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Abstract: The radio-thermal ageing of silane-crosslinked polyethylene (Si-XLPE) was studied in air
under different γ dose rates (6.0, 8.5, 77.8, and 400 Gy·h−1) at different temperatures (21, 47, and
86 ◦C). The changes in the physico-chemical and electrical properties of Si-XLPE throughout its
exposure were determined using Fourier transform infrared spectroscopy coupled with chemical
gas derivatization, hydrostatic weighing, differential scanning calorimetry, dielectric spectroscopy
and current measurements under an applied electric field. From a careful analysis of the oxidation
products, it was confirmed that ketones are the main oxidation products in Si-XLPE. The analytical
kinetic model for radio-thermal oxidation was thus completed with relatively simple structure–
property relationships in order to additionally predict the increase in density induced by oxidation,
and the adverse changes in two electrical properties of Si-XLPE: the dielectric constant ε′ and volume
resistivity R. After having shown the reliability of these new kinetic developments, the lifetime of
Si-XLPE was determined using a dielectric end-of-life criterion deduced from a literature compilation
on the changes in R with ε′ for common polymers. The corresponding lifetime was found to be at
least two times longer than the lifetime previously determined with the conventional end-of-life
criterion, i.e., the mechanical type, thus confirming the previous literature studies that had shown
that fracture properties degrade faster than electrical properties.

Keywords: silane-crosslinked polyethylene; radio-thermal oxidation; analytical kinetic model; den-
sity; electrical properties; structural end-of-life criterion; lifetime prediction

1. Introduction

Most nuclear power plants (NPPs) built in Europe in the 1980s and 1990s are now
reaching their originally planned end-of-life, and electric utility companies are wondering
whether it is possible to extend their operating life by a few more decades. As low-voltage
electric cables are among the most critical components in NPPs, the monitoring of the health
of their polymer insulation throughout the NPP’s operating life rapidly emerged as one
major issue. For context, it should be mentioned that about 1500 km of low-voltage cable
are used inside each NPP [1] to perform various functions, including power transmission,
the control of equipment and instrumentation, and the communication of signal and data.

To reach this objective, two complementary monitoring approaches, based either
on numerical simulations or on non-destructive testing in real time (i.e., on site), are
being considered. The relevance of both approaches is tested within the framework of
the H2020 TeamCables project, which is mainly focused on silane-crosslinked low-density
polyethylene (Si-XLPE) insulation [2]. It should be mentioned that the silane crosslinking
of polyethylene has recently become very popular in cable and pipe industries because
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it offers several advantages, including the ease of execution and low cost [3–5]. Indeed,
this reaction does not require the use of additional specific equipment. Choosing the vinyl
alkoxysilane molecule to be grafted along the polymer chain also offers the possibility of
varying the chemical structure of the crosslinking junctions, and thus the possibility of
adjusting the final properties of the polymer piece [3].

Since the early 1980s, considerable efforts have been undertaken by the polymer
ageing community to develop non-empirical kinetic models for predicting the radio-
thermal oxidation and the remaining lifetime of polymer insulation under normal operating
conditions in NPPs. The main difficulty has been deriving a kinetic model from the radio-
thermal oxidation mechanistic scheme, in which γ irradiation generates hydroperoxides
(POOH) that thermally decompose to produce radicals which initiate new oxidation chains.
Indeed, in the concerned ranges of the dose rate (typically between 10−2 and 10−1 Gy·h−1)
and temperature (between 30 and 50 ◦C), polymer insulation is expected to perish because
of oxidation both initiated by the polymer radiolysis and the thermal decomposition of
POOH [6–8]. The pioneering researchers in this field were Gillen and Clough [9], who
proposed a kinetic model for predicting the degradation of a PVC cable jacket that was
exposed to radiation at a low ageing temperature in order to understand its surprisingly
rapid ageing over 12 years under 0.25 Gy·h−1 at 43 ◦C. However, this model fails to predict
the predominance of thermal ageing at very low dose rates.

Recently, it was shown that it is possible to derive a much more robust analytical
solution from the radio-thermal oxidation mechanistic scheme without having to assume
the thermal stability of POOH [8], a very common assumption that is responsible for
serious inaccuracies in all other previous kinetic models. In particular, this new solution
allowed researchers to successfully predict the global trends of the radio-thermal oxidation
kinetics of Si-XLPE insulation from the molecular (i.e., the concentrations of oxidation
products) up to macroscopic scale (lifetime), including the macromolecular scale (i.e., the
concentration of elastically active chains).

However, in this kinetic model, the lifetime is always determined based on purely me-
chanical considerations, in particular when the polymer insulation almost completely loses
its ability to prevent plastic deformation. That is the reason why the conventional end-of-life
criterion used for cable application in the nuclear industry is a low value (εF) of the elonga-
tion at break (εR), typically: εR = εF = 50% [10]. For Si-XLPE insulation, it was shown that
this fracture criterion is reached at a very low conversion ratio during the chain scission pro-
cess. In fact, it is related to a critical value ([POOH]F) of the hydroperoxide concentration,
corresponding to the onset of the rapid auto-acceleration of the oxidation reaction when
triggering the thermal initiation, typically: [POOH] = [POOH]F ≈ 1.6 × 10−1 mol·L−1 [8].

In the context of an extension of the operating life of NPPs, the use of a purely
mechanical criterion could pose a problem for cable life management. Indeed, several
authors observed that the fracture properties generally degrade faster than several other
functional properties of the polymer insulation, in particular its electrical properties [11–16].
In other words, fracture properties would lead to a significant underestimation of the
lifetime of polymer insulation. That is the reason why the definition of a more relevant
end-of-life criterion specific to the application of electrical cable insulation, i.e., of the
dielectric type, is still a topical issue today [17–19]. However, taking into account the wide
variety of electrical properties, what criterion could be used?

To date, two electrical properties closely related to the chemical structure of the
polymer insulation have been the subject of several detailed analytical studies: the real
part of permittivity ε′ (defined as the “dielectric constant”) and volume resistivity R [20].
The literature compilations of the ε′ and R values that have been reported for common
polymers show that these two properties adversely evolve with the incorporation of oxygen
atoms into the polymer structure [20–24].

In addition, it was often reported that oxidation leads to the formation and growth
of dissipation bands in moderate frequency domains of the dielectric spectrum (typically,
between 1 Hz and 105 Hz at room temperature), where the polymer initially displays an
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almost ideal insulation behavior [20,24,25]. These bands are the manifestation of a physical
phenomenon called “orientation polarization” or “Debye polarization”, occurring when
groups of atoms have a permanent dipole moment [24]. This is particularly the case for
polar oxygenated groups, such as carbonyls and hydroxyls, which are easily oriented in
the direction of the applied electrical field. That is the reason why, in initially nonpolar
polymers, such as low-density (LDPE) and crosslinked low-density polyethylene (XLPE),
oxidation leads to a significant increase in the dielectric constant ε′ from typically 2.3± 0.3
up to values higher than 4.5 [14,26–31], whereas the volume resistivity R dramatically
drops from typically 1016±2 Ω·cm to an asymptotic value of around 1012±1 Ω·cm [31–36].

Based on these careful analyses, two different routes can be proposed to predict ε′

from the polymer structure:

• According to Lorentz [37] and Lorenz [38], ε′ would be related to the molar polariza-
tion P of a given dielectric material as follows:

P =
ε′ − 1
ε′ + 2

V (1)

i.e.,

ε′ =
1 + 2(P/V)

1− (P/V)
(2)

where V is the molar volume. In addition, according to van Krevelen [20], P and V
would obey molar additive rules, i.e., they could be calculated by summing the molar
contributions of the different chemical groups composing the monomer unit or any
other constitutive repeating unit (CRU):

P = ∑ Pi and V = ∑ Vi (3)

As an example, Table 1 summarizes the values of Pi and Vi proposed by Goedhart [39]
and Fedors [40] for methylene, but also for the various types of oxidation products generally
detected during the radio-thermal ageing of PE. It should be noted that few of them
were checked by van Krevelen in his handbook [20]. Thus, high uncertainties remain for
many data (written in italics), in particular for ketones, carboxylic acids, hydroxyls and
hydroperoxides.

• According to Darby [41], as electrical forces caused by polarizability and polar mo-
ment also determine the cohesive energy, a relationship should be expected between
the dielectric constant ε′ and the solubility parameter δsol. Based on a literature com-
pilation of the ε′ and δsol values reported for common polymers, Darby proposed the
following empirical proportionality:

δsol ≈ 7ε′ (4)

i.e.,
ε′ ≈ 1.4× 10−1 δsol (5)

It should be recalled that δsol is related to the molar attraction constant F as follows:

δsol =
F
V

(6)

where, according to van Krevelen [20], F and V are molar additive functions:

F = ∑ Fi and V = ∑ Vi (7)

Values of Fi proposed by Small [42], van Krevelen [43] and Hoy [44] for methylene
and the various oxidation groups of PE are also listed in Table 1.
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Table 1. Molar contributions to P, F and V of the methylene group and the various oxidation groups
formed in PE [39,40,42–44]. Values written in italics are subject to high uncertainties.

Group Pi (cm3·mol−1) Fi (J1/2·cm3/2·mol−1) Vi (cm3·mol−1)
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According to the literature, several other electrical properties could be deduced from ε′

using empirical relationships. As an example, Cotts and Reyes [21] proposed the following
power law for the dissipation factor tan(δel):

tan(δel) ≈
(
ε′

10

)5

(8)

Knowing ε′ and tan(δel), it would then be very easy to deduce the imaginary part of
permittivity ε′′ that is related to dielectric losses (which is, for this reason, commonly called
the “dielectric absorption”) using its common definition:

ε′′ = tan(δel)× ε′ (9)

Its introduction into Equation (8) leads finally to:

ε′′ ≈
(
ε′

10

)6

(10)

However, the second electrical property of practical interest in the present study is
the volume resistivity R. According to van Krevelen [20], it could be estimated using the
following relationship:

Log10(R) = 23− 2ε′ (11)

The objectives of the present article are twofold. On the one hand, the analytical
model, recently developed for accurately describing the radio-thermal oxidation kinetics of
Si-XLPE insulation [8], will be completed with several structure/property relationships
that will additionally help to predict the changes in electrical properties. Our attention will
first be focused on the dielectric constant because, as shown above, this electrical property
can be directly related to the chemical structure, whereas the volume resistivity can be
deduced from the dielectric constant. To achieve this first objective, the approach appearing
to be by far the least empirical, i.e., starting from the research works of Lorentz [37] and
Lorenz [38], should be used because the final kinetic model must be as efficient in simulation
as in extrapolation. On the other hand, new end-of-life criteria specific for the industrial
application under consideration, i.e., of the dielectric type, will be proposed for both the
dielectric constant and the volume resistivity. The lifetimes determined based on electrical
and mechanical considerations will then be compared in order to draw crucial conclusions
for the electric utility companies.
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2. Materials and Methods
2.1. Materials

Additive-free Si-XLPE films of about 500 µm thick were directly provided by Nexans
NRC (Lyon, France). These films were produced through the extrusion of a linear low-
density polyethylene (LDPE) and grafted with vinyl tri-methoxy silane side groups. The
chemical crosslinking was then performed via immersion in water at 65 ◦C for 48 h [45].
The density, crystallinity ratio and gel content of the resulting Si-XLPE are about 0.914,
42.1% and 71%, respectively. The experimental procedures for determining these initial
characteristics are detailed in Section 2.3, except for the gel fraction, which has already
been reported in reference [8].

2.2. Radio-Thermal Ageing Conditions

Radio-thermal ageing was performed in the Panoza and Roza facilities at UJV Rez,
Czech Republic, with a 60Co γ-ray source at different temperatures. All the exposure
conditions are summarized in Table 2. It should be noted that the ageing experiments
numbered 1, 3 and 4 were performed at three distinct dose rates (8.5, 77.8 and 400 Gy·h−1,
respectively) at low temperature close to ambient in order to investigate the effect of dose
rate on the oxidation kinetics. In contrast, the ageing experiments numbered 1 and 2
were performed at almost the same dose rate (8.5 and 6.0 Gy·h−1, respectively) but at two
different temperatures (47 and 86 ◦C) in order to investigate the effect of temperature on
the oxidation kinetics.

Table 2. Radio-thermal ageing conditions.

Ageing
No.

Dose Rate
(Gy·h−1)

Dose Rate
(Gy·s−1)

Temperature
(◦C)

Maximum
Duration (h)

Maximum
Dose (kGy)

1 8.5 2.36 × 10−3 47 12,800 109
2 6.0 1.67 × 10−3 86 16,267 98
3 77.8 2.16 × 10−2 47 3830 298
4 400 1.11 × 10−1 21 668 269

2.3. Experimental Characterizations
2.3.1. Physico-Chemical Analyses

After ageing, the Si-XLPE films were characterized through FTIR spectroscopy in
transmission mode in order to determine the exact nature and the relative proportion
of the different oxidation products that can significantly affect the electrical properties.
FTIR spectra were recorded from 4000 to 400 cm−1 with a Perkin Elmer FTIR Frontier
spectrometer (Perkin Elmer, Villebon-sur-Yvette, France), after averaging the 16 scans that
were taken at a resolution of 4 cm−1. For each film, at least three FTIR measurements
were performed. However, because a large variety of hydroxyl and carbonyl products
are formed during the radio-thermal ageing of Si-XLPE and their main IR absorption
bands are often overlapped [46–51], FTIR spectroscopy was coupled with chemical gas
derivatization, with ammonia (NH3) acting as the gaseous reagent. Indeed, NH3 is well
known for transforming carboxylic acids into carboxylates, and esters and anhydrides into
primary amides, thus inducing a significant shift of the IR absorption bands of these two
carbonyl products along the wavenumber axis [49]. This chemical deconvolution method
has been extensively detailed in the literature for linear PE, for instance in references [49,51].

As an example, Figure 1 shows the changes in the carbonyl and carboxylate region (i.e.,
typically between 1850 and 1500 cm−1) of the FTIR spectrum of Si-XLPE during its radio-
thermal ageing in air under 77.8 Gy·h−1 at 47 ◦C (a) before and (b) after NH3 treatment.
The subtraction of these two spectra, i.e., (c) = (b) − (a), facilitates the calculation of
the carbonyl products consumed, including anhydrides (centered at about 1778 cm−1),
linear esters (1740 cm−1) and carboxylic acids (1714 cm−1), and also the products formed
during the NH3 treatment, including amides (1670 cm−1) and carboxylates (1555 cm−1). In
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addition, the FTIR spectrum after NH3 treatment (b) shows the carbonyl products that have
not reacted with NH3, including cyclic esters (i.e., γ-lactones, centered at about 1773 cm−1),
aldehydes (1736 cm−1) and ketones (1720 cm−1). The concentration of these different
carbonyl products [P=O] was determined by applying the classical Beer–Lambert’s law:

[Prod] =
OD
ep ε

(12)

where [Prod] is the concentration of the oxidation product under consideration (expressed
in mol·L−1), OD is the optical density of its IR absorption band (dimensionless), ε is its
molar extinction coefficient (L·mol−1·cm−1), and ep is the film thickness (cm).

The orders of magnitude of ε chosen for this calculation were determined in a previous
publication [51], except for γ-lactones [52] and anhydrides [53]. They are recalled in Table 3.

As the hydroperoxides (POOH) were already titrated using differential scanning
calorimetry (DSC) in a previous paper [8], the concentration of alcohols [P–OH] was also
determined by applying Equation (12) to the composite IR absorption band of all the
hydroxyl products located around 3420 cm−1 (see Figure 2). The corresponding molar
extinction coefficient is also reported in Table 3. In fact, the concentration of alcohols was
deduced from the total concentration of hydroxyls by subtracting the concentrations of
hydroperoxides and carboxylic acids.

Due to the very wide variety of oxidation products and the lack of knowledge of
structure/property relationships in this area (for instance, see Table 1), it is obvious that it
is impossible to investigate the impact of each oxidation product on the electrical properties
of Si-XLPE for the time being. In contrast, it seems more reasonable to limit the study to
the impact of the main oxidation product.

In addition, it seems relevant to determine the total concentration of oxygen consumed
by the oxidation reaction, namely the oxygen consumption (QO2), then to try to establish a
relationship between this concentration and the changes in the electrical properties. As
shown in Section 4, if making an assumption about the main oxidation product, oxygen
consumption can be deduced from the changes in polymer density. Indeed, in the literature,
it has repeatedly been reported that the incorporation of “heavy” atoms, such as oxygen,
into a polymer structure initially containing many “light” atoms (i.e., carbon and hydrogen)
induces an increase in its density [32,54–58].

The density of the Si-XLPE films was determined through hydrostatic weighing at
room temperature (23 ◦C) with a Mettler Toledo MS104TS microbalance (Metler Toledo
SAS, Viroflay, France). The films were first weighed in air, then in immersion in ethanol,
and their density ρwas determined by applying Archimedes’ principle:

ρ =
mAir

mAir −mIm
ρEth (13)

where mAir and mIm are the sample weights in air and in immersion, respectively, and ρEth
is the density of ethanol at 23 ◦C (ρEth = 0.789 [59]).

The changes in the crystalline morphology of the Si-XLPE films during their radio-
thermal ageing were measured using differential scanning calorimetry (DSC) under pure
nitrogen. DSC thermograms were recorded with a TA instruments DSC Q1000 calorimeter
(TA Instruments, Guyancourt, France) that had beforehand been calibrated with an indium
reference. Film samples with a mass ranging between 5 and 10 mg were placed in a closed
standard aluminum pan to be analyzed at between −50 ◦C and 250 ◦C, with a heating rate
of 10 ◦C·min−1 under a nitrogen flow of 50 mL·min−1.
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spectra to evidence the consumption of carbonyls and the formation of carboxylates during the NH3 treatment.

Table 3. Wavenumbers and molar extinction coefficients [51–53] of the main oxidation products in Si-XLPE.

Oxidation Products ν (cm−1) ε (L·mol−1·cm−1) Reference for ε

Hydroxyls 3420 70 [51]
Anhydrides 1778 730 [53]
γ-Lactones 1773 720 [52]

Esters 1740 590 [51]
Aldehydes 1736 270 [51]

Ketones 1720 300 [51]
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Figure 2. Changes in the hydroxyl region of the FTIR spectrum of Si-XLPE during its radio-thermal
ageing in air under 77.8 Gy·h−1 at 47 ◦C.

As an example, Figure 3 shows the changes in the DSC thermogram of the Si-XLPE
during its radio-thermal ageing in air under 77.8 Gy·h−1 at 47 ◦C. As expected for a
crosslinked polymer, the melting of the Si-XLPE occurred in a relatively wide temperature
domain, typically ranged between 30 ◦C and 125 ◦C, with the maximum value of the main
endothermic peak being located at around 114 ◦C. During the radio-thermal exposure,
a gradual increase in the area under the main endothermic peak can be observed, thus
indicating that an efficient chemi-crystallization process has occurred.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 26 
 

 

literature, it has repeatedly been reported that the incorporation of “heavy” atoms, such 
as oxygen, into a polymer structure initially containing many “light” atoms (i.e., carbon 
and hydrogen) induces an increase in its density [32,54–58]. 

The density of the Si-XLPE films was determined through hydrostatic weighing at 
room temperature (23 °C) with a Mettler Toledo MS104TS microbalance (Metler Toledo 
SAS, Viroflay, France). The films were first weighed in air, then in immersion in ethanol, 
and their density ρ was determined by applying Archimedes’ principle: ρ = m୅୧୰m୅୧୰ − m୍୫ ρ୉୲୦ (13) 

where m୅୧୰ and m୍୫ are the sample weights in air and in immersion, respectively, and ρ୉୲୦ is the density of ethanol at 23 °C (ρ୉୲୦ = 0.789 [59]). 
The changes in the crystalline morphology of the Si-XLPE films during their radio-

thermal ageing were measured using differential scanning calorimetry (DSC) under pure 
nitrogen. DSC thermograms were recorded with a TA instruments DSC Q1000 calorimeter 
(TA Instruments, Guyancourt, France) that had beforehand been calibrated with an in-
dium reference. Film samples with a mass ranging between 5 and 10 mg were placed in a 
closed standard aluminum pan to be analyzed at between −50 °C and 250 °C, with a heat-
ing rate of 10 °C·min−1 under a nitrogen flow of 50 mL·min−1. 

As an example, Figure 3 shows the changes in the DSC thermogram of the Si-XLPE 
during its radio-thermal ageing in air under 77.8 Gy·h−1 at 47 °C. As expected for a cross-
linked polymer, the melting of the Si-XLPE occurred in a relatively wide temperature do-
main, typically ranged between 30 °C and 125 °C, with the maximum value of the main 
endothermic peak being located at around 114 °C. During the radio-thermal exposure, a 
gradual increase in the area under the main endothermic peak can be observed, thus in-
dicating that an efficient chemi-crystallization process has occurred. 

 
Figure 3. Changes in the melting peak of Si-XLPE during its radio-thermal ageing in air under 77.8 
Gy·h−1 at 47 °C. 

The crystallinity ratio Xେ of the Si-XLPE was determined with the common equation: Xେ = ∆H୫∆H୫଴ × 100 (14) 

Figure 3. Changes in the melting peak of Si-XLPE during its radio-thermal ageing in air under
77.8 Gy·h−1 at 47 ◦C.

The crystallinity ratio XC of the Si-XLPE was determined with the common equation:

XC =
∆Hm

∆Hm0
× 100 (14)
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where ∆Hm is the sum of the areas under the endothermic peaks observed between 35 ◦C
and 125 ◦C on the DSC thermogram, and ∆Hm0 is the melting enthalpy of the PE crystal:
∆Hm0 = 292 J·g−1 [60].

Then, the volume fraction of crystals VC was deduced from XC as follows:

VC =
ρ

ρC
XC (15)

where ρC is the density of the crystalline phase of PE: ρC = 1.014 [61].

2.3.2. Electrical Measurements

After ageing, the Si-XLPE films were also characterized using two complementary
electrical techniques in order to assess the impact of oxidation on the electrical properties.
On the one hand, their complex relative permittivity ε∗ was determined through dielectric
spectroscopy with a Novocontrol Alpha Dielectric analyzer v2.2 (Novocontrol Technologies,
Montabaur, Germany). It should be recalled that ε∗ is described as follows:

ε∗ = ε′ − j ε′′ (16)

where ε′ is the real part of permittivity (defined as the “dielectric constant”) and ε′′ is the
imaginary part of permittivity related to the dielectric losses of the material (commonly
called the “dielectric absorption”). Experimental tests were performed at room temperature
with the following parameters: applied voltage = 3 Vrms; frequency range = 10−2–106 Hz.

On the other hand, the volume resistivity of the Si-XLPE films was determined accord-
ing to ASTM D257-14 [62]. Gold electrodes (sensing area ~3.14 cm2) were deposited on
specimens using a plasma cold sputtering system. An electric field equal to 5 kV·mm−1 was
applied through a Keithley 2290E-5 DC power supply (Keithley Instruments, Cleveland,
Ohio, USA). The current was recorded through a Keysight B2980A (Keyseight Technologies,
Santa Rosa, California, USA) and the volume resistivity R (expressed in Ω·cm was finally
obtained through the following equation:

R =
1
σ
=

E
J

(17)

where σ is the electrical conductivity in S·cm−1, E is the applied electric field in V·cm−1

and J is the current density in A·cm−2.

3. Foundations of the Kinetic Model

The mechanistic scheme chosen for accurately describing the radio-thermal oxidation
of Si-XLPE in the domain of practical interest for nuclear power plant operators (i.e., for
1.6 × 10−7 < I < 5.0 × 10−1 Gy·s−1) at a low temperature close to ambient has been
detailed in previous publications [6–8]. As a reminder, the main feature of this mechanistic
scheme is that oxidation is initiated by both the polymer radiolysis (1R) and the thermal
decomposition of POOH in bimolecular mode (1T):

• Initiation:

(1R) PH + hν→ P• + 1
2 H2 (ri = 10−7 GiI)

(1T) 2POOH→ P• + PO2
• (k1)

• Propagation:

(2) P• + O2 → PO2
• (k2)

(3) PO2
• + PH→ POOH + P• (k3)

• Termination:

(4) P• + P• → Inactive products (k4)
(5) P• + PO2

• → Inactive products (k5)
(6) PO2

• + PO2
• → Inactive products + O2 (k6)
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where PH, POOH, P• and PO2
• designate an oxidation site, an hydroperoxide, alkyl and

peroxy radicals, respectively. δ, λ, and µ are stoichiometric coefficients. ri, Gi and kj (with j
= 1, . . . , 6) are the radiochemical initiation rate, the radical yield and the rate constants,
respectively.

The system of differential equations derived from this mechanistic scheme was analyt-
ically solved using only two simplifying (but realistic) assumptions [8]:

1 Oxidation is mainly initiated by the polymer radiolysis that occurs throughout the
exposure (i.e., ri � 2k1[POOH]2), with the thermal decomposition of POOH being an
additional (but secondary) source of radicals for the long term;

2 The radical species reach a steady-state regime from the early periods of the radio-
thermal exposure (i.e., d[Rad]/dt = 0).

By only using these two assumptions, the following equations were found for:

• The concentration of POOH:

[POOH] = [POOH]∞
1− bExp(−Kt)
1 + bExp(−Kt)

(18)

with

[POOH]∞ =

(
k3[PH]

2k1b

(
ri

2k6

)1/2 βC
1 + βC

)1/2

(19)

K = 2

(
2k3[PH]k1b

(
ri

2k6

)1/2 βC
1 + βC

)1/2

(20)

and

b =
[POOH]∞ − [POOH]ini
[POOH]∞ + [POOH]ini

(21)

where [POOH]ini and [POOH]∞ are the initial and steady concentrations of hydroper-
oxides, respectively. As for the weakly pre-oxidized samples, it is usually observed
that: [POOH]∞ � [POOH]ini [51,63]. It can thus be considered that: b ≈ 1.

• The concentration of carbonyls:

[P = O] =

[
γ1CO

k3[PH]
2

(
ri

2k6

)1/2
βC

1+βC + γ6CO
ri
2

(
βC

1+βC

)2
]

t

+2γ1CO
k3[PH]

K

(
ri

2k6

)1/2
βC

1+βC

(
1

1+bExp(−Kt) −
1

1+b

) (22)

where γ1CO and γ6CO are the respective formation yields of carbonyls in thermal
initiation (1T) and termination (6).

• The oxygen consumption:

QO2 =

[
k3[PH]

(
ri

2k6

)1/2 βC
1 + βC

+ ri
βC

1 + βC

(
1− βC

2(1 + βC)

)]
t (23)

In Equations (19), (20), (22) and (23), C is the oxygen concentration in the Si-XLPE
films, which is related to the oxygen partial pressure PO2 in the exposure environment
according to the classical Henry’s law:

C = S× PO2 (24)

where S is the coefficient of oxygen solubility for the polymer. The typical values of S re-
ported for low-density polyethylene (LDPE) in the literature are about 1.8 × 10−8 mol·L−1·Pa−1

regardless of the temperature [64]. As an example, in the case of an ageing in air un-
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der atmospheric pressure for which PO2 = 0.21× 105Pa, Equation (24) finally leads to:
C = 3.8× 10−4 mol·L−1.

In addition, β−1 corresponds to the critical value of the oxygen concentration CC
above which oxygen excess is reached:

β =
1

CC
≈ 2k6k2

k5

[
k3[PH] + (2rik6)

1/2
] (25)

In a recent publication [8], it was shown that Equations (18) and (22) can be used for
predicting the changes in the concentrations of hydroperoxides and carbonyls (for instance,
carboxylic acids) in Si-XLPE insulation in air in different radio-thermal environments. As
expected (see assumption (a)), a satisfying agreement was obtained between the theory
and the experiments as long as thermal initiation (1T) remained a secondary source of
radicals relative to radiochemical initiation (1R), i.e., under the three dose rates under
study (from 8.5 to 400 Gy·h−1) at low temperatures close to ambient (i.e., 47 and 21 ◦C).
However, a poorer agreement was obtained under the lowest dose rate (i.e., 6.0 Gy·h−1) at
the highest temperature (86 ◦C) because, in these critical radio-thermal exposure conditions,
thermal initiation becomes of the same order of magnitude as (if not greater than) the
radiochemical initiation. For context, the values of the different kinetic parameters used for
these simulations have been recalled in Table 4.

Table 4. Values of the kinetic parameters used for modeling the oxidation kinetics of Si-XLPE in the
various radio-thermal environments under study [8].

T (◦C) 21 47 47 86

I (Gy·h−1) 400 77.8 8.5 6.0
Gi 8 8 8 8

k1b (L·mol−1·s−1) 5.0 × 10−9 2.5 × 10−7 2.4 × 10−7 1.0 × 10−5

k2 (L·mol−1·s−1) 108 108 108 108

k3 (L·mol−1·s−1) 1.6 × 10−3 1.9 × 10−2 1.9 × 10−2 3.6 × 10−1

k4 (L·mol−1·s−1) 8.0 × 1011 8.0 × 1011 8.0 × 1011 8.0 × 1011

k5 (L·mol−1·s−1) 1.2 × 1010 7.0 × 1010 9.0 × 1010 2.4 × 1011

k6 (L·mol−1·s−1) 5.0 × 104 1.0 × 106 2.0 × 106 6.0 × 107

γ1CO (%) 90 70 75 100
γ6CO (%) 90 70 75 100

4. Main Oxidation Products

Table 5 summarizes the relative proportions of the different oxidation products mea-
sured during the radio-thermal ageing of the Si-XLPE with FTIR spectroscopy coupled
with chemical gas derivatization and DSC. As already reported by many authors in the
literature for other types of PE, for instance in references [48,51,65–68], ketones are the
main carbonyl products in Si-XLPE. It is noteworthy that ketones also occur in higher
concentrations than hydroxyl products, in particular hydroperoxides (POOH). This is even
more obvious when γ irradiation is performed at a high temperature (i.e., 86 ◦C) because
POOH thermally decompose and thus become hardly detectable through DSC. In fact, their
concentration is of the order of magnitude of the DSC detection threshold, which is around
10−3 L·mol−1 [51].

For these reasons, as a first approach, this study will be limited to investigating the
impact of ketones on the electrical properties of Si-XLPE. Of course, before being applied,
this assumption will first be checked against another important physico-chemical property
closely related to oxygen consumption in the next section: the polymer density.
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Table 5. Relative proportions (expressed in mol%) of the different oxidation products in the Si-XLPE
aged in the various radio-thermal environments under study.

T (◦C) 21 47 47 86

I (Gy·h−1) 400 77.8 8.5 6.0
[POOH] (mol%) 16.2 19.9 15.9 –

[Alcohols] (mol%) 7.3 4.0 6.6 2.7
[Anhydrides] (mol%) 1.5 1.9 0.9 3.7
[γ-Lactones] (mol%) 1.0 1.5 2.1 3.0

[Linear esters] (mol%) 4.5 3.7 3.1 16.7
[Aldehydes] (mol%) 11.5 14.4 15.4 25.1

[Ketones] (mol%) 35.3 30.2 37.6 31.0
[Carboxylic acids] (mol%) 22.7 24.3 18.4 17.8

5. Calculation of the Changes in Density

First of all, it should be recalled that the density of a semi-crystalline polymer can be
expressed as a function of the densities of its amorphous (ρa) and crystalline phases (ρC):

ρ = VCρC + (1−VC)ρa (26)

where VC is the volume fraction of crystals.
According to Equation (26), two main causes can be responsible for an increase in ρ

during radio-thermal ageing:

• As recalled in Section 2.3, the incorporation of “heavy” atoms, such as oxygen, into a
polymer structure initially containing many “light” atoms (i.e., carbon and hydrogen)
induces an increase in its density [32,54–58]. Since crystals are impermeable to oxygen,
oxidation only occurs in the amorphous phase where it thus induces an increase in ρa.

• In Si-XLPE, oxidation leads to a predominance of chain scissions over crosslinking [8].
Chain scissions progressively destroy the macromolecular network from which short
linear fragments are extracted, which can easily migrate towards crystalline lamellae
when the amorphous phase is in a rubbery state. The integration of these short
fragments with crystalline lamellae induces a chemi-crystallization, i.e., a thickening
of crystalline lamellae and an increase in the crystallinity ratios (i.e., XC and VC).

The resulting changes in ρ can be thus written as follows:

dρ =
∂ρ

∂ρa

∣∣∣∣
VC=VC ini

dρa +
∂ρ

∂VC

∣∣∣∣
ρa=ρa ini

dVC (27)

where VC ini and ρa ini are the respective values of VC and ρa for the unoxidized polymer.
For Si-XLPE, VC ini = 37.9% and ρa ini = 0.85 [69].

Considering Equation (26), it can be easily shown that:

∂ρ

∂ρa

∣∣∣∣
VC=VC ini

= 1−VC ini and
∂ρ

∂VC

∣∣∣∣
ρa=ρa ini

= ρC − ρa ini (28)

The introduction of these two quantities into Equation (27) gives:

dρ = (1−VC ini)dρa + (ρC − ρa ini)dVC (29)

i.e.,
∆ρ = (1−VC ini)∆ρa + (ρC − ρa ini)∆VC (30)

As the final objective is to relate the changes in the density of the Si-XLPE (ρ) to its
oxygen consumption (QO2) during the radio-thermal ageing, this can be written as:

∆ρ
∆QO2

= (1−VC ini)
∆ρa

∆QO2
+ (ρC − ρa ini)

∆VC

∆QO2
(31)
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The final challenge was to determine the values of the two ratios, ∆ρa/∆QO2 and
∆VC/∆QO2.

The first ratio ∆ρa/∆QO2 was assessed using a structure–property relationship that
has previously been established in literature. According to Pascault et al. [70], ρa depends
on the atomic composition, which can be represented by a simple quantity, the “average
atomic mass” Ma, which is determined from the monomer unit or any other constitutive
repeating unit (CRU) as follows:

Ma =
MCRU

NCRU
(32)

where NCRU and MCRU are the total number of atoms and the molar mass of the CRU, re-
spectively. As an example, for unoxidized Si-XLPE: MCRU ini = 28 g·mol−1 and NCRU ini = 6,
so that: Ma ini = 4.67 g·mol−1.

Based on a literature compilation of the ρa values reported for common amorphous
and semi-crystalline polymers, they found that ρa is an increasing linear function of Ma.
Langlois et al. [55] tried to generalize this relationship with semi-crystalline polymers, in
particular when the contribution of chemi-crystallization is negligible. For a radiation
crosslinked low-density polyethylene (XLPE) with an initial volume fraction of crystals:
VC ini = 51.4%, they found that:

∆ρ
∆Ma

= 0.125± 0.025mol·cm−3 (33)

Let us recall that, when chemi-crystallization is negligible, it can be written as:

∆ρa
∆Ma

=
1

1−VC ini

∆ρ
∆Ma

(34)

It can thus finally be written as:

∆ρa
∆Ma

= 0.257± 0.052mol·cm−3 (35)

Applying Equation (35) requires knowing under what major structure oxygen is
when it is chemically bonded to macromolecules: is it hydroperoxide, alcohol, ketone,
aldehyde, carboxylic acid or ester? For each of these oxidation products, the oxidized
polymer can simply be described by using a CRU containing p carbon atoms (with p ≥ 2),
as shown in Table 6. In each case, several quantities can be calculated, in particular the
molar mass (MCRU) and the total number of atoms of the CRU (NCRU), and the number of
O2 molecules chemically consumed per carbon atom (nO2). From these three quantities,
two key ratios can be deduced in turn: ∆Ma/∆nO2 then ∆Ma/QO2. The calculation of
these different properties has been detailed in Appendix A for when hydroperoxides are
the main oxidation products (i.e., for hydroperoxidized PE). This calculation can easily
be generalized to all other oxidation products. The corresponding results are reported in
Table 6.

Finally, the ratio ∆ρa/∆QO2 was simply deduced as follows:

∆ρa
∆QO2

=
∆ρa
∆Ma

× ∆Ma

∆QO2
(36)

This last key ratio was calculated for all oxidation products, choosing the upper limit
of the variation interval proposed by Langlois et al. (see Equation (35)) as the value for
∆ρa/∆Ma, i.e., taking:

∆ρa
∆Ma

≈ 0.30 mol·cm−3 (37)
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Table 6. Constitutive repeating unit (CRU) for various oxidation products formed in PE. Corresponding values for the
molar mass (MCRU) and the total number of atoms of the CRU (NCRU ), the number of O2 molecules chemically consumed
per carbon atom (nO2 ) and three key ratios: ∆Ma/∆nO2, ∆Ma/∆QO2 and ∆ρa/∆QO2.

CRU MCRU
(g·mol−1) NCRU nO2

∆Ma/∆nO2
(g·mol−1)

∆Ma/∆QO2
(g·cm3·mol−2)

∆ρa/∆QO2
(g·mol−1)
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Here again, the corresponding results are reported in Table 6 (in the last column).
The ratio ∆ρa/∆QO2 was used to identify the major structure under which oxygen

is chemically bonded to Si-XLPE macromolecules. In particular, ρa was calculated with
Equation (26) from the values of ρ and VC that were measured on the Si-XLPE films before
and after their exposure to the different radiochemical environments under study. Then, ρa
was plotted in Figure 4 as a function of the values of QO2, which was previously calculated
with Equation (23) for the same exposure conditions in reference [8]. Figure 4 clearly
shows a master curve with an almost linear shape whose slope gives direct access to the
ratio under investigation. The high value of the slope indicates that ketones would be the
main oxidation products in Si-XLPE, as already found by FTIR spectroscopy coupled with
chemical gas derivatization and DSC in Section 4. That is the reason why, in the present
study, the ratio ∆ρa/∆QO2 was set at:

∆ρa
∆QO2

≈ 70.27 g·mol−1 (38)

In contrast, the second ratio ∆VC/∆QO2 was directly assessed by plotting VC as a
function of QO2 in Figure 5. Here again, Figure 5 highlights a master curve with an almost
linear shape whose slope gives direct access to the ratio under investigation:

∆VC

∆QO2
≈ 139.17 cm3·mol−1 (39)

The values found for the two ratios ∆ρa/∆QO2 and ∆VC/∆QO2 were then introduced
into Equation (31). Recalling that VC ini = 37.9% and ρa ini = 0.85 for Si-XLPE, this can
finally be written as:

∆ρ
∆QO2

= 0.621× 70.27 + 0.164× 139.17 (40)

i.e.,
∆ρ

∆QO2
= 66.46 g·mol−1 (41)
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The reliability of this third ratio was checked by plotting ρ as a function of QO2 in
Figure 6. It can be noted that the resulting master curve displays a slope value, which is of
the same order of magnitude as the result of Equation (41). Confirming this allowed us to
definitively validate the assumption that the density ρ of Si-XLPE would be a measurement
of its oxygen consumption QO2.
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6. Prediction of Electrical Properties

As shown in the previous section, ketones are the main oxidation products in Si-XLPE.
The corresponding CRU is shown in Table 6. Let us recall that oxygen consumption QO2
can be written as:

QO2 =
ρa ini

32
∆MUCR

MUCR ini
(42)

where MUCR ini and ρa ini are the molar mass of the CRU (MUCR ini = 14p) and the density
of the amorphous phase of the unoxidized Si-XLPE (ρa ini = 0.85 [69]), respectively.

Applying Equation (42) to ketones gives:

QO2 =
ρa ini

16
nO2 (43)

i.e., if QO2 is expressed in mol·L−1:

nO2 = 1.9× 10−2 QO2 (44)

Based on the CRU of the oxidized Si-XLPE, the molar additive rules reported for the
molar polarization P and molar volume V in Equation (3) can be rewritten as follows:

P = (p− 1)PCH2 + PCO (45)

and
V = (p− 1)VCH2 + VCO (46)

where PCH2, VCH2, PCO and VCO are the molar contributions of the methylene and ketone
groups to P and V, respectively. As a reminder, their values are summarized in Table 1.
Thus, the ratio P/V can be written as:

P
V

=
(p− 1)PCH2 + PCO

(p− 1)VCH2 + VCO
(47)
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Knowing that, for ketones (see Table 6):

nO2 =
1

2p
(48)

it was finally obtained:
P
V

=
PCH2 + 2nO2(PCO − PCH2)

VCH2 + 2nO2(VCO −VCH2)
(49)

i.e.,
P
V

=
PCH2 + 3.8× 10−2 QO2(PCO − PCH2)

VCH2 + 3.8× 10−2 QO2(VCO −VCH2)
(50)

Knowing the ratio P/V, the Lorentz and Lorenz equation [37,38] was used to calculate
the dielectric constant ε′. This equation is recalled below:

ε′ =
1 + 2(P/V)

1− (P/V)
(51)

Let us note that, in the absence of ketones, this equation reveals the order of magnitude
of the dielectric constant of unoxidized PE, i.e., ε′ini = 2.3 [20,21,23,24].

The changes in ε′ for the Si-XLPE films during their radio-thermal ageing were de-
termined from the values of QO2 previously calculated with Equation (23) for the same
exposure conditions as in reference [8]. However, it was rapidly concluded that it was
impossible to use the value reported in Table 1 for PCO, because this largely underestimated
ε′ regardless of the exposure conditions. The value of PCO that gave the best simulations for
all the experimental data was finally chosen as: PCO ≈ 80 cm3·mol−1. In contrast, all the
other molar contributions were set according to the literature (see Table 1). The simulations
obtained with Equation (51) for all the radio-thermal environments under study are shown
in Figure 7.
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As already explained in Section 3, a satisfying agreement between the theory and the
experiments can be observed as long as the foundations of the kinetic model are checked,
i.e., under the three dose rates under study (from 8.5 to 400 Gy·h−1) at low temperatures
close to ambient (i.e., 47 and 21 ◦C). However, a poorer agreement is obtained under the
lowest dose rate (i.e., 6.0 Gy·h−1) at the highest temperature (86 ◦C) because, in these
critical radio-thermal exposure conditions, thermal initiation becomes of the same order of
magnitude as (if not greater than) the radiochemical initiation.

The possibility of deducing the changes in ε′′ from the simulations obtained in Figure 8
for ε′ was carefully investigated. In particular, ε′′ was plotted as a function of ε′ in
logarithm–logarithm coordinates in Figure 8. The following empirical relationship was
found for oxidized Si-XLPE:

ε′′ ≈
(
ε′

5.5

)5.5

(52)

It should be noted that this Equation (52) is very close to Equation (10), previously
determined by Cotts and Reyes [21] for common polymers.

In addition, the possibility of deducing the changes in R from the simulations obtained
in Figure 7 for ε′ was also carefully investigated. R was plotted as a function of ε′ in
logarithm–linear coordinates in Figure 9. The following empirical relationship was found
for oxidized Si-XLPE:

Log10(R) = 26.5− 3.1ε′ (53)
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Here again, it should be noted that Equation (53) is very close to Equation (11),
previously determined by van Krevelen [20] for common polymers.

7. Proposal of an End-of-Life Criterion

As explained in the introduction, only purely mechanical considerations are currently
used for lifetime prediction, which poses a serious issue for cable life management in
NPPs. The search for a more relevant end-of-life criterion, i.e., of the dielectric type,
requires a careful analysis of the changes in the electrical properties of polymer structures.
For this reason, the values of ε′ and R of common polymers were compiled from the
literature [20–24], then ε′ was plotted as a function of the oxygen concentration in the
CRU (i.e., QO2) in Figure 10, whereas R was plotted as a function of ε′ in Figure 11. It
can be observed that, for the polymers containing only C, H and O atoms in their CRU,
ε′ progressively increases with QO2 from typically 2.4± 0.3 up to an asymptotic value of
around 4.0. In the meantime, for all common polymers, R dramatically drops with ε′ from
typically 1017±2 Ω·cm to an asymptotic value of around 1012±1 Ω·cm.

Thus, for values of QO2 higher than typically 1.8× 10−3mol·cm−3, it is found that
common polymers would exhibit the same electrical performance as glass, a material with
poor insulating properties. As an example, for SiO2, the following values of ε′ and R were
reported in the literature: ε′ ≈ 3.9 [71] and R ≈ 1012 Ω·cm [72]. These are indeed of the
same order of magnitude as the previous asymptotic values.

Regarding the Si-XLPE insulation under study, in Figure 6, it can be seen that the
most aged samples have not yet reached this boundary behavior, but they are approaching
it dangerously. Indeed, they are characterized by a maximum value of QO2 of about
1.2× 10−3mol·cm−3.

Thereafter, it will be considered that R is dangerously approaching its asymptote when
it is above a critical value of ε′ of the order of ε′ = ε′F ≈ 3.5. If normalized with respect to
the dielectric constant of a nonpolar polymer, such as PE and its copolymers, this critical
value can be rewritten as: ε′F/ε′ini ≈ 1.5.
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Taking, as a first approach, ε′F/ε′ini ≈ 1.5 as the end-of-life criterion for Si-XLPE
insulation, the lifetime tF(ε

′) can be graphically determined as it is in Figure 7 for the
different radio-thermal environments under study. In Table 7, the values obtained for tF(ε

′)
are compared to those previously calculated with the conventional mechanical end-of-life
criterion (i.e., when the elongation at break εR reaches its critical value εF = 50%) for the
same exposure conditions as in reference [8].
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Table 7. Comparison between the lifetimes determined using a dielectric or a mechanical end-of-life
criterion for Si-XLPE in the various radio-thermal environments under study.

I (Gy·h−1) 400 77.8 8.5 6.0

T (◦C) 21 47 47 86
tF(ε

′
) (days) 67 184 629 289

tF(εR) (days) 32 43 246 -
Ratio tF

(
ε
′
)

/tF(εR) 2.1 4.3 2.6 -

It is found that tF(ε
′) ≥ 2 tF(εR) regardless of the exposure conditions, thus confirming

the previous literature studies that have shown that the fracture properties degrade faster
than electrical properties [11–16]. This result could be explained by considering the choice
of the failure criterion for mechanical and electrical tests. Indeed, mechanical failure is
considered to have been reached for a still fairly high value of εR because, below this critical
value, the cable cannot withstand a loss of coolant accident (LOCA), although it is still
able to operate under normal conditions. In contrast, the critical value proposed here for
ε′, corresponding to the asymptotic value of the insulation resistivity beyond which the
polymer is no longer a good insulator, really represents the end point of cable life because,
above this value, the cable is no longer able to operate even under normal conditions. Thus,
this result confirms the urgent need for a dielectric end-of-life criteria consistent with the
mechanical behavior to predict the lifetime of electrical cable insulation in nuclear industry.

8. Conclusions

The analytical model, recently developed for accurately describing the radio-thermal
oxidation kinetics of unfilled and unstabilized Si-XLPE insulation in NPPs [8], has been
completed with several structure–property relationships in order to additionally predict
the changes in its electrical properties. This model was derived from a mechanistic scheme
in which the oxidation reaction is initiated both by the polymer radiolysis and the thermal
decomposition of hydroperoxides, without making the usual assumption concerning the
thermal stability of hydroperoxides. After an initial period where the oxidation kinetics
occur at a constant rate, it also allows predicting the auto-acceleration of the oxidation
kinetics when hydroperoxide decomposition is no longer negligible. Assuming that ke-
tones are the main oxidation products in Si-XLPE, the model also calculates the oxygen
consumption QO2 from which the changes in density ρ and dielectric constant ε′ can be
deduced. The validity of this assumption was first checked with FTIR spectroscopy coupled
with chemical gas derivatization and DSC, then confirmed by density measurements.

Several other electrical properties can also be deduced from ε′ using empirical rela-
tionships, such as the dielectric absorption ε′′ or the volume resistivity R. From the changes
in R with ε′ for common polymers, a dielectric end-of-life criterion has been proposed to
calculate the lifetime of Si-XLPE insulation in nuclear environments. The corresponding
lifetime was found to be at least two times higher than that previously calculated with the
conventional mechanical end-of-life criterion for the same exposure conditions as in refer-
ence [8]. This result, which can be explained by two different choices of end-of-life point,
confirms the urgent need for dielectric end-of-life criteria consistent with the mechanical
behavior to predict the lifetime of electrical cable insulation in nuclear industry.

Despite its apparent success, this multiscale approach for lifetime prediction needs
to be improved in several places. First of all, the chemi-crystallization kinetics (i.e., the
changes in crystallinity ratios XC and VC) and its consequences for Si-XLPE density should
be carefully and accurately analyzed so that it can be non-empirically modeled. To this
end, the experimental results obtained from differential scanning calorimetry (DSC) and
X-ray diffraction at both large and small angles (WAXS and SAXS) will be published in the
coming months. In addition, the value of the molar polarization proposed in this study
for ketones should be theoretically confirmed, e.g., from molecular dynamics calculations.
These calculations will also allow us to check whether it is correct to only consider the
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main oxidation products (i.e., ketones) or whether other types of polar products (such as
carboxylic acids, aldehydes and hydroperoxides), although in slightly lower concentration
in Si-XLPE, should also be considered to more rigorously predict the changes in the
dielectric constant. Finally, a wide field of research opens for the prediction of all the other
electrical properties. There is no doubt that these prospects will constitute the challenges
of many future publications.
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Appendix A. Evaluation of the Effect of Oxygen Consumption on the PE Density
When Hydroperoxides Are the Main Oxidation Products

The formation of hydroperoxides in PE can simply be described using the constitutive
repeating unit (CRU) shown in Figure A1.
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The molar mass and the total number of atoms of this CRU are:

MCRU = 14p + 32 and NCRU = 3p + 2 (A1)

The total number of O2 molecules per carbon atom is:

nO2 =
1
p

(A2)

As a reminder, the average atomic molar Ma is defined as:

Ma =
MUCR

NUCR
(A3)

Introducing Equations (A1) and (A2) into Equation (A3) gives:

Ma =
14p + 32

3p + 2
(A4)

i.e.,

Ma =
7 + 16nO2

1.5 + nO2
(A5)
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The derivative function of Ma with respect to nO2 is written as:

dMa

dnO2
=

17

(1.5 + nO2)
2 (A6)

For the low conversion ratio of the oxidation reaction (nO2 � 1), this can finally be
written as:

dMa

dnO2
≈ 7.55 (A7)

i.e., if considering small variations:

∆Ma

∆nO2
≈ 7.55 g·mol−1 (A8)

In addition, oxygen consumption QO2 can be written as:

QO2 =
ρa ini

32
∆MUCR

MUCR ini
(A9)

where MUCR ini and ρa ini are the molar mass of the CRU (MUCR ini = 14p) and the density
of the amorphous phase of the unoxidized PE (ρa ini = 0.85 [69]), respectively. Replacing
MUCR and MUCR ini with their respective expression gives:

QO2 =
ρa ini

14
nO2 (A10)

The derivative function of QO2 with respect to nO2 is written as:

dQO2
dnO2

=
ρa ini

14
(A11)

The numerical application gives:

dnO2

dQO2
≈ 16.47 (A12)

i.e., if considering small variations:

∆nO2

∆QO2
≈ 16.47 cm3·mol−1 (A13)

Combining Equations (A8) and (A13) gives:

∆Ma

∆QO2
=

∆Ma

∆nO2
× ∆nO2

∆QO2
= 124.44 g·cm3·mol−2 (A14)

Let us choose the upper limit of the variation interval proposed by Langlois et al. [55]:

∆ρa
∆Ma

≈ 0.30 mol·cm−3 (A15)

Combining Equations (A14) and (A15) finally gives:

∆ρa
∆QO2

=
∆ρa
∆Ma

× ∆Ma

∆QO2
= 37.33 g·mol−1 (A16)
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