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In everyday life, the visual system is remarkably good at recognizing materials across a wide range of viewing conditions.
This paper addresses the problem of identifying real samples of materials from appearance. Here, we consider gloss as an
appearance attribute that could reveal certain information about object properties. We prepared twelve samples of glass
and PMMA and eroded these using different agents. The gloss and haze of the samples were measured at 60 degrees via a
gloss meter. For all samples, the surface roughness properties were measured. Microfacet distributions were derived from
measured BRDFs using an inverted microfacet model. We conducted a visual ranking experiment using the pair
comparison method. The psychophysical gloss ratings correlate well with the 60 degrees gloss index. Principal component
analysis of the psychophysical results revealed a somewhat more complicated picture in which three components seem to
play a role. We conclude that observers can apprehend the physical nature of the surface of real objects from features that
are included in the BRDF and available in the gloss appearance.
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Introduction

In everyday life, the visual system is remarkably good
at recognizing materials across a wide range of viewing
conditions. This paper addresses the problem of identify-
ing real samples of materials from appearance. Here, we
consider gloss as an appearance attribute that could reveal
pieces of information about object properties.
We conjecture that gloss discloses pieces of information

that the visual system collects, classifies, and identifies.

General

Gloss is an appearance attribute that originates from the
directional distribution of luminances reflected from the surface.

From a perceptive point of view, gloss can be considered
as a “second-order” visual attribute. It results from an
interpretation by the brain of first-order signals, such as
simple luminance variations. In order to evaluate the
gloss of a surface, an observer needs separate first-order
signals. This implies that he must look at the surface of
an object from two or more different angles to receive
enough information to attribute a value to the gloss of that
surface.
Recently, gloss has received attention as an appearance

attribute. Using a pair comparison technique with ten
black coated samples, Obein, Knoblauch, and Viénot
(2004) showed that the visual gloss scale was not linearly
related to the corresponding gloss index obtained from a
gloss meter. Furthermore, the comparison of data obtained
using two different observing angles (60- and 20-)
indicates that, although the flux that is collected by the
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eye varies according to the angle of view, an observer is
able to recover a visual gloss index that is inherent to the
surface. Obein et al. named this property gloss constancy.
The profile of the visual gloss scale agrees with the one
found by Ji, Pointer, Luo, and Dakin (2006). Another
psychophysical experiment was conducted to investigate
the differential gloss threshold variation or so-called just
noticeable difference (Ng et al., 2003). Within the inves-
tigated gloss rangeVgloss index from 10 to 60Vgloss
perception follows the Weber’s Law, which led the
authors to emphasize the similarities between gloss and
light intensity perception.

The dimension of gloss

Nevertheless, gloss perception is neither simple nor
unique. Hunter and Harold (1987) have defined a number
of gloss descriptors: specular gloss, sheen, contrast gloss
or luster, absence of bloom, and distinctness of image
(DOI; Smith, 1997). Besides specular gloss descriptor,
Pointer (Commission Internationale de l’Eclairage (CIE),
2006) retained the distinctness of image when an image
reflected in the surface appears sharp, and the haze (that is
the inverse of absence of bloom) or the contrast gloss when
an image reflected in the surface appears of low contrast.
These different classes raise the question of the

dimensionality of gloss, which is still under debate. In
an experimental study using real painted achromatic
panels, with a wide range of gloss, Billmeyer and
O’Donnell (1987) concluded that their observers could
not reliably distinguish more than one dimension,
although the output of multidimensional scaling could
give for the second dimension a “folded” gloss scale that
had no obvious interpretation. Pellacini, Ferwerda, and
Greenberg (2001) simulated white gray and black painted
spheres and checkerboards by adjusting the three param-
eters of the isotropic Ward reflection model to approx-
imate measured BRDFs. They asked subjects to estimate
the apparent difference in gloss between pairs of objects.
Multidimensional scaling revealed that under these con-
ditions apparent gloss has two dimensions that they could
relate to the apparent contrast of the reflected image
(contrast gloss) and the distinctness of the reflected image
(DOI). In a large study, 75 participants performed paired
comparisons of rendered images with constant geometry
and illumination and with varying BRDFs (Wills, Agawal,
Kriegman, & Belongie, 2009). The authors used a multi-
dimensional scaling algorithm for analyzing pairwise
comparisons. They could extract nine gloss dimensions.

The BRDF

From an optical point of view, the physical information
relevant to gloss is provided by the bidirectional reflectance
distribution function (BRDF). This function completely

describes the distribution of the light reflected by the
surface of an object. By definition, it is expressed as the
ratio of the reflected radiance LR exiting the surface to
the incident irradiance EI, for given incident direction I
and exiting direction R (cf., Equation 1 and Figure 1):

BRDF =;8I; E;8; 1ð Þ ¼ dLRð=;8I; E;8; 1Þ
dEIð=;8I; 1Þ

: ð1Þ

Acquiring BRDFs of real materials is a time-consuming
process and provides a large quantity of data that are difficult
to manipulate. After the measurement, the classic way to
proceed is to use amodel in order to represent a large number
of measurement data by a small number of parameters. In
recent years, there has been a lot of effort in proposing
different models for the BRDF (Blinn, 1977; Gouraud, 1971;
Matusik, Pfister, Brandy, & McMillan, 2003; Phong, 1975;
Torrance & Sparrow, 1967; Ward, 1992).
The use of these models of BRDF in computer graphics

makes it possible to render the appearance of many natural
surfaces such as velvet or peachy skin, but we do not know
which parameters should be extracted from the BRDF to be
perceptually meaningful with respect to real materials
(Koenderink & Pont, 2003). The link between the visual
perception of gloss and the BRDF is still missing.

Recovery of material

Viénot and Obein (2004) compared the BRDF of two
matte planar materials: a piece of tire rubber with a piece
of black coated cardboard. While the areas enclosed by
the plot of both specular peaks are about the same size, the
curves cross several times. The crossovers precisely
illustrate the visual percept: when the two samples are
viewed at grazing angles, or at specular angle, the piece of
rubber appears brighter than the coated paper, while when

Figure 1. Geometry of the BRDF.
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the two samples are viewed around the peak, it appears
darker (see Figure 2).
This could explain why an observer must look at an

object from two or more different angles to recover
enough information to be able to identify the surface. He
might be looking for specific indices (Delaney, de la Rie,
Elias, Sung, & Morales, 2008). We conjecture that an
active strategy could allow the subject to recognize the
visual cues that provide the necessary information to
identify the material an object is made of.
Among the cues that could explain our ability to recover

information about the material an object is made of are
gradients in color and luminance, which actually relate to
the shape of the BRDF. Several investigators have verified
that observers are able to distinguish between luminance
gradient profiles (Bloj, Kersten, & Hurlbert, 1999; Garcia-
Suarez, Ruppertsberg, & Bloj, 2008; Ruppertsberg, Bloj,
& Hurlbert, 2008; Viénot, Boust, Brémond, & Dumont,
2002). Using digital images, Motoyoshi, Nishida, Sharan,
and Adelson (2007) suggest that the recovery of glossiness
could be attributed to the skewness of the pixel distribu-
tion. Motoyoshi et al. (Motoyoshi, Nishida, & Adelson,
2005; Motoyoshi et al., 2007) showed that given an image
of a textured surface, skewing the pixel luminance histo-
gram alters its appearance either to matte when skewed
negatively (a predominance of decrements) or to glossy
when skewed positively (a predominance of increments).
Another area of investigation is the coherence between

the localization of the light source, the diffuse, and the
specular components. For some authors, when the diffuse
and specular components of luminance are independently
manipulated, observers are able to disentangle highlights,
surface lightness, and surface color of 3D objects (Todd,
Norman, & Mingolla, 2004; Xiao & Brainard, 2008).
Fleming, Dror, and Adelson (2003) showed that subjects
could estimate surface reflectance reliably and accurately
in the absence of context, as long as the illumination was
realistic. For other authors, even in ecologically valid
images of complex objects, the perception of material, the
perception of shape, and illumination are basically
confused (te Pas & Pont, 2005; Vangorp, Laurijssen, &
Dutré, 2007).

How the subjects have acquired knowledge of the cues
that exist as to what is light and what is material is still
unknown (Landy, 2007).

Objectives

The visual system is remarkably good at recognizing
materials across a wide range of viewing conditions. As
long as the BRDF is correctly rendered, and the layout is
similar to what could be found in a real and natural
context, the visual system gives the right interpretation.
Moreover, no matter what is modified in the BRDFVthe
direction of illumination, the direction of observation, the
roughnessVthe visual system finds a realistic appearance
solution in which all physical parameters are in harmony.
Whereas the previous studies with computer graphics
techniques focused on “what should be put in the BRDF
in order to display objects that look realistic,” here we
propose to investigate “what is picked up in the real
BRDFs by the visual system to recognize and identify real
materials.” Assuming that the richest part of the BRDF, in
terms of information about the surface roughness and
material properties, is the specular peak and its neighbor-
hood, we worked on gloss appearance. We designed a
psychophysical experiment to identify which quantities
are relevant to the visual system to describe the gloss
perceptual space. Then, we confronted these perceptual
quantities and the BRDFmeasurements in order to see what
the visual system takes in the BRDF to identify materials.

Methods

To answer these questions, we set up a psychophysical
experiment where the observers were presented with
different materials that produce different shapes of the
specular peak. Two black materials were depolished using
two different processes to create a range of samples with
different specular peaks. We measured the roughness and
BRDFs of the samples and modeled the BRDFs by fitting
a microfacet model. Observers were then asked to rate the
glossiness of the samples. Finally, we performed multi-
dimensional analysis of the visual results to extract
perceptual cues and we looked for correlations between
psychophysical and optical data.

Equipment

Samples

We have intentionally restricted our study to the
quantification of the visual perception of gloss for black
samples. The advantage of using black samples is that it is

Figure 2. Specular peaks of two materials: the pink curve stands
for the rubber sample, the blue curve for the coated paper (Viénot
& Obein, 2004).
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only the surface reflection that is responsible for the
appearance of the surface. The absence of volume or
subsurface diffusion from black samples makes the
observation of highlights due to the surface reflection
prevail. For this reason, black samples allow us to study
accurately the sensitivity of the visual system to luminous
variations associated with surface reflection.
We wanted to investigate the effects on gloss perception

of modifying the shape and height of the specular peak.
This aim has led us to use bulk material samples with
different optical indices and different roughness.
In a former experiment using black coated samples (Obein

et al., 2004), we showed that the visual gloss judgments
were practically unaffected by the geometry of illumination.
Thus, in order to exploit the poor differential sensitivity and
the variability of the observers’ responses, we limited the
range for this study between 50 and 80 gloss units (gu)
measured with a gloss meter in the 60- configuration.
In order to carry out comparisons, three scales of four

samples each were created. Two scales were created with
black polymethylmethacrylate (PMMA)Vcommonly
known under the name PlexiglasVwith pallets of 75 �
50 � 4.5 mm. The pallets’ transmittance was tested with a
633-nm laser beam and it was shown that these were
opaque (Coutin, 2010). Native PMMA samples are highly
reflective. Two separate methods were used to depolish
these samples, a physical and a chemical one. The physics-
based process consisted in plunging the mirror-like sample
inside a bath of alumina shards in motion. The longer the
sample remained exposed to this bath, the more matte it
became. Four PMMA sanded samples were created. These
samples are labeled P1 to P4 from the rougher to the
glossier. The second scale was based upon a chemical
attack of the surface. Acetonitrile is a solvent for many
plastics, including PMMA. Four levels of gloss were
obtained by controlling the exposure time of the samples
to this product. These samples are labeled C1 to C4 from
the rougher to the glossier. The third scale was built from
Neutral Grey 9 Schott glass (NG9), which can be assumed
to be opaque under indoor illumination (Transmittance T ,
10j5). Four raw black glass samples of equal dimensions
to the PMMA pallets were eroded using random polishing
to obtain a mirror-like appearance and then submitted to
repeated alumina-eroding treatments. These samples are
labeled Gl1 to Gl4 from the rougher to the glossier.

Gloss and haze measurements

The measurement of specular gloss for nonmetallic
surfaces is standardized for three particular incident
angles (20-, 60-, and 85-). The specular gloss, expressed
in gloss unit (gu), is given by the ratio of the flux
reflected, in a given aperture centered on the specular
direction, at the surface of the sample in relation to the
flux reflected at the surface of a standard (in the same
conditions). The standard is a piece of polished black

glass having a refractive index n = 1.567 (ISO 2813,
1978). Specular gloss measurements at 60- were made
using a ZLR 1050 Zethner gloss meter upon ten different
points of the plates.
According to the ASTM standard related to high gloss

surface (ASTM E430-97, 1997), haze is, for a specified
specular angle, the ratio of flux reflected at a specified angle
(or angles) from the specular direction to the flux similarly
reflected at the specular angle by a specified gloss standard.
Haze values were obtained with the Zethner equipment,

using a dedicated measuring head. These are expressed in
relative value with respect to a ceramic standard (reflec-
tion haze value = 380). The measurements are shown in
Figure 3.
The eroding processes of PMMA samples were con-

trolled by monitoring the exposure time. The samples
were labeled according to their gloss indices, to obtain
uniform scales.
Glass needed longer exposure to the alumina bath to

induce gloss variation. While data issued from the gloss
meter were constant, the longer the glass was exposed, the
more the visual aspect of the samples changed. Con-
sequently, the glass scale was developed by controlling
the time of erosion from visual inspection.

Surface microscopy

Images from the depolished surfaces (Figure 4) were
obtained due to a video microscope, using a coaxial

Figure 3. Gloss index and haze index measurements.
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illumination with 4.5� magnification. The apparatus
consists of a compact optical system Optem Zoom 65,
allowing magnifications between 0.7� and 4.5�, with
possibility of coaxial illumination of exposed surfaces.
Image rendering was possible through a color camera
Sony SSC-DC58AP and a CRT monitor.
Figure 4 shows that the microscopic aspect of each set

of samples is different in nature. Particularly, the physical
and the chemical PMMA present different types of
asperities. The alumina eroding digs up shards of bulk
material and the chemical attack produces smooth craters
in it. These assumptions have been confirmed on a
qualitative perspective by profilometry and interferometric
microscopy over two PMMA samples (see Appendix A).
A variation in magnitude with respect to the gloss index
can be seen on pictures from the same set.

Surface roughness

An optical roughness meter (Zerrouki, 1998) was used
to characterize the surface roughness of each sample. This
technique consists in measuring the distribution of
scattered intensity in the incident plane to determine the
power spectral density (PSD) of surface roughness. From
this PSD, the root mean square height is extracted.
A small surface element (about 1 mm2) is illuminated

under oblique incidence (about 46-) by p-polarized
monochromatic light (wavelength, 1 = 632.8 nm). Then,
measurements of the angular distribution of the scattered
light are made at several sites within the plane of incidence

on the sample surface (see Figure 5). By using the angle-
resolved scattering theory (Elson & Bennett, 1979;
Kröger & Kretschmann, 1970), this distribution is related
to the surface roughness (through the power spectral
densityVPSD).
Each sample was analyzed in 5 representative sites. The

mean PSD curves for each sample of the three scales are
presented in a log–log scale in Figure 6. Two additional
samples were analyzed in order to complete the inter-
pretation of the PSD curves: a native PMMA sample (P0)
and a polished glass sample (Gl0) that had not been
sanded. The results confirm observations made with the
video microscope.

Figure 4. Microphotographs of the three sets of samples. Upper row shows physically eroded PMMA samples; middle row shows
chemically eroded PMMA samples; lower row shows physically eroded glass samples. Gloss index increases from left to right.

Figure 5. Illustration of the scattering geometry.

Journal of Vision (2010) 10(9):18, 1–17 Ged et al. 5

Downloaded from jov.arvojournals.org on 11/24/2022



The sanded PMMA (P-PMMA), the chemically
attacked PMMA (C-PMMA), and the glass scales are
clearly separated by the optical scattering measurements.
The PSD curves are indeed characteristic of each scale of
materials. With the lowest PSD amplitude, the glass
scale is less rough than the PMMA scales. In fact, the
rms height (in a band of angular spatial frequencies
extrapolated from 0 to infinity) stretches from 14 to 18 nm,
32 to 40 nm, and 26 to 31 nm, respectively, for the
glass scale, the chemical PMMA scale, and the physical
PMMA scale.
PSD shows the signature of each process as well:

1. Regarding the polished glass and the P-PMMA
scales, the number of alumina-eroding cycles
increases the surface roughness. The result of this
process can be seen as similar to white noise acting
over all spatial angular frequencies and shifting the
PSD curves up (black and green curves in Figure 6).
We note that the PSD slopes of the P-PMMA and
glass scales are quite similar, marking the signature
of the eroding process.

2. Regarding the C-PMMA samples, the curvature of
the PSD function is accentuated by the chemical
erosion and no obvious shift of the PSD curve is
observed for high spatial angular frequencies. This
is because the treatment favors certain frequencies
over others. Indeed, for spatial angular frequency
above 10j2 nmj1, the chemical process has no effect
on the superficial surface (blue curves in Figure 6).

BRDF measurements

BRDF measurements were carried out on each sample.
The instrument we used was the EZ-Contrast 160
developed by ELDIM. This apparatus allows the illumi-
nation of the sample with a collimated light beam and a

user-defined incident angle and measures the luminance
reflected inside a T80- cone of observation, with a narrow
solid angle of approximately 1.5Ej4 sr depending on the
direction of observation. This system is based on a
combination of Fourier Optics and a cooled CCD sensor
head (Moreau, Curt, & Leroux, 2000). For a given
incident direction, the EZ-Contrast records the luminance
in the directions (E, 7), with 0- G E G 80- and 0- G 7 G
360- in one shot. E and 7 vary with a step of 0.4-. As our
samples are assumed to be isotropic, we used only one
azimuth of illumination. Unfortunately, the equipment
does not provide the illumination. Thus, we do not
measure the BRDF rigorously, but only the distribution
of the luminance, for a given illumination (unknown but
constant).
We performed measurements for ten directions of

illuminations (= = 20-, 30-, 35-, 40-, 45-, 50-, 55-, 60-,
65-, 70-). We performed 4 repetitions on different areas of
the sample. An example of this measurement can be seen
in Figure 7.

The microfacet modeling of the BRDF

The previous measurements give more than 1 million
values of luminance for each sample. In order to reduce
this enormous amount of data to a few relevant parame-
ters, we have to model the measurements.
We used an in-house model (Obein, Leroux, Knoblauch,

& Viénot, 2003), based on the microfacet approach
proposed by Cook and Torrance (1982). The model has
already been successfully applied to a gloss scale of ten
items (Obein & Viénot, 2007).

Figure 6. Power spectral density for each sample according to
the spatial frequency (log–log scale). Black curves stand for
P-PMMA scale (Pi), blue for C-PMMA scale (Ci), green for glass
scale (Gli), and orange and red curves from raw samples of PMMA
and glass.

Figure 7. Measurement done using the EZ-Contrast. The studied
sample is a physically eroded PMMA. The specular peak is
located at the intersection of the circular continuous line and the
diagonal line and is very narrow. This measurement shows the
high level of gloss of our samples.
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The model of Cook–Torrance is based on two hypotheses:
& Hypothesis 1:
It is assumed that the specular component and the

diffuse component of the BRDF are independent. The
BRDF is given by the summation of the two components:

BRDF =; E;8ð Þ ¼ 1

EIð=Þ Lspec =; E;8ð Þ þ Ldiff =ð Þ� �
srj1
� �

;

ð2Þ
where EI(=) is the illumination at the zenithal angle =,
Lspec(=, E, 8) is the luminance in the direction R(E, 8)
coming from the specular component, and Ldiff(=) is the
luminance in the direction R(E, 8) coming from the
diffuse component.
For our application, the diffuse component is negligible

because the samples are black.
& Hypothesis 2:
The specular component is obtained by approximating

the surface with a theoretical surface composed of micro-
facets, the statistical distribution of which depends upon
the sample. The light reflection on the facets is assumed to
be specular and to follow geometric optical laws (Torrance
& Sparrow, 1967). Thus, the specular component is given
by

Lspec ¼ E0

4
I
cos!

cosE
IF n;=0ð Þ IG =; E; !;=0ð Þ IP !ð Þ cd mj2

� �
;

ð3Þ

where E0 is the illumination along N (see Figure 1); 4 is
the collection solid angle; F(n, =V) is the Fresnel factor
depending on n (the refractive index of the material) and
=V(the angle of incidence of the light on the microfacet);
G(=, E, !, =V) is a function that takes into account the
masking/shadowing of the adjacent facets; P(!) is the
microfacet angular distribution function.
The function P(!) describes the probability of finding a

facet oriented with a given normal F. As our surfaces are
isotropic, the probability depends only on the zenith !.
The choice of the function to be used has been discussed
several times (Blinn, 1977; Cook & Torrance, 1982;
Obein, Leroux, Knoblauch, & Viénot, 2001). All these
propositions are mathematical functions that are inde-
pendent of the material. In our model, we use a function
that is derived from the BRDF measurements, by inverting
the model. The method is described below.
From our measurements, we obtained the values of the

luminance reflected by the sample in the half-space, for
10 different angles of illumination. As we said previously,
our equipment does not provide information about E0, the
absolute value of the illumination. Furthermore, the value
of the solid angle 4 by which 1 pixel of the CCD is seen
by the surface is not well known. However, we know that

E0 and 4 are independent of the directions of illumination
and reflection. We define Cspec by

Cspec ¼ E0=4 ðlm mj2 srj1Þ; ð4Þ

where Cspec is a constant of the equipment.
Equation 3 becomes

Lspec ¼ Cspec I
cos !

cos E
I F n;=0ð Þ IG =; E; !;=0ð Þ I P !ð Þ cd mj2

� �
:

ð5Þ
In this equation, only P(!), Cspec, and n are unknown.
We determine the unknown in 3 steps:
Step 1: Adjustment of the refractive index n from the

measurements made in the plane of incidence.
As we know the value of the luminance in the plane of

incidence, we can reverse Equation 5 and express the
product Cspec IP(!) according to the measurements and an
arbitrary refractive index, for each direction of illumina-
tion where the measurements were performed. As P(!) is
a characteristic of the sample and Cspec is a constant of the
equipment, the product Cspec IP(!) should be independent
of the direction of illumination.
The refractive index is adjusted in order to superimpose

the different curves of Cspec I P(!) for the different
incidences. The refractive index obtained is not necessa-
rily the optical refractive index of the material. It should
be considered as an effective refractive index neff that
allows the modeling of the surface with a microfacet
model. Figure 8 illustrates the adjustment of the effective
refractive index neff.
We obtain the effective refractive index neff of the surface.
Step 2: Fitting the facet normal distribution function P(!)

and the constant Cspec.
P(!) is a distribution function. Its integral on the half-

space must be equal to 1. Now that we know the effective
refractive index of the surface, we can express Cspec IP(!)
for each of the 4 repetitions on different areas of the
sample and the 10 angles of illumination. We have 40
measurements of the function Cspec I P(!). We average the
40 measurements and we separate Cspec and P(!) by
normalizing P(!) to 1.
Step 3: Validation of the model by reconstruction of the

luminance in the plane of incidence.
We validate the values of Cspec I P(!) and neff by a

confrontation of the luminance calculated with the model
and the measurement for different directions of illumina-
tion (Figure 9).
The model yields satisfactory predictions for matte and

glossy black samples.
Figure 9 shows an example of results obtained by

inverting the Cook–Torrance model. The microfacet dis-
tribution derived from the model adequately predicts the
original BRDF measurements.
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According to this method, the microfacet distribution
P(!) is a function of real BRDF measurements. It is
determined by fitting unknowns from the Cook–Torrance
model to measurements. Increasing the number of measure-
ments by changing illumination direction is a way to
increase the model ability to predict BRDF in every
possible direction. Averaging measurements from different
parts of the samples adds reliability to the luminance
reconstruction obtained in the last stage of the inversion.

This method was applied to each sample, the normalized
microfacet distributions of which are drawn in Figure 10.

Analysis of the microfacet distributions

We observe two kinds of behavior for all samples. First,
the central part of the distribution is common to all sample
measurements. We emphasize that the resolution of the

Figure 9. Comparison between model-predicted BRDF (continuous red curve) and measured BRDF (black spots) for sample P1 at
incidence of (a) 20-, (b) 35-, (c) 45-, and (d) 60-.

Figure 8. Adjustment method of the refractive index. (a) Peaks before adjustment. (b) Peaks after adjustments.
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measuring device is not sufficient to detect luminance
variations at small angles. Therefore, the bandwidth of
this part of the distribution corresponds to the lower limit
of the measurable domain of the microfacets attitudes, that
is to say T1.25-. The curves reach the same values and are
superimposed on this domain.
The second part of the distribution stretches between

1.25- and wider angles in absolute value. It is specific to
each sample. Noise appears in the data for different angles
for each sample. For instance, in the case of Glass samples,
noise appears for absolute alpha value larger than 5-,
whereas PMMA microfacet distributions are smooth up to
8- before showing noisy oscillations at larger angles.
These data are consistent with the results produced by the

optical roughness meter. Again, we note a difference
between chemical and physical processes. The microfacet
distribution, in the case of C-PMMA, is less sharp than for
the P-PMMA.Moreover, the two families of curves present
two crossovers and are specific to the erosion processes.
The width of each curve is associated to gloss: the

narrower the curve, the glossier the sample. Glass samples
are the glossiest among the three scales, which is confirmed
by gloss index measurements shown in Figure 3. From
Figure 10, in order to interpret differences in gloss for the
two PMMA sets, it can be expected that gradients, in
terms of microfacet distribution slopes, have an impact
over the gloss judgment.

Light booth

A preexisting modular light booth was adapted for this
experiment (Obein et al., 2004). It allows precise position-
ing of both samples and light.
Elements of the light booth were designed according

to the ASTM standard (ASTM D4449-90, 1990), which
recommends a method for visual evaluation of gloss

differences between surfaces of similar appearance. The
booth is composed of a structure that allows control of
the surroundings, a dedicated light, and a stand to manage
the geometrical conditions of illumination and viewing.
Six samples are housed in six compartments on a plank

that slides on a prop. The prop has a track that allows
sample planks to be slotted into it. Samples can then move
within the horizontal plane of the booth, left and right
from the observer’s point of view, conserving their
orientation with respect to the illumination. A black velvet
paper with two 50 � 40 mm windows separated by a 1-cm
margin covered the prop allowing the observer to see two
samples at a time. The light booth is shown in Figure 11.
The samples were illuminated by two vertical D65

fluorescent tubes hidden behind a 0.25 � 0.25 inch grid.

Figure 10. Normalized microfacet distribution. Blue plots stand for C-PMMA, black for P-PMMA, and green for glass samples.

Figure 11. Gloss measurement dedicated light booth. Observers
had to slide sample planks under the black velvet paper. The
tubes, behind a grid, are shown in the embedded rectangle.
Photo: B. Laborie.
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The angle between the center of the lamp and the sample
prop is 60-. Each viewed sample receives light from the
whole length of one vertical tube so that the incidence of
the radiations ranges between 80- and 40-. We stress the
fact that this configuration produces a different illumina-
tion from the one that is defined in the ASTM standard
where the fluorescent tubes are horizontal.

Experimental protocol

Our aim was to test whether observers could have
access to material substance (i.e., glass vs. PMMA) or
structure (i.e., type of depolishing process) through gloss
appreciation.

Pair comparison

With 12 samples at our disposal, we used a pair
comparison method.
Observers were asked to evaluate a pair of samples

illuminated by the two vertical fluorescent tubes. They were
free to move their head, so that they could visually explore
the region surrounding the specular direction. Observers
were asked to select the sample with higher perceived gloss.

Observers

Thirty-three observers aged between 20 and 35 took
part in this experiment. All had at least 10/10 corrected
near visual acuity and normal stereoscopic vision.

Visual experiment

The test was carried out in four stages.

Vision screening

The observer was screened for near vision acuity using a
Parinaud test, stereoscopic acuity using the stereo fly test,
and convergence/divergence balance using a Maddox rod.

Collection of vocabulary with two samples

The observer was simultaneously shown the first and last
samples from the sanded PMMA scale. He was told that
one sample is more “something” than the other and asked to
express the difference between the two samples. After he
had expressed his own percept of “something,” he was told
that one of the samples was glossier than the other, and then
asked to state which one and to explain his choice.

Pair comparison

The order of presentation of the samples was defined by
a Digram-balanced Latin square (Keppel & Wickens,
2004). Each observer began the test with a different order
of presentation to balance fatigue effect across samples.
The question (in French) asked to the observer was:

“According to you, which is the glossier of these two
samples?” The choice was made by the observer in terms
of left and right, by pressing two buttons, respectively,
located under his left and right hands. While the observer
successively answered the five comparisons on each
plank, the tester rearranged the samples for the next plank
to be presented until the 132 pairs described by the Latin
square had been tested. Each pair was presented twice
symmetrically with respect to the order of the samples.
The interface of this experiment was developed using

LabVIEW and a Lego Mindstorms NXT 2.0 brick to
retrieve the observer’s choices. The Digram-balanced
Latin square was adapted to this language from a
preexisting Matlab code developed at the laboratory.

Collection of vocabulary from the subject
with six samples

Once the 132 comparisons were performed, the
observer was shown simultaneously the first and the last
samples from each scale. The objective of this stage was
to retrieve his impressions after the test and to establish a
table with his own words associated with a given sample.

Principal component analysis

A program converted the choices made by the observer
into ones for samples perceived as glossier and zeros for
samples perceived as less glossy. A score per sample per
observer was obtained from the 132 judgments. Thus, one
observer produces a vector of 12 scores. The matrix,
consisting of the scores attributed by all observers, is
processed with a principal component algorithm (PCA)
implemented in Microsoft Excel extension StatBoxPro
version 5.0.

Results

Average response

The scores that the observers attributed to samples
have led to a ranking, which is compared with the 60-
gloss index in Figure 12. The coefficient of determination
R2 is equal to 0.93 indicating a good correlation between
appearance and optical measurements.
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Enunciated vocabulary

The samples that we designed were perceived by the
observers as very similar. They often expressed the
difficulty to choose between neighboring pallets from
the same scale. However, regarding their results and the
vocabulary they used, for most comparisons they did not
get confused.
When asked to state their criteria for gloss evaluation,

they spoke of “sharpness of the illumination reflect”
opposed to “amount of light reemitted by the sample.”
To compare two samples coming from the same scale,

they used color and brightness terms describing shades of
blacks or grays.

They referred to sanded glass samples as “greasy,
glossy,” to sanded PMMA as “sanded, grainy, dusty,
glossy,” and to chemically depolished PMMA as “glossy,
deep, smooth, opaque” (in French). Samples Gl1, P1, and
C2 were described as multilayered structures, a glossy
material covered with grease for glass samples or a
smooth glass superimposed upon surfaces of various
roughness for PMMA samples.

Visual data

Eigenvalues of the covariance matrix are represented on
the scree plot in Figure 13. We chose to use Kaiser’s

Figure 12. Observers’ sample average ranking versus gloss index. Blue diamonds stand for C-PMMA series (C1 to C4), black squares for
P-PMMA series (P1 to P4), and green circles for sanded glass series (Gl1 to Gl4). The R2 coefficient, calculated with Microsoft Excel
linear regression tool, is 0.93.

Figure 13. Scree plot of the correlation matrix eigenvalues in
terms of explained variance.

Samples F1 F2 F3 F4

Gl1 0.700 j0.149 j0.372 0.308
Gl2 0.623 0.244 j0.313 0.555
Gl3 0.793 j0.410 0.223 j0.295
Gl4 0.887 j0.220 0.268 j0.221
P1 j0.476 j0.792 0.176 0.111
P2 j0.680 j0.458 0.314 0.347
P3 j0.610 0.400 0.500 0.317
P4 j0.105 0.869 0.270 j0.066
C1 j0.478 j0.749 j0.395 j0.014
C2 j0.666 j0.340 j0.416 j0.324
C3 j0.334 0.705 j0.496 0.081
C4 j0.362 0.635 j0.109 j0.410

Table 1. Sample coordinates within the first four components.
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criterion stating that all eigenvalues above 1 have to be
kept. Basing our interpretation on this rule, we explain
86% of the variance using four components.
Sample coordinates are then expressed for each retained

component in Table 1.
Knowing the contribution of each of the 12 variables to

each component, we can deduce their effect on it. The
relative contributions are presented in Table 2.
Tables 1 and 2 show that the first component F1

opposes samples Gl1, Gl2, Gl3, and Gl4 to samples P2,
P3, and C2, i.e., the glass samples against specimens from
both PMMA physical and chemical sets.
The second component F2 opposes samples P1 and C1

to samples P4, C3, and C4. According to the vocabulary
enunciated by the observers, this dimension is associated
with color or brightness by the observers.
The third component F3, which only explains a limited

amount of variance, opposes samples Gl1, C1, C2, and C3
to sample P3.
These results are shown in Figures 14 and 15. We could

not explain the nature of the fourth component and
assimilated it to statistical noise. By doing so, we reduced
the explained variance to 77%.

Discussion

Correlations between optical and visual
measurements

We have tried to relate the data sets issued from optical
and visual measurements. On the one hand, optical
measurements have yielded multidimensional quantities
that the visual system cannot fully access. On the other
hand, the subjects of the visual experiment were asked to
rank samples according to a single criterion “gloss.” It is
only after analysis of the physical data that we could

expect a reduction of the physical space. In parallel, the
PCA of the visual data has revealed several undefined
appearance components. Could both analyses of physical
and visual data converge? In addition, whereas PCA
usually yields dimensions that were not originally
included in the description of appearance, could the
dimensions extracted from the visual experiment results
be related to simple descriptors of the physical observa-
tions? Finally, among all available signals, which are the
most relevant to surface recognition?
As subjects were free to move their head, they could

explore the surroundings of the specular peak as if they
were looking for an optimal angular domain to establish
their judgment. By doing this, they received the luminance
reflected by microfacets at angles different from 0- with
respect to the surface normal. We note in Figure 10 that
the microfacet distribution intersects several times, so we
try to correlate visual ranking with distribution ranking at
different angles !.
Calculated correlation coefficients between the optical

ranking at every angle and the visual ranking are displayed
in Figure 16. The upper left graph shows the correlation
coefficients obtained by comparing the sequence of the
samples according to the microfacet distributions with
the average visual ranking of the samples. In the three
other graphs, the correlation coefficients were obtained
by comparing the sequence of the samples according to
the microfacet distributions with the PCA coordinates of
the samples.

Samples F1 F2 F3 F4

Gl1 11.457 0.612 9.883 9.004
Gl2 9.067 1.637 7.026 29.140
Gl3 14.701 4.627 3.571 8.264
Gl4 18.379 1.329 5.139 4.643
P1 5.287 17.283 2.207 1.159
P2 10.795 5.784 7.047 11.384
P3 8.703 4.418 17.895 9.486
P4 0.256 20.814 5.224 0.408
C1 5.337 15.482 11.188 0.019
C2 10.361 3.185 12.396 9.958
C3 2.602 13.709 17.573 0.625
C4 3.055 11.120 0.849 15.909

Table 2. Relative contribution of each sample to the first four
components.

Figure 14. Three-dimensional plot of the PCA results. Thirty-three
observers. Blue diamonds stand for PMMA chemical scale, black
squares for PMMA physical scale, and green circles for glass
scale. Glass samples are distinct from chemically and physically
eroded PMMA.
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Note that the center correlation coefficients between
j1.25- and 1.25- are representative of the instrument
function and cannot be safely interpreted. In order to
interpret the graphs, it is important to consider the variations
in coefficients rather than their instantaneous value.

All graphs show noisy variations out of a T8- range. The
upper left graph “Ranks,” comparing the microfacet
distribution with the average visual ranking of the samples,
allows us to determine the angular limit for noise. We
consider that the signal is noisy when the curve starts to

Figure 15. Sample positions regarding components 1 (F1) and 2 (F2) and components 1 (F1) and 3 (F3). Blue diamond stands for PMMA
chemical scale, black squares for PMMA physical scale, and green circles for glass scale. Glass samples are distinct from chemically and
physically eroded PMMA.

Figure 16. Correlation coefficient between rankings issued from visual experiment and modeled microfacet distributions at several angles.
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oscillate. According to this criterion, the significant domain
stretches from 1.25- to 8-.
The graph describing F1 reaches a minimum value of

j0.8 for the angular domain of 1.25- to 5-. The physical
sequence is well correlated with this component over the
studied interval. In the graph describing the correlation
between F2 and the physical sequence of the samples, the
signal is noisier than in the two previous graphs. This
could be an effect of the glass samples that are not very
reactive to this axis. The fourth graph describes the
relation between the component F3 and the physical
sequence of the samples for various angles. We observe
a sign inversion of the correlation coefficient between 1-
and 8-. Light reflection at small or large angles, respec-
tively, associated to DOI or haze, has an opposing effect
over component F3. Such sign inversion could represent
the duality of the judgment criterion. In fact, when they
commented on their strategies, observers reported that they
had evaluated samples by either using the distinctness of
image of the reflected grid or using a global appreciation of
the surface of the bulk material.

Dimensionality

Although it was possible to build a unique scale from
the scores given by the observers that vary according to
the gloss index (Figure 12), multidimensional analysis
clearly reveals the multidimensionality of the glossiness.
At first glance, one might think that first component

“F1” discriminates plastic and glass samples over their
refractive index, which is a characteristic of the material.
However, the difference in terms of refractive index
between PMMA and NG9 is too small (0.02) to make such
an assumption. It is likely that these two sets of samples are
distinguished upon gloss index, glass samples being much
glossier than the others as shown in Figures 6 and 12.
The second component “F2” (Figure 15) displays samples

in the correct order with respect to the haze of the samples
(Figure 3). Glass is scarcely affected by this component.
Lastly, although the variance associated with the third

component is low, it is remarkable that the two sets of
PMMA are distinguished over “F3,” which is probably
associated with roughness profiles as these data correlate
well with results shown in Figure 4.
This interpretation of the results that were produced by

the principal component analysis concurs with microscopy
photographs of the plastic samples. Analysis of images
from Figure 4 shows an evolution of the surfaceVfor
instance, the gloss index decreases when the duration of
the erosion process is expanded. This is observed within
the same scale of PMMA and for the two different
plastic scales. Furthermore, the two plastic scales have
typical surface profiles (like the two graphs presented in
Appendix A). So they present different roughness and
possibly different visual aspects.

In our experiment, although observers could not name
the material of the pallets, PCA results indicate that they
could use several cues to establish their judgment. The
way these cues interact to establish the gloss judgment of
the observer is probably complex. Examination of the
variances shows that the first two components and the sum
of “F3” and “F4” contribute with close weights to the total
variance. Such a balance is fragile and may be sensitive to
the decision of a few observers.
So, is the observer scrutinizing the surface or is he

analyzing the reflected image of the grids and fluorescent
tubes? During the experiment, observers were asked to
state their criterion for gloss evaluation. We distinguished
two categories of judgments. Some observers were
evaluating gloss according to the amount of light the
surface reflected while others used a distinctness of image
criterion, based on the sharpness of the details of the light
source image superimposed on the surface. Such a
dichotomy was described by Harrison and Poulter (1951).
A line is imaged as a line through a polished glass, but the
surface when it is abraded has a point spread function of
some extent. An observer scrutinizing the surface is
collecting the distribution of reflected light wherever it
originates from.
We should mention that although visual data produces

three components to describe our samples, it does not mean
that a single observer would simultaneously use these three
cues. PCA was based on covariance across subjects;
subsequently, one observer could use only one subset of
the proposed dimensions to judge the glossy artifacts he is
presented with. It describes dimensions through observers’
reactions not through samples themselves.

Subsurface

When Matusik et al. (2003) asked observers to
characterize each of the BRDFs from their database using
16 different traits; these included a few terms similar to
those spontaneously reported by our observers such as
“greasiness” or “dustiness.” These terms describe layers
superimposed over a surface.
Such subsurface observation can be explained in

Figure 10 presenting the result of the inverted microfacet
distribution model. We suppose that the apparent duality
of the observed surface could be explained as the visual
system separating two curves: a function corresponding to
a highly specular behavior of a polished surface combined
with another function related to roughness. When pre-
sented with an unknown material, the observer extracts
from the complex BRDF a few components that he can
easily relate to previously known object properties.
However, the EZ-Contrast sensor resolution, inferior to

0.4- or 0.002 steradians, which is well under other measure-
ment devices (Matusik et al., 2003), is not sufficient to
detect such phenomena. We suppose that data referring to
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both roughness origins are embedded within the small
angular domain that we cannot access, masked by the
instrument function. The narrowing of existing goniore-
flectometers’ resolution will lead to better understanding of
such light and surface interactions (Nowbuth, 2008).

Conclusions

Our perception of real objects is issued from an
interpretation of a complex combination of physical
descriptors. The ability of the visual system to correctly
identify objects and materials in the real world is
necessary for our survival. As the visual system cannot
perform a time-consuming accurate analysis of every
perceived physical parameter, it extracts key features of
the material, in a global approach. This concern is also of
practical importance in industry, as differences in appear-
ance and gloss of materials that are manufactured using
the same process are sources of client dissatisfaction that
translates in commercial loss. The decision relative to the
appearance should therefore be reliable.
Realism is the inescapable constraint. This paper

approaches the question through the study of gloss
appearance. The assessment of gloss needs an under-
standing of how an observer assembles the various
patterns of light in front of him to obtain a realistic
representation of the scene compliant with natural con-
straints, expected functionality, material and object con-
stancy, and the stability perceived by the viewer of his
immediate world. The manner in which the brain has
learned to associate optical signals relevant to gloss
perception and to material recognition is still a challenge
in psychophysical science.

The aim of this study was to investigate the ability of an
observer to recognize the microroughness of a surface
through visual inspection. We carried out a visual experi-
ment over a limited number of real samples, of different
materials and different roughness.
Gloss dimensionality is a recurrent question in both

natural and artificial contexts. Our results establish that
the visual system is able to select different components
within gloss perception. Moreover, it seems that observers
could tell that the samples were roughened in different
ways. We propose, based on the samples we developed in
this paper, three principal components to apprehend gloss.
These correlate, respectively, to luminous flux, haze, and
microfacet distribution of the surface.

Appendix A

Qualitative description of the surface profile

During the early stages of development of the eroding
process, we obtained the spatial profile of the surface from
two PMMA items produced by both depolishing pro-
cesses. These two items were not included in the main
study. The graphs presented in Figure A1 illustrate the
difference of surface erosion. These graphs were obtained
from an Eotech Optosurf interferometric microscope
coupled with its treatment software. The left graph
represents a chemically attacked pallet whereas the right
graph represents a physically eroded PMMA.
Although the amplitudes of the variation of surface

level are quite different, they are typical of the processes
used to depolish them. The chemical erosion produces
smooth curves on the profile graph. The alumina

Figure A1. Qualitative characterization of the two PMMA erosion processes. Surface profile on an inline distance of 500 2m. The ordinate
axis reaches the value of 790 nm for the left sample (chemically depolished) and 190 nm for the right sample (physically eroded). The
horizontal axis is the same in the two graphs (courtesy of Essilor R&D Physique Chimie).
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projections dig up shards of material, thus producing
succession of noticeable peaks and valleys (Martin,
2010).
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to Ludivine Dechêne from Eldim SA for software support,
to the 33 observers who took part in this experiment, to
the referees who reviewed this paper and to colleagues
from both LCM-Cnam and CRCC.

Commercial relationships: none.
Corresponding author: Guillaume Ged.
Email: guillaume.ged@cnam.fr.
Address: LCM LNE-Cnam, 61 rue du Landy, 93210 La
Plaine Saint-Denis, France.

References

ASTM D4449-90 (1990). Standard test method for visual
evaluation of gloss differences between surfaces of
similar appearance. ASTM standards on color and
appearance measurement (6th ed.). West Consho-
hocken, PA: ASTM.

ASTM E430-97 (1997). Standard test method for meas-
urements of gloss of high gloss surfaces by goniopho-
tometry. ASTM standards on color and appearance
measurement (6th ed.). West Conshohocken, PA:
ASTM.

Billmeyer, F. W., & O’Donnell, F. X. D. (1987). Visual
gloss scaling and multidimensional scaling analysis of
painted specimens. Color Research and Application,
12, 315–326.

Blinn, F. (1977). Models of light reflection for computer
synthesized pictures. Proceedings of SIGGRAPH 77,
11, 192–198.

Bloj, M. G., Kersten, D., & Hurlbert, A. C. (1999).
Perception of three-dimensional shape influences
colour perception through mutual illumination.
Nature, 402, 877–879.

Commission Internationale de l’Eclairage (CIE) (2006). A
framework for the measurement of visual appearance.
CIE 175:2006.

Cook, R., & Torrance, K. (1982). A reflectance model for
computer. ACM Transactions on Graphics, 1, 7–24.

Coutin, J.-M. (2010). LCM-Cnam, France. Personal
communication.

Delaney, J. K., de la Rie, E. R., Elias M., Sung L. P., &
Morales K. M. (2008). The role of varnishes in
modifying light reflection from rough surfaces.
Studies in Conservation, 53, 170–186.

Elson, J. M., & Bennett, J. M. (1979). Relation between
the angular dependence of scattering and the stat-
istical properties of optical surfaces. Journal of the
Optical Society of America, 69, 31–47.

Fleming, R. W., Dror, R. O., & Adelson, E. H. (2003).
Real-world illumination and the perception of sur-
face reflectance properties. Journal of Vision, 3(5):3,
347–368, http://www.journalofvision.org/content/3/5/3,
doi:10.1167/3.5.3. [PubMed] [Article]

Garcia-Suarez, L., Ruppertsberg, A. I., & Bloj, M. (2008).
Visual sensitivity to achromatic gradients with
different luminance profiles [Abstract]. Journal of
Vision, 8(6):942, 942a, http://www.journalofvision.
org/content/8/6/942, doi:10.1167/8.6.942.

Gouraud, H. (1971). Computer display of curved surfaces.
Department of Computer Science, University of Utah,
UTEC-CSc-71-113, June 1971. Also in IEEE Trans.
C-20 (June 1971), 623–629.

Harrison, V. G. W., & Poulter, S. R. C. (1951). Gloss
measurement of papersVThe effect of luminance
factor. British Journal of Applied Physics, 2, 92–97.

Hunter, R. S., & Harold, R. W. (1987). The measurement of
appearance (2nd ed.). New York: John Wiley & Sons.

ISO 2813 (1978). Paint and varnishes: Measurement of
the specular gloss of non-metallic paint films at 20-,
60- and 85-. Geneva, Switzerland: International
Organization for Standardization.

Ji, W., Pointer, M. R., Luo, R. M., & Dakin, J. (2006).
Gloss as an aspect of the measurement of appearance.
Journal of the Optical Society of America A, 23, 22–33.

Keppel, G., & Wickens, T. (2004). Design and analysis. A
researcher’s handbook (4th ed.). Upper Saddle River,
NJ: Pearson Education.

Koenderink, J., & Pont, S. (2003). The secret of velvety
skin. Machine Vision and Applications, 14, 260–268.

Kröger, E., & Kretschmann, E. (1970). Scattering of light
by slightly rough surfaces or thin films including
plasma resonance emission. Zeitschrift für Physik A
Hadrons and Nuclei, 237, 1–15.

Journal of Vision (2010) 10(9):18, 1–17 Ged et al. 16

Downloaded from jov.arvojournals.org on 11/24/2022

http://www.ncbi.nlm.nih.gov/pubmed/12875632
http://www.journalofvision.org/content/3/5/3
http://www.journalofvision.org/content/8/6/942


Landy, M. S. (2007). A gloss on surface properties.
Nature, 447, 158–159.

Martin, J. (2010). Essilor R&D Physique et Chimie.
Personal communication.

Matusik, W., Pfister, H., Brand, M., & McMillan, L.
(2003). A data-driven reflectance model. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH
2003, San Diego, CA, July 27–31), 22, 759–769.

Moreau, O., Curt, J. N., & Leroux, T. (2000). Contrast and
colorimetry measurements versus viewing angle for
microdisplays. Proceedings of SPIE, 4207, 20–30.

Motoyoshi, I., Nishida, S., & Adelson, E. H. (2005). Image
statistics as a determinant of reflectance percep-
tion [Abstract]. Journal of Vision, 5(8):569, 569a,
http://www.journalofvision.org/content/5/8/569,
doi:10.1167/5.8.569.

Motoyoshi, I., Nishida, S., Sharan, L., & Adelson, E. H.
(2007). Image statistics and the perception of surface
qualities. Nature, 447, 206–209.

Ng, Y., Zeise, E., Mashtare, D., Kessler, J., Wang, J.,
Kuo, C., et al. (2003). Standardization of perceptual
based gloss and gloss uniformity for printing systems.
Proceedings of the Fifth International Symposium on
Multispectral Color Science, 1, 88–93.

Nowbuth, K. (2008). Design of a gonioreflectometer
(EiCnam Engineering School Final Report, pp. 11–24).
France: Conservatoire National des Arts et Métiers.

Obein, G., Knoblauch, K., & Viénot, F. (2004). Difference
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(2001). Bidirectionnal reflection factor and gloss
scales. Proceedings of SPIE, 4299, 279–290.

Obein, G., Leroux, T., Knoblauch, K., & Viénot, F.
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Obein, G., & Viénot, F. (2007). Modelling the BRDF of a
series of matt to glossy black samples. Proceedings of
the CIE Expert Symposium on Visual Appearance,
CIE publication x032:2007, 1, 67–74.

Pellacini, F., Ferwerda, J., & Greenberg, D. (2001).
Toward a psychophysically based light reflection
model for image synthesis. SIGGRAPH 2000, Results
appeared in Computer Graphics World, October 2001.

Phong, B. T. (1975). Illumination for computer generated
pictures. Communications of the ACM, 18, 311–317.

Ruppertsberg, A. I., Bloj, M., & Hurlbert, A. (2008).
Sensitivity to luminance and chromaticity gradients in
a complex scene. Journal of Vision, 8(9):3, 1–16,
http://www.journalofvision.org/content/8/9/3,
doi:10.1167/8.9.3. [PubMed] [Article]

Smith, K. B. (1997). A sharper look at gloss. Surface
Coatings International Part B: Coatings Transactions,
80, 573–576.

Te Pas, S. F., & Pont, S. C. (2005). A comparison of
material and illumination discrimination performance
for real rough, real smooth and computer generated
smooth spheres. Proceedings of the 2nd Symposium
on Applied Perception in Graphics and Visualization
(August 26–28, 2005, A Coroña, Spain), 1, 75–81.

Todd, J. T., Norman J. F., & Mingolla (2004). Lightness
constancy in the presence of specular highlights.
Psychological Science, 15, 33–39.

Torrance, K., & Sparrow, E. (1967). Theory for off-
specular reflection from roughened surfaces. Journal
of the Optical Society of America, 57, 1105–1115.

Vangorp, P., Laurijssen, J., & Dutré, P. (2007). The
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