

The approach considered here is based on off-line and on-
line steps. In the off-line phase, snapshots of the static
solutions are selected to generate an a posteriori Proper
Orthogonal Decomposition (POD) basis (see e.g. Berkooz
et al. (1993)). This step is fundamental to obtain a
Reduced Order Model (ROM) as seen in Radermacher
and Reese (2016). It is shown here that the tangent
stiffness matrix can be expressed as a sum of a finite
number of matrices depending of the number of modes,
which constitutes the originality of the present study.
The feasibility and the efficiency of the methodology

is analyzed through a numerical example involving non
uniform follower forces. The numerical developments are
based on the use of the open-source library FEniCS
developed by Alnaes et al. (2015).

2. PRELIMINARY DEFINITIONS

Let Ω be an open bounded domain of R3, of boundary ∂Ω.
We denote by u : Ω → R3 the displacement vector field in
Ω. From nonlinear elasticity theory, the Green-Lagrange
strain tensor is defined by:

E(u) = εL(u) + εQ(u,u) (1)

where εL and εQ are given by:

εL(u) =
1

2
(GradTu+Gradu) (2)

εQ(u,v) =
1

2
(GradTuGradv) (3)

The gradient operator Grad is defined in the reference
configuration Ω. Using the second Piola-Kirchhoff stress
tensor, the Saint-Venant Kirchhoff (SVK) constitutive
equation is written as:

S(u) = D : E(u) (4)

where D is a constant fourth order tensor of elasticity for
isotropic material defined by two constants.

3. EXPRESSION OF THE VIRTUAL WORK

3.1 Virtual work principle

The problem consists in finding u(X, t) in Cu such that,
∀ δu(X) ∈ Cu and for given initial conditions, we have:
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∗ Laboratoire de Mécanique des Structures et des Systèmes Couplés,
Conservatoire national des arts et métiers, Paris, France

(e-mail: christophe.hoareau@lecnam.net).

Abstract: The study deals with the computation of the linear vibrations of prestress elastic
structures. The originality of the proposed approach is based on a Proper Orthogonal Decom-
position (POD) associated with a modal projection-based Reduced Order Model (ROM) to
evaluate the natural frequencies of an elastic structure in function of a static pressure load
parameter. It is shown that a finite number of POD modes combined with linear prestress
eigenmodes are able to evaluate efficiently the frequencies function of the evolution parameter.
The generated reduced order model can be used in future works on parametric studies, sensitivity
analyses, optimization procedure or feedback control loops systems.

Keywords: Geometrical nonlinearities, Follower forces, POD, Prestress modal analysis

1. INTRODUCTION

The prestress state is defined as the stress field acting in
the structure when geometrical nonlinearities are taken
into account in a static analysis. This paper is based on
the theory of nonlinear elasticity, in which geometrical
nonlinearities are considered with Saint-Venant Kirchhoff
constitutive equations (see e.g. Ciarlet (1988), Belytschko
et al. (2000), Wriggers (2008)). Concerning the dynamic
analyses, it is shown in Ogden and Roxburgh (1993)
and Herrmann (1956) that the stress has an influence on
the natural frequencies of linear vibration analysis and
the associated modal shape of the structure. Recently
in Carrera et al. (2020), an efficient approach has been
proposed to evaluate the influence of the prestress on
the natural frequencies: (i) static nonlinear solutions are
first computed in a given range of load leading to a
change of the global stiffness of the system, (ii) then
a linearized modal analysis is performed around each
prestress state. However, this approach necessitates the
computation of tangent stiffness matrices followed by an
eigenvalue analysis at each increment of the parameter
value. Moreover, for parametric studies, this procedure
requires time and memory resources depending on the
number of degrees of freedom.

The approach considered here is based on off-line and on-
line steps. In the off-line phase, snapshots of the static
solutions are selected to generate an a posteriori Proper
Orthogonal Decomposition (POD) basis (see e.g. Berkooz
et al. (1993)). This step is fundamental to obtain a
Reduced Order Model (ROM) as seen in Radermacher
and Reese (2016). It is shown here that the tangent
stiffness matrix can be expressed as a sum of a finite
number of matrices depending of the number of modes,
which constitutes the originality of the present study.
The feasibility and the efficiency of the methodology

is analyzed through a numerical example involving non
uniform follower forces. The numerical developments are
based on the use of the open-source library FEniCS
developed by Alnaes et al. (2015).

2. PRELIMINARY DEFINITIONS

Let Ω be an open bounded domain of R3, of boundary ∂Ω.
We denote by u : Ω → R3 the displacement vector field in
Ω. From nonlinear elasticity theory, the Green-Lagrange
strain tensor is defined by:

E(u) = εL(u) + εQ(u,u) (1)

where εL and εQ are given by:

εL(u) =
1

2
(GradTu+Gradu) (2)

εQ(u,v) =
1

2
(GradTuGradv) (3)

The gradient operator Grad is defined in the reference
configuration Ω. Using the second Piola-Kirchhoff stress
tensor, the Saint-Venant Kirchhoff (SVK) constitutive
equation is written as:

S(u) = D : E(u) (4)

where D is a constant fourth order tensor of elasticity for
isotropic material defined by two constants.

3. EXPRESSION OF THE VIRTUAL WORK

3.1 Virtual work principle

The problem consists in finding u(X, t) in Cu such that,
∀ δu(X) ∈ Cu and for given initial conditions, we have:
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where Dirichlet boundary conditions are given on Σu ⊂
∂Ω. In Eq. (5), the virtual inertia work δWacc, the virtual
internal work δWint and the virtual external work δWext

are respectively given by:

δWacc(ü, δu) =

∫

Ω

ρü · δu dΩ (7)

δWint(u, δu) =

∫

Ω

δE(u, δu) : S(u)dΩ (8)

δWext(p;u, δu) =

∫

Σp

p J(u)F−T(u)n · δu dS (9)

where Σp = ∂Ω\Σu is the part of the boundary where
forces are prescribed and Σp ∩Σu = ∅. The virtual Green-
Lagrange tensor is given by:

δE(u, δu) = εL(δu) + εS(u, δu) (10)

where

εS(u,v) =
1

2
(GradTuGradv +GradTvGradu) (11)

The follower forces are expressed considering known pres-
sure distribution on the reference configuration p(X). For
more details the reader is referred to Hibbitt (1979). The
deformation gradient is defined as F (u) = I+Gradu and
J(u) = det (F (u)). In the following, the virtual inertia
work will also be denoted as the mass bi-linear operator
m as:

m(ü, δu) =

∫

Ω

ρ ü · δu dΩ (12)

3.2 Virtual internal work as a polynomial cubic form of u

It can be shown that considering geometrical nonlinearities
with a linear constitutive equation (SVK), the virtual
internal work can be expressed as follows:

δWint(u, δu) = a2(u, δu) + a3(u,u, δu) + a4(u,u,u, δu)
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where the forms a2, a3 and a4 are given by:
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Let us note that all the forms are linear in terms of δu. The
term a2 is linear in u, a3 is quadratic in u and a4 is cubic
in u. Later we shall see that those forms are convenient to
take into account the displacement as a linear combination
of modes.

3.3 Virtual external work as a polynomial quadratic form
of u

As seen in Eq. (9), we have considered in this paper the
particular case of a pressure distribution which does not
depend explicitly upon u. The external work with those
follower forces can be expressed as:

δWext(p;u, δu) = b1(p; δu) + b2(p;u, δu)
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where the forms b1, b2 and b3 are all linear in δu, b2 is
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where the semi-column symbol is used to separate the
known and unknowns fields. The matrices G and H
are expressed as parts of the cofactor matrix of F (see
footnotes 1 ) defined by:

Cof(F(u)) = I+G(u) +H(u,u) (23)

which gives the expression of JF−T = Cof(F) as seen in
Ciarlet (1988).

4. STATIC AND DYNAMIC PROBLEMS

In the following we will consider vibration problems
around nonlinear static equilibrium states (see Fig. 1).
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The displacement solution u is then considered as a sum
of a known static nonlinear displacement solution us and
an unknown dynamic fluctuation of displacement ud such
that:

u = us + ud (24)

The dynamic part of the displacement is supposed to
be very small compared to a characteristic length of the
structure lc such that || ud ||<< lc. The linearized virtual
works can be expressed as:

δWacc(u, δu) � m(üd, δu) (25)

δWint(u, δu) � δWint(us, δu) + kint(us;ud, δu) (26)

δWext(p;u, δu) � δWext(p;us, δu) + kext(p,us;ud, δu)

− f(δu) (27)

in which the form f(δu) is given by:

f(δu) =

∫

Σp

δu · fdS (28)

1 Expression of G(u) and H(u,v) in Cartesian coordinate system:

G =

[
u3,Z + u2,Y −u1,Y −u3,Z

−u2,X u3,Z + u1,X −u2,Z

−u3,X −u3,Y u2,Y + u1,X

]
(21)

H =

[
u2,Y v3,Z − u3,Y v2,Z u3,Y v1,Z − u1,Y v3,Z u1,Y v2,Z − u2,Y v1,Z
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1

2
(GradTuGradv +GradTvGradu) (11)
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ρ ü · δu dΩ (12)

3.2 Virtual internal work as a polynomial cubic form of u

It can be shown that considering geometrical nonlinearities
with a linear constitutive equation (SVK), the virtual
internal work can be expressed as follows:

δWint(u, δu) = a2(u, δu) + a3(u,u, δu) + a4(u,u,u, δu)
(13)

where the forms a2, a3 and a4 are given by:

a2(u, δu) =

∫

Ω

εL(δu) : D : εL(u) dΩ (14)

a3(u,v, δu) =

∫

Ω

εL(δu) : D : εQ(u,v)dΩ

+

∫

Ω

εS(δu,u) : D : εL(v)dΩ (15)

a4(u,v,w, δu) =

∫

Ω

εS(δu,u) : D : εQ(v,w) dΩ (16)

Let us note that all the forms are linear in terms of δu. The
term a2 is linear in u, a3 is quadratic in u and a4 is cubic
in u. Later we shall see that those forms are convenient to
take into account the displacement as a linear combination
of modes.

3.3 Virtual external work as a polynomial quadratic form
of u

As seen in Eq. (9), we have considered in this paper the
particular case of a pressure distribution which does not
depend explicitly upon u. The external work with those
follower forces can be expressed as:

δWext(p;u, δu) = b1(p; δu) + b2(p;u, δu)

+ b3(p;u,u, δu) (17)

where the forms b1, b2 and b3 are all linear in δu, b2 is
linear in u and b3 is quadratic in u such that:

b1(p; δu) =

∫

Σp

pn · δu dS (18)

b2(p;u, δu) =

∫

Σp

pG(u) n · δu dS (19)

b3(p;u,v, δu) =

∫

Σp

pH(u,v) n · δu dS (20)

where the semi-column symbol is used to separate the
known and unknowns fields. The matrices G and H
are expressed as parts of the cofactor matrix of F (see
footnotes 1 ) defined by:

Cof(F(u)) = I+G(u) +H(u,u) (23)

which gives the expression of JF−T = Cof(F) as seen in
Ciarlet (1988).

4. STATIC AND DYNAMIC PROBLEMS

In the following we will consider vibration problems
around nonlinear static equilibrium states (see Fig. 1).

Fig. 1. Static and dynamic configurations.

The displacement solution u is then considered as a sum
of a known static nonlinear displacement solution us and
an unknown dynamic fluctuation of displacement ud such
that:

u = us + ud (24)

The dynamic part of the displacement is supposed to
be very small compared to a characteristic length of the
structure lc such that || ud ||<< lc. The linearized virtual
works can be expressed as:

δWacc(u, δu) � m(üd, δu) (25)
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The known static field us is the solution of:

δWint(us, δu) + δWext(p;us, δu) = 0, ∀ δu ∈ Cu (29)

The linearized dynamic problem around a prestress state
is expressed as:

f(δu) = m(üd, δu) + kint(us;ud, δu)

+ kext(p,us;ud, δu), ∀ δu ∈ Cu (30)

in which the form kint is defined as follow:

kint(us;ud, δu) =k2(ud, δu) + k3(us;ud, δu)

+ k4(us,us;ud, δu) (31)

The various terms in the previous equation are given by:

k2(ud, δud) = a2(ud, δu) (32)

k3(us;ud, δu) = a3(ud,us, δu) + a3(us,ud, δu) (33)

k4(us,us;ud, δu) = a4(ud,us,us, δu)

+ a4(us,ud,us, δu)

+ a4(us,us,ud, δu) (34)

in which all the forms are linear in ud and δu. The forms
k3 and k4 are respectively linear and quadratic in us. By
considering the same procedure, the form kext is expressed
as:

kext(p,us;ud, δu) =g2(p; ,ud, δu) (35)

+ g3(p;us,ud, δu) (36)

where:

g2(p;ud, δu) = b2(p;ud, δu) (37)

g3(p,us;ud, δu) = b3(p,us;ud, δu) + b3(p,us;ud, δu)
(38)

Those forms are implemented in practice in the open-
source math-based front-end software FEniCS used for the
numerical examples developed later in the manuscript.

5. REDUCED ORDER MODEL OF THE NONLINEAR
STATIC PROBLEM

5.1 Reduced order model with POD modes

Let assume the existence of a POD basis denoted as
BPOD = {ϕ1, · · · ,ϕn} which is supposed to be known.
One can express the static solution as:

us(µs;X) � urom(µs;X) =

n∑
i=1

qi(µs)ϕi(X) (39)

where µs is a vector containing the parametric input of the
problem (e.g. material, geometrical or load parameters).
The unknowns of the problem are then the generalized
coordinates qi which depend on the parameter inputs. We
will consider only a load distribution pressure p in this
development so that µs = ps. Using Eq. (39) in the Eq.
(29), and by taking successively δu = ϕi as ϕi ∈ Cu,
the reduced nonlinear problem can be expressed in the
following matrix form:

[A+B(p)]q+ anl(q) + bnl(p;q) = b(p) (40)

where q is a vector containing the generalized coordinates.
All the matrices and vectors are given by:

[A]ij = a2(ϕj ,ϕi) (41)

[B]ij = b2(p;ϕj ,ϕi) (42)

[anl]i =

n∑
j=1

n∑
k=1

qjqka3(ϕj ,ϕk,ϕi)

+
n∑

j=1

n∑
k=1

n∑
l=1

qjqkqla4(ϕj ,ϕk,ϕl,ϕi) (43)

[bnl]i =

n∑
j=1

n∑
k=1

qjqkb3(p;ϕj ,ϕk,ϕi) (44)

[b]i = b1(p;ϕi) (45)

This problem can be solved using a nonlinear solver as
Newton-Raphson method if the number of modes remain
reasonable. Indeed, one of the major drawback of this
projection-based technique is due to the triple sum Eq.
(43). A maximum of 10 POD modes will be considered in
the numerical examples.

6. LINEAR VIBRATION PROBLEM AND MODAL
PROJECTION BASIS

We consider now the linear vibration problem. Let us
denote by ω the circular frequency. Taking the same
notation ud for sake of brevity, the Eq. (30) in the time
domain is written in the frequency domain as

kint(urom;ud, δu) + kext(p,urom;ud, δu)

− ω2m(ud, δu) = f(δu), ∀ δu ∈ Cu (46)

Given ω and f , the problem consists in finding ud ∈ Cu
such that Eq. (46) is satisfied ∀ δu ∈ Cu. The associated
eigenvalue problem consists in finding ω and ud ∈ Cu such
that:

kint(urom;ud, δu) + kext(p,urom;ud, δu)

− ω2m(ud, δu) = 0, ∀ δu ∈ Cu (47)

Considering urom, the stiffness operators are written as:

kint(urom;ud, δu) = k2(ud, δu) +

n∑
i=1

qik3(ϕi;ud, δu)

+
n∑

i=1

n∑
j=1

qiqjk4(ϕi,ϕj ;ud, δu) (48)

and

kext(p,us;ud, δu) = g2(ps; ,ud, δu)
n∑

i=1

qig3(p,ϕi;ud, δu) (49)

Those equations above show expressions of the internal
and external stiffness forms as a finite sum of operators
which depends on the number n of POD modes. The
number of operators involved is (n + 1)2 by counting the
number of terms in Eqs. (48) and (49).

6.1 Finite element discretization

The finite element discretization of the left hand side of
Eq. (30) leads to the eigenvalue problem given by:

[Ktan(p)− ω2M]Ψ = 0 (50)

where Ktan is the tangent stiffness matrix (which depend
on the follower force responsible for prestressing) and M
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is the mass matrix. The tangent stiffness matrix can be
expressed as a finite sum of pre-computed operators:

Ktan = K2 +G2 +

n∑
i=1

qi[K
(i)
3 +G

(i)
3 ] +

n∑
i=1

n∑
j=1

qiqjK
(ij)
4

(51)

where the pre-computed operator are expressed off-line as
a function of the POD basis BPOD detailed as:

δuTK2ud ⇐ k2(u
h
d, δu

h) (52)

δuTG2ud ⇐ g2(p;u
h
d, δu

h) (53)

δuTK
(i)
3 ud ⇐ k3(ϕ

h
i ;u

h
d, δu

h) (54)

δuTG
(i)
3 ud ⇐ g3(p;ϕ

h
i ;u

h
d, δu

h) (55)

δuTK
(ij)
4 ud ⇐ k4(ϕ

h
i ,ϕ

h
j ;u

h
d, δu

h) (56)

where the superscript “h” stands for the finite element
discretization of the fields. For a given value of pressure p,
one can compute the eigenvalues and eigenvectors:{

ω2
β ,ψβ

}
β=1..m

(57)

where ωβ = ωβ(p) and ψβ = ψβ(p) are resp. the
circular eigenfrequencies and the eigenmode associated
to the mode number β for a given pressure parame-
ter p. For appropriate snapshots of static solutions, a
called Prestress Modal Base (PMB) denoted BPMB(p) =
{ψ1(p), . . . , ψα(p)} can be generated. Knowing the PMB,
one can select appropriate vectors and generate a matrix
denoted as PPMB which contains all the selected vectors
from those basis BPMB(p). Finally, the projection of the
pre-computed operators from Eqs. (52) to (56) used in Eq.
(51) lead to a reduced eigenvalue problem.

[Kr(p)− ω2Mr]r = 0 (58)

where Kr is given by:

Kr = K2r +G2r +

n∑
i=1

qi[K
(i)
3r +G

(i)
3r ] +

n∑
i=1

n∑
j=1

qiqjK
(ij)
4r

(59)

where all the operators with the subscript “r” are defined
as:

[ ]r = PT
PMB[ ]PPMB (60)

7. NUMERICAL ANALYSIS

The numerical example has been implemented with the
open-source finite element library FEniCS.

7.1 Computational methodology

The methodology is based on six steps illustrated in Fig. 2.
Step 1 consists in computing the nonlinear static solution
on the parameter range. Step 2 corresponds to the POD
basis generation by performing a SVD on a snapshot
matrix. The goal of step 3 is to compute the operators from
Eqs. (52) to (56). Then, Step 4 consists in generating a
modal prestress basis for given values of the pressure range
and selecting a small number among them (the choice is
out of scope of this paper). The Step 5 corresponds to
the projection of the operators already computed on the
selected prestress modes. Those reduced operators are the

Fig. 2. Chart methodology.

reduced order model. Finally, Step 6 consists in solving a
reduced eigenvalue problem for a given parameter value.

The geometry of the structure considered for the numerical
example is presented in Fig. 3. The structure is a beam of
length l = 1.0 m, width b = 0.1 m and thickness h = 0.01
m. The beam is supposed to be homogeneous, isotropic,
elastic and undergo large displacements and small strains.
The Saint-Venant Kirchhoff material parameters are the
Young modulus E = 6 × 107 Pa and a Poisson ratio
ν = 0.0 (the surprising zero value of Poisson ratio has
been chosen to obtain a circular deformation shape of the
current configuration as seen in Fig. 4). The 3D beam is
supposed to be clamped at one extremity and loaded by a
linear follower force expressed as :

p(Z) = −αZ (61)

where α ∈ [αmin, αmax] is an evolution parameter with
αmin = 0.0 N.m−3 and αmax = 4× 108 N.m−3.

Fig. 3. Elastic 3D beams subjected to a non-uniform fol-
lower force: (left) reference configuration and (right)
current configuration.
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modal prestress basis for given values of the pressure range
and selecting a small number among them (the choice is
out of scope of this paper). The Step 5 corresponds to
the projection of the operators already computed on the
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reduced order model. Finally, Step 6 consists in solving a
reduced eigenvalue problem for a given parameter value.

The geometry of the structure considered for the numerical
example is presented in Fig. 3. The structure is a beam of
length l = 1.0 m, width b = 0.1 m and thickness h = 0.01
m. The beam is supposed to be homogeneous, isotropic,
elastic and undergo large displacements and small strains.
The Saint-Venant Kirchhoff material parameters are the
Young modulus E = 6 × 107 Pa and a Poisson ratio
ν = 0.0 (the surprising zero value of Poisson ratio has
been chosen to obtain a circular deformation shape of the
current configuration as seen in Fig. 4). The 3D beam is
supposed to be clamped at one extremity and loaded by a
linear follower force expressed as :

p(Z) = −αZ (61)

where α ∈ [αmin, αmax] is an evolution parameter with
αmin = 0.0 N.m−3 and αmax = 4× 108 N.m−3.

Fig. 3. Elastic 3D beams subjected to a non-uniform fol-
lower force: (left) reference configuration and (right)
current configuration.

7.2 Static solutions and POD modes

In Fig. 4 shows snapshots of the solutions for two values
of the pressure parameter. The solution is obviously non-
linear.

Fig. 4. Snapshots of the nonlinear static solution at
α/αmax = [0.3; 0.7].

An SVD analysis has been done considering 100 snapshots
of the direct nonlinear solutions. In Fig. 5 an illustration of
the Singular Value Decomposition (SVD) of the snapshot
matrix shows the extraction of the n first POD modes
denoted as ϕi.

Fig. 5. Basis generation from snapshots and Singular Value
Decomposition (SVD).

In Fig. 6 the POD modes and the associated generalized
coordinates are presented.

The reconstruction of the solution from the nonlinear
static reduced order model is presented in Fig. 7. The
evolution of the displacement coordinates of the tip of
the beam is plotted considering various number of POD
modes. It can be observed that a small number of modes
is needed to reconstruct the solution. In the following, ten
POD modes are selected.

7.3 Modal analysis around a prestress state

An illustration of the linear prestress modal shape is
given in Fig. 8. The mode is plotted around the static

Fig. 6. POD modes ϕi and POD modal contributions qi.

Fig. 7. Reconstruction of the dimensionless tip displace-
ment.

nonlinear solution. The characterization of the modes are
done considering a reciprocal mapping of the prestress
mode on the reference configuration.

The Figures 9 and 10 show the evolution of the first
five frequencies. A comparison between the solutions (in
continuous line) from the classical approach and the ROM
(in dashed line) are plotted. We recall that the number of
POD modes is chosen equal to 10 for both figures. Fig. 9
shows the results considering 20 prestressed modes. The
discrepancy between the two approaches remains impor-
tant. Fig. 10 shows the results considering 55 prestress
modes. The curves tend to be superposed when the number
of selected modes increase.

8. CONCLUSION

The computation of the linearized vibrations of prestress
elastic structures have been presented. An original ap-
proach consisting in associating a POD with a modal
projection based reduced order model have been used.
Eigenmodes of an elastic structure are computed as a
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Fig. 8. Third flexural mode around the current configu-
ration and its reciprocal mapping on the reference
configuration.

Fig. 9. Evolution of frequencies as a function of load
parameter with 10 POD modes and 20 prestress
modes.

function of a static pressure load parameter. The proce-
dure shows an efficient estimation of the eigen-frequencies
and the eigenmodes. Further studies to select a minimal
number of appropriate modes are under investigation.

Fig. 10. Evolution of frequencies as a function of load
parameter with 10 POD modes and 55 prestress
modes.
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